不規則交通流が作用する道路橋の非正規過程による解析

岡林隆敏*·山手弘之**

Analysis of Highway Bridge Response to Stochastic Traffic Flows Using Non-Gaussian Process

by

Takatoshi OKABAYASHI* and Hiroyuki YAMATE**

This paper concerns the probability distribution function to the response of highway bridges with stochastic traffic flows. Assuming randomly arriving vehicles with random weight as the compound Poisson process, the response is characterized by a filtered Poisson process. Under this assumption, cumulants for the bending moment and its derivative are derived. The probability distribution functions of the response for simple supported girder bridge are represented by the form of statistical Laguerre expantion series and Hermite expansion series using by these cumulants. Results obtained by this method are compared with numerical results which are directly obtained from the characteristic function of responses.

1. はじめに

構造物の設計法が従来の許容応力設計法から、信頼 性理論を取り込んだ設計法へ移行しつつある中で、不 確定要素を考慮した構造解析に関する研究¹⁾が進めら れてきた。土木構造物の中でも、道路橋に作用する活 荷重は様々な不確定要因に支配されているために、こ れを確率モデルにより構成し、道路橋の信頼性を理論 的に評価しようとする試み²⁰がなされている。道路橋 の活荷重による信頼性を評価するためには、合理的な 交通流の確率モデルを構成し、これより確率論的手法 を用いて応答の確率分布を求める必要がある。特に、 信頼性解析で必要なものは、確率分布の裾の部分であ るので、荷重の確率モデルに対する応答の確率分布 を、厳密に解析的に求めることが、活荷重による道路 橋の信頼性解析の当面の課題である。

このような観点から、活荷重による道路橋の応答解

析を扱った研究には次のようなものがある。高岡・白 木ら⁸⁾は、渋滞時の活荷重を不規則分布荷重でモデル 化し, 確率過程の相関理論より応答の2次モーメント を算出すると共に、空間領域での信頼性解析を行なっ た。藤野4 は車両列が時間と共に移動するものと考え ると、応答が定常確率過程になることに着目し、スペ クトル表示法より最大応答の確率分布を求めた。これ らの研究では、荷重及び応答を正規確率過程と考えて いるが、実際の橋梁では荷重も応答も正規分布からか なり隔け離れた分布を示すことが知られている。 篠 塚・久保ら5)は車両列を橋梁上に載荷する集中荷重と 考え, これらを複合 Poisson 過程でモデル化し, Filtered-Poisson 過程⁶⁾⁷⁾⁸⁾の理論より応答の特性関数を 求めた。これを FFT によりフーリエ変換することに より, 数値的に応答の確率分布を得た。正規過程によ る解析では、非線形変換することにより非正規過程に

昭和60年5月8日受理

* 土木工学科 (Department of Civil Engineering)

** 土木工学専攻修士課程 (Graduate Student, Department of Civil Engineering)

 $\{x_i, i_i, i_{i+1}, \dots, i_N, 0\} \in \{i_i, i_i\}$

よる極値統計量を求める試み⁹⁾ がなされているが,道 路橋の場合,非線形変換する関数はシミュレーション または実測により経験的に求めざるを得ない。他方, 特性関数を数値フーリエ変換する方法では,信頼性解 析に必要な確率分布が数値計算の誤差により正確に求 められない問題点がある。

本論文では、荷重モデルは、複合 Poisson 過程の 集中荷重が一定速度で移動するものとし、橋梁の着目 点の曲げモーメント応答を定常な非正規確率過程と考 える。車両列を Poisson 過程でモデル化すると、応 答の高次キュムラントが 容易に 得られることに着 目 し、この高次キュムラントを用いて確率分布の直交関 数系列による級数表示を試みたものである。本法によ れば、確率分布が解析的に決定できること、また確率 分布の裾の部分が正確に評価できる特徴がある。太田 ら¹⁰⁰の方法を用いて、橋梁を単純ばりでモデル化した 場合、曲げモーメント応答 M(t) の確率分布 につい ては Laguerre 級数展開で、また曲げモーメントの時 間徴分応答 $\hat{M}(t)$ については Hermite 級数展開を行 なった。

2. 活荷重のモデル化と応答の確率密度関数

2.1 複合ポアソン過程による活荷重のモデル化

橋梁上を一定速度 v で走行する車両列の模様を図-1に示す。各車両は重量 P_k を有する不規則集中荷重 でモデル化する。多くの研究²⁾³⁾⁴⁾においては車両の重 量特性を車種,車重,軸重などによって厳密にモデル 化しているが、本研究では文献(5)にならい集中荷重で 置き換える。ここで、複合 Poisson 過程を構成する ために次のような仮定を設ける。

 i) 一定区間に含まれる車両台数 N(T) は Poisson 分布に従う。すなわち、時間間隔 T の間に N台 到着する確率は次式で与えられる。

$$P(N(T)=n) = \frac{(\lambda T)^n}{n!} e^{-\lambda T}$$
(1)

ここに、 λ は単位時間生起率を表わす。 ii) 車両重量 P_k は互いに独立な、同一分布とす る。

Fig. 1 Highway bridge with traffic flow.

iii) 車両の流れは一様である。従って、車両の作用 する点は一様分布となる。

区間 (0,l) を含むような十分に大きい区間 L 上 にランダムな間隔で発生させた車両を配列する。この 場合の着目点 ξ (0< ξ <l) における曲げモーメント 応答 M_{ξ} とその微分 (せん断力) 応答 $M_{\xi'}$ は、

$$M_{\xi} = \sum_{k=1}^{N} w(y_k) P_k \tag{2}$$

$$M_{\xi'} = \sum_{k=1}^{N} w'(y_k) P_k$$
 (3)

で求まる。ここで、N はある区間 L に含まれる車両 台数、 P_k は k 番目の車両の重量、 y_k ははりの左端 から k 番目の車両が作用する点までの 距離を表わ す。 $w(y_k)$ 、 $w'(y_k)$ はそれぞれ $y=\xi$ の曲げモーメン トとせん断力の影響線である。

次に、各車両を一定速度 v で移動させると M_{ℓ} , M_{ℓ}' は時間的に変動する定常確率過程となる。 従っ て、 M_{ℓ} , M_{ℓ}' は時間 t の関数となり、 $y_k = v(t - \tau_k)$ とすれば, 式(2),(3)は

$$M(t) = \sum_{k=1}^{N(T)} h(t, \tau_k) P_k$$
 (4)

$$\dot{M}(t) = \sum_{k=1}^{N(T)} \dot{h}(t, \tau_k) P_k$$
(5)

と表わすことができる。ここで、N(T) は任意の時間間隔 T に区間 L 上を移動する車両台数、 τ_k は k 番目の車両が橋梁に進入した時刻、 $h(t, \tau_k), \dot{h}(t, \tau_k)$ は応答の時間的な変動に対する影響関数である。なお、・ は時間微分を表わすものとする。

式(4),(5)における N(T)、 r_k , P_k は時間的にランダムに変化する量であるから, M(t) 及び $\dot{M}(t)$ はこれらの複合された確率変数となる。

2.2 応答の確率密度関数

本節では、2.1で設けた仮定を用いて応答の確率密 度関数を求める手法を示す。

曲げモーメント M(t) の確率密度関数を $f_M(x)$ と し、それに対応する特性関数を $\phi_M(\theta)$ とすれば、両 者はフーリエ変換の対の関係にある。

$$\phi_{M}(\theta) = E[e^{i\theta x}] = \int_{-\infty}^{\infty} e^{i\theta x} f_{M}(x) dx \qquad (6)$$

$$f_{\mathcal{M}}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i\theta x} \phi_{\mathcal{M}}(\theta) d\theta$$
(7)

ここに、E[]は集合平均のための演算子である。 この関係を利用し、まず特性関数 $\phi_M(\theta)$ を求め、そ れをフーリエ変換することにより確率密度関数 $f_M(x)$ を決定する。

曲げモーメントの特性関数 $\phi_M(\theta)$ は定義より次式

で与えられる。 $\phi_{M}(\theta) = E[e^{i\theta M(t)}]$ (8) 全確率の定理より

$$\phi_{M}(\theta) = \sum_{n=0}^{\infty} E[exp(i\theta \sum_{k=1}^{N(T)} h(t, \tau_{k}) P_{k})]$$

|N(T)=n]P(N(T)=n) (9) と表わせる。2.1 で仮定したように P_k は互いに独立 であり、 τ_k は一様分布となるので $\phi_u(\theta)$ は次のよう に変形できる。

$$\phi_{M}(\theta) = \sum_{n=0}^{\infty} E[E[exp(i\theta h(t,\tau_{k}) P_{k})]$$

$$|\tau_{k}=\tau] | N(T)=n] P(N(T)=n)$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{T} \int_{0}^{T} g(\theta h(t,\tau)) dt\right]^{n} \frac{(\lambda T)^{n}}{n!} e^{-\lambda T}$$

$$= exp[\lambda] \int_{0}^{T} \left[g(\theta h(t,\tau)) - 1\right] dt] \quad (10)$$

ただし、 $g(\theta h(t,\tau))$ は車両重量 P_k の特性関数

$$g(\theta h(t,\tau)) = E[exp(i\theta h(t,\tau) P_k)]$$
(11)

である。

式(如より、 $\phi_M(\theta)$ は重量分布が与えられると求まる。さらに、式(7)を用いれば曲げモーメント M(t)の 確率密度関数 $f_M(x)$ が得られる。

ここでは、代表的に曲げモーメント応答のみについ てその特性関数を求めたが、曲げモーメントの時間微 分応答M(t) に ついても 全く 同様の手続きに より、 その特性関数 $\phi_M(\theta)$ を得ることができる。すなわち

$$\phi_{\mathbf{M}}(\theta) = exp[\lambda \int_{0}^{T} \{g(\theta \dot{h}(t,\tau)) - 1\} dt]$$
(12)

を得る。

3. 確率分布の計算とシミュレーションによる検討

3.1 M(t), M(t) の特性関数と確率密度関数

解析の対象を単純ばりとし、その支間長をlとする。着目点を支間中央点 $\xi = l/2$ にとれば、曲げモー メントの影響線w(y)は

$$w(y) = \begin{cases} y/2 & (0 \le y \le l/2) \\ (l-y)/2 & (l/2 \le y \le l) \\ 0 & (y \le 0, \ l \le y) \end{cases}$$
(13)

であり、これを時間 t の関数に直すと

$$h(t,\tau) = \begin{cases} v(t-\tau)/2 & (\tau \le t \le \tau + l/2v) \\ (l-v(t-\tau))/2 & (\tau + l/2v < t \le \tau + l/v) \\ 0 & (t < \tau, \tau + l/v < t) \\ 0 & (14) \end{cases}$$

となる。

車両重量 P_k は指数分布に従うものとし、その確率 密度関数を次式で表わす。

 $f_P(p) = \beta e^{-\beta p} \qquad (p \ge 0, \ \beta > 0) \tag{15}$

ここに、係数βは分布のパラメータである。

曲げモーメントの特性関数は,単純ばりに対して, 式(4)より次式で与えられる。

$$\phi_{M}(\theta) = exp[\frac{\lambda}{v} \int_{0}^{l} E[e^{i\theta w(y)P} - 1]dy] \quad (16)$$

具体的に単純ばりの影響線式(13を代入して,若干の演 算を行なうと

$$\phi_{M}(\theta) = exp[-\frac{\lambda l}{v} \{1 - \frac{4\beta}{\theta l} \arctan\left(\frac{\theta l}{4\beta}\right)\} + i\frac{2\lambda\beta}{v\theta} ln \{1 + \left(\frac{\theta l}{4\beta}\right)^{2}\}] \quad (17)$$

となる。上式は文献(5)で与えられたものに,車両の移 動速度を考慮したものである。

式(りをフーリエ変換すると曲げモーメントの確率密 度関数が得られる。フーリエ変換に際しては FFT 法 を用いて数値計算を行なう。数値計算は文献(5)を参考 にして,表-1に示す値を用いる。

図-2に数値計算より得られた曲げモーメントの確 率密度関数 $f_M(x)$ を示す。 この図から わかる よう に, 曲げモーメントの応答は正領域のみの変動と な る。

次に, 曲げモーメントの時間微分 M(t) について

Table 1 Characteristics of highway bridge and traffic loads.

(m)	50.0	1
(1/sec)	0.3	λ
 (m/sec)	3.0	v
(1/t)	0.5	β

Fig. 2 Comparison of analytical solution with simulation for M(t).

の特性関数を求める。w'(y), $h(t, \tau)$ はそれぞれ次のようになる。

$$w'(y) = \begin{cases} 1/2 & (0 \le y \le l/2) \\ -1/2 & (l/2 < y \le l) \\ 0 & (y < 0, \ l < y) \end{cases}$$

$$\dot{h}(t,\tau) = \begin{cases} v/2 & (\tau \le t \le \tau + l/2v) \\ -v/2 & (\tau + l/2v < t \le \tau + l/v) \\ 0 & (t < \tau, \ \tau + l/v < t) \end{cases}$$
(19)

式(15), (18), (19)を式(12)に代入すれば, *M*(*t*) と同様に 特性関数が解析的に得られる。

$$\phi_{M}(\theta) = exp\left[-\frac{\lambda l}{v} \frac{(\theta v)^{2}}{(\theta v)^{2} + 4\beta^{2}}\right]$$
(20)

上式からわかるように、*M*(*t*)の特性関数は実数部のみの関数となる。

表-1の値を用いてフーリエ変換した結果を図-3 に示す。ただし、正領域のみを示してある。 $\hat{M}(t)$ の 分布は正負対称となり、 $\hat{M}=0$ で尖った分布になる。

Fig. 3 Comparison of analytical solution with simulation for $\dot{M}(t)$.

3.2 シミュレーションによる検討

2. で述べた解法の妥当性を検討するために、シミュレーションを行なう。シミュレーションは次の順序で実行する。

まず、各車両の車間距離、車両重量を決定する。車

Fig. 4 Sample function of M(t) at mid-span.

両重量の確率密度関数は式的で与えられる。車間距離 は、活荷重を Poisson 過程でモデル化したために, 必然的に指数分布となる。車間距離を d とし, その 確率密度関数を次式で表わす。

$$f_D(d) = \frac{\lambda}{n} e^{-(\lambda/v)d} \qquad (d \ge 0) \tag{21}$$

次に、モデル化された荷重列を一定速度 v で移動させ、微小時間 4t ごとに着目点 t の M(t)、M(t)を計算する。M(t)は式(2)で求まる。また、M(t)は次式で定義する。

$$\dot{M}(t) = \frac{M(t+\Delta t) - M(t)}{\Delta t}$$
(22)

式(2), (2)の計算 300 秒間行なった ものが 図-4, 図-5 に示す標本関数である。

Fig. 5 Sample function of M(t) at mid-span.

以上の計算を20回繰り返して M(t), M(t) の 確率 密度関数を求める。

図-2, 図-3における棒状のグラフがシミュレー ションによって得られた確率密度関数である。少ない 繰り返し回数にもかかわらず、M(t)、M(t)の両者と も 3.1 で得られた分布とシミュレーションによる分布 は良い一致を示している。

ところで、フーリエ変換またはシミュレーションを 行なうと確率密度関数が得られるが、これらはいずれ も数値解であり、構造物の信頼性を議論する上で重要 な分布の裾部の挙動を正確に表現することができな い。そこで次章では、M(t) 及び $\dot{M}(t)$ の高次統計量 を用いてこれらの確率密度関数を構成することを試み る。

4. 高次統計量による確率密度関数の構成

活荷重を Poisson 過程でモデル化すると、M(t)及 び $\dot{M}(t)$ の高次モーメントを容易に得ることができ る。本章では、この高次モーメントを用いて M(t), $\dot{M}(t)$ の確率密度関数を構成する。

図-2, 3で示したように, *M(t)* の分布は正領域 のみの変動で比較的 Gamma 分布に近い形をしてい

4.1 高次キュムラントの誘導

分布の高次モーメントは高次キュムラントを用いて 表現することができる。また,高次キュムラントは特 性関数との関係から求められる。

車両重量 P_k の特性関数 $g(\theta)$ は,

$$g(\theta) = E[e^{i\theta P}] = \sum_{n=1}^{\infty} \frac{1}{n!} (i\theta)^n E[P^n]$$
(23)

となる。

これを式(10)に代入すると次式を得る。

$$\phi_{M}(\theta) = exp\left[\sum_{n=1}^{\infty} \lambda E[P^{n}] \int_{0}^{T} h(t,\tau)^{n} dt \cdot \frac{(i\theta)^{n}}{n!}\right]$$
(24)

特性関数とn次キュムラント K_n の関係は,

$$\phi(\theta) = exp\left[\sum_{n=1}^{\infty} K_n \frac{(i\theta)^n}{n!}\right]$$
(25)

であるので, M(t) の n 次キュムラント K_n [M(t)] は次式で与えられる。

$$K_{n}[M(t)] = \lambda E[P^{n}] \int_{0}^{T} h(t,\tau)^{n} dt$$
$$= \frac{\lambda}{v} E[P^{n}] \int_{0}^{t} w(y)^{n} dy \qquad (26)$$

同様に、M(t)の n 次キュムラント $K_n[M(t)]$ は

$$K_{n}[\dot{M}(t)] = \lambda E[P^{n}] \int_{0}^{T} \dot{h}(t,\tau)^{n} dt$$
$$= \frac{\lambda}{v} E[P^{n}] v^{n} \int_{0}^{t} w'(y)^{n} dy \qquad (27)$$

となる。

式(20, 07)により得られた高次キュムラントを用いて 高次モーメントを求めることができる。両者の関係式 は付録A.1に示す。

式(M)、(M)において、n=1及び2とすればM(t)と $\dot{M}(t)$ の平均値と分散が得られる。また、式(M)からわ かるようにw'(y)は奇関数であるから、 $\dot{M}(t)$ の奇 数次のキュムラントは0である。

4.2 M(t) の Laguerre 展開表示

Laguerre 展開表示¹⁰⁾による M(t) の確率密度関数 $f_M(x)$ は次式で与えられる。

$$f_{M}(x) = \frac{x^{m-1}e^{-x/s}}{\Gamma(m)s^{m}} \left\{ 1 + \sum_{n=s}^{\infty} \frac{n!\Gamma(m)}{\Gamma(m+n)} - \frac{L_{n}^{(m-1)}(x/s) > L_{n}^{(m-1)}(x/s)}{m = \langle x \rangle^{2}/\sigma_{M}^{2}, \ s = \langle x \rangle / m} \right\}$$
(28)

ここに, Laguerre 多項式 $L_n^{(\alpha)}(X)$ は

$$L_{n}^{(\alpha)}(X) = \frac{e^{X} X^{-\alpha}}{n!} \cdot \frac{d^{n}}{dX^{n}} (e^{-X} X^{n+\alpha})$$
$$= \sum_{r=0}^{n} \frac{\Gamma(n+\alpha+1)}{\Gamma(n-r+1)} \cdot \frac{(-X)^{r}}{r!}$$
(29)

ただし, **r**() は Gamma 関数

$$\Gamma(z) = \int_{0}^{\infty} u^{z-1} e^{-u} \, du \tag{30}$$

であり、<>は平均操作 E[]を意味する。式网を 式図に代入すると

$$f_{\mathcal{M}}(x) = \frac{x^{m-1}e^{-x/s}}{\Gamma(m)s^{m}} \left\{ 1 + \sum_{n=3}^{\infty} B_n \sum_{r=0}^{n} \frac{\Gamma(n+\alpha+1)}{(n-r)! \Gamma(\alpha+r+1)} \cdot \frac{(-x/s)^r}{r!} \right\}$$
(31)

$$B_n = n! \Gamma(m) \sum_{j=0}^n \frac{1}{(n-j)! \Gamma(j+m)} \cdot \frac{(-1)^j}{j! s^j} \langle x^j \rangle$$

となる。 $< x^{j} >$ は 原点まわりの j次のモーメントで ありキュムラントより求められる。

図-6は統計的 Laguerre 展開表示による曲げモー メント M(t) の確率密度関数と,図-2で示した特性 関数のフーリエ変換から求めた確率密度関数の数値解 析結果である。なお,図の横軸は標準偏差で規格化し た曲げモーメントである。特性関数のフーリエ変換よ り得た結果を求める確率分布と考えて,級数展開によ る方法の n による 適合性について検討する。 n=1 は Gamma 分布の 場合であ り, nの 増加に伴って Laguerre 級数でこれを修正する。 nを増加させたと きの傾向としては,分布のピークが xの小さい方へ移 動し, x=0の近傍に適合するような曲線になってい る。直接数値計算から得られた結果と級数展開法の結 果を比較すると,ピーク近傍での適合性は 良くない が, $x/\sigma >$ 3の分布の裾の部分では比較的良い一致を 示している。

そこで, $x/\sigma > 3$ の部分を拡大したものを図-6(b) に示した。図から,展開する項数の増加によっても著 しい改善は行なわれていないことがわかる。むしろ, n=1 の Gamma 分布が平均的に良い適合を示してい る。

4.3 M(t)の Hermite 展開表示

M (t) の Hermite 展開表示¹⁰について説明する。
 この確率密度関数は次式で与えられる。

$$f_{\dot{M}}(x) = \frac{1}{\sqrt{2\pi} \sigma_{\dot{M}}} exp\left\{-\frac{(x-\mu_{\dot{M}})^2}{2\sigma_{\dot{M}}^2}\right\}$$
$$\left\{1 + \sum_{n=3}^{\infty} (-1)^n \alpha_n H_n\left(\frac{x-\mu_{\dot{M}}}{\sigma_{\dot{M}}}\right)\right\}$$
(32)

 $\mu_M^* = < x >, \sigma_M^* = < (x - \mu_M^*)^2 >$ ここに Hermite 多項式 *Hn* (X) は

$$H_{n}(X) = \left(-\frac{d}{dX}\right)^{n} \left(e^{-\frac{X^{2}}{2}}\right)/e^{-\frac{X^{2}}{2}}$$
$$= X^{n} - \binom{n}{2} X^{n-2} + 3\binom{n}{3} X^{n-4} - \dots (33)$$

であり、係数 αn は次式で定義される。

$$\alpha_n = \frac{(-1)^n}{n!} \int_{-\infty}^{\infty} H_n \left(\frac{x - \mu_M}{\sigma_M} \right) f_M^*(x) \, dx \qquad (34)$$

 α_n は, n のすべての奇数に対して0となる。偶数 項のみで展開した結果を付録 A.2に示す。

図-7は統計的 Hermite 展開表示と特性関数を直

Fig. 7 Probability density function of M(t); Hermite expansion series.

接数値計算する方法から求めた $\dot{M}(t)$ の確率密度関数を示したものである。横軸は標準偏差で規準化した $\dot{M}(t)$ の値である。なお、分布は正負対称となるので正のみの曲線を示してある。従って、Hermite 展開表示では偶数項のみを考えればよい。 n=1の場合は正規分布になり、特性関数を直接数値解析した結果と比較すると変化が緩かで適合性は良くない。 n=8 の場合は x=0 近傍の適合性は良いが、裾の部分で不自然な変動が見られる。 n=4 の場合が平均的に良い適合性を示している。さらに、裾の部分の分布を詳細に検討するために、 $x/\sigma > 3$ の部分を過小評価することになる。この区間でも平均的に適合性が良いものは n=4 の場合である。

5. おわりに

活荷重による道路橋の信頼性を評価するためには, まず応答の確率分布を求めることが必要である。本研 究は,活荷重を一定速度で移動する Poisson 過程で モデル化すると共に,非正規過程となる道路橋の曲げ モーメント応答及びその時間微分応答の確率密度関数 の構成法を提案した。さらに,橋梁を単純ばりでモデ ル化した場合について,構成した確率密度関数の適合 性に検討を加えたものである。得られた結果を要約す ると以下のようである。

(1)活荷重を一定速度で移動する複合 Poisson 過程 でモデル化し, Filtered-Poisson 過程の理論より交 通流を考慮した橋梁の曲げモーメント応答及びその時 間微分の高次キュムラントを誘導した。

(2)活荷重を複合 Poisson 過程でモデル化した場合,シミュレーションにより橋梁の曲げモーメント及びその時間微分の確率密度関数を得た。さらに,理論的に得られる応答の特性関数をフーリエ変換することにより応答の確率密度関数を求め,両者が良い一致を示すことを確認した。

(3)橋梁の曲げモーメント応答の確率分布を統計的 Laguerre 展開表示で示し,特性関数より直接数値解 析した結果と比較した。級数展開表示では項数nを増 加させても求める分布には漸近しない。曲げモーメン トについては,nを増加させることにより確率分布の 顕著な改善は認められなかった。

(4)曲げモーメント応答の時間微分を統計的 Hermite 展開表示で示し, 直接数値解析 した 結果 と比 較・検討した。この場合, n=1 すなわち正規分布で は,平均値近傍では変化が緩かであり,分布の裾の部 分では急激に減少する。 n=4 の場合 が比較的良い 分布を与えることが明らかになった。

上述のような結果が得られたが、しかし、いくつか の課題が残っている。 級数展開表示の問題点として は、級数の項数を増加させても不自然な変動が表わ れ、求める部分には一様に漸近しない。従って、項数 を決定するためには経験的な判断が要求される。さら に本質的な問題として、 渋滞時の実際の交通流は Poisson 過程とはならない。 Poisson 過程に基づく 応答の確率分布と実際の状況を反映したシミュレーシ ョンによるものでは、かなりの差が認められることが 知られている。本解法をさらに発展させるためには、 これらの問題点を解決することが必要である。

最後に、本研究を遂行するに当り、東京大学工学部 藤野陽三助教授並びに鳥取大学工学部白木渡助教授か ら有意義な討論をいただいた。また、数値計算にあた っては坂元雅広氏(現・大日本土木㈱)の援助を得 た。ここに深く感謝の意を表します。

参考文献

- 1)土木学会編:構造物の安全性・信頼性, 土木 会,1976年.
- 2)阪神高速道路公団・(財)阪神高速道路管理技術センター:阪神高速道路における活荷重実態調査と荷重評価のための解析,1984年3月.
- 3)高岡・白木・松保:不規則関数論に基づく道路橋の空間領域での信頼性解析,土木学会論文報告集, 第334号,1983年6月
- 4) 阪神高速道路公団・(社)システム総合研究所:都 市高速道路の荷重評価と設計規準の最適化に関する 研究報告書,第2章道路橋活荷重の確率論的評価に 関する検討, pp. 4~33,1984年3月.
- 5) 篠塚・松村・久保:道路橋における活荷重応答の 確率論的一算定法,土木学会論文集,第344号/1-1、1984年4月.
- 6) Rice,S.O.: Mathematical Analysis of Random Noise in Selected Papers on Noise and Stochastic Process, Dover Publication, Inc., New York, pp. 147~157, 1954.
- 7) Lin, Y. K.: Nonstationary Excitation and Response in Linear Systems Treated as Sequences of Random Pulses, J. Acoust. Soc. Am., 38: 453~460.
- Racicot, R. and F. Moses: Filtered Poisson Process for Random Vibration Probrems, ASCE, Vol. 98, No. EM1, February, 1972, pp. 159~ 176.
- Grigoriu, M.: Crossings of Non-Gaussian Translation Processes, Vol. 101, No. EM4, April, 1984.
- 太田:任意非線形整流素子の一般的な不規則応答 解析,応用物理第33巻第9号,1964年.
- Cook, M. B., Bivariate k-statistics and cumulants of their joint sampling distribution, Biometrika, Vol. 11, No. 93, 1951, pp. 179~195.

付 録

A.1 モーメンメとキュムラントの関係¹¹⁾

原点まわりの n 次モーメント μ_n' は、n 次キュムラ ント K_n を用いて次のように表わせる。

- $\mu_1' = K_1$ $\mu_2' = K_2 + K_1^2$ $\mu_3' = K_3 + 3K_2K_1 + K_1^3$
- $\mu_4' = K_4 + 4K_3K_1 + 3K_2^2 + 6K_2K_1^2 + K_1^4$

$$\mu_{5}' = K_{5} + 5K_{4}K_{1} + 10K_{3}K_{2} + 10K_{3}K_{1}^{2} + 15K_{2}^{2}K_{1} + 10K_{3}K_{2} + 10K_{3}K_{1}^{2} + 15K_{2}^{2}K_{1} + 10K_{2}K_{1}^{3} + K_{1}^{5}$$

$$\mu_{6}' = K_{6} + 6K_{5}K_{1} + 15K_{4}K_{2} + 15K_{4}K_{1}^{2} + 10K_{3}^{2} + 60K_{3}K_{2}K_{1} + 20K_{3}K_{1}^{3} + 15K_{3}^{2} + 45K_{2}^{2}K_{1}^{2} + 15K_{2}K_{1}^{4} + K_{1}^{6}$$
平均値まわりのn次モーメント μ_{n} は次のようにた
る。ただし、偶数次のみを示す。
$$\mu_{2} = K_{2}$$

$$\mu_{4} = K_{4} + 3K_{2}^{2}$$

$$\mu_{6} = K_{6} + 15K_{4}K_{2} + 10K_{3}^{2} + 15K_{3}^{2}$$

$$\mu_{8} = K_{8} + 28K_{6}K_{2} + 56K_{3}K_{5} + 35K_{4}^{2} + 210K_{4}K_{2}^{2} + 280K_{3}^{2}K_{2} + 105K_{2}^{4}$$

$$\mu_{10} = K_{10} + 45K_{8}K_{2} + 120K_{7}K_{3} + 210K_{6}K_{4} + 630K_{6}K_{2}^{2} + 126K_{5}^{2} + 2520K_{5}K_{3}K_{2} + 1575K_{4}^{2}K_{2} + 2100K_{4}K_{8}^{2} + 3150$$

 $K_4K_2^3 + 6300K_3^2K_2^2 + 945K_2^5$

A. 2 Hermite 展開表示における係数 $\alpha_n \mathcal{O}$ 計算 $\alpha_2 = 0$ $\alpha_4 = \frac{1}{4!} \left(\frac{\mu_4}{K_2^2} - 3 \right)$ $\alpha_6 = \frac{1}{6!} \left(\frac{\mu_6}{K_2^3} - 15 \frac{\mu_4}{K_2^2} + 30 \right)$ $\alpha_8 = \frac{1}{8!} \left(\frac{\mu_8}{K_2^4} - 28 \frac{\mu_6}{K_2^3} + 210 \frac{\mu_4}{K_2^2} - 315 \right)$ $\alpha_{10} = \frac{1}{10!} \left(\frac{\mu_{10}}{K_2^5} - 45 \frac{\mu_8}{K_2^4} + 630 \frac{\mu_6}{K_2^3} - 3150 \frac{\mu_4}{K_2^2} + 3780 \right)$