Fe/Zn-5mass%Al 拡散対に形成される 金属間化合物相

内 Ш 休 男* • 柴 H 久 — * * * • 习习 敬 坂 雅 厧 之* 秃 古 曶 人 *

Intermediate phases formed on Fe/Zn-5mass%Al couple

by

Yasuo Uchiyama*, Hisao Shibata**, Keiichi Hara*** Masayuki Hasaka* and Hideto Koga*

Fe/Zn-5mass%Al alloy diffusion couple was heated to 375°C for 72 and 96h. The structures of the intermediate phases formed were determined by X-ray microanalysis and X-ray diffraction techniques. These structures were compared with those formed on Fe-Zn and Fe-Al bearing Zn systems. The results obtained are as follows.

(1) Five intermediate phases were found in the diffused layer.

(2) These phases are a Γ -Fe₃Zn₁₀, a Γ_1 -Fe₅Zn₂₁, an Al bearing δ_1 -FeZn₁₀, a Zn bearing θ -FeAl₃, and a Zn-rich phase.

(3) A ζ -FeZn₁₃ which is formed first of all in the case of Fe-Zn system and a θ -Fe₂Al₅ which is regarded as an inhibiting layer do not found.

1.緒 言

亜鉛鉄板は防食用表面処理鋼板の代表的なものであ り、自動車用鋼板・家電製品用鋼板・建築用材料など に多量に使用されている。省資源・省エネルギーの観 点から,例えば自動車用鋼板は燃費を向上させるため により軽量へ,すなわち高強度のより薄い鋼板が用い られるようになった。しかし、このような薄い鋼板は 孔食に対する抵抗が劣るので,より耐食性の勝れた表 面処理鋼板へのニーズが高まっている。このため、Zn -Al, Zn-Ni, Zn-Fe などの2元系合金めっき,ならび に多層めっきなどの高耐食性めっきの開発研究が行わ れている⁽¹⁾. 溶融 Zn-5mass%Al 合金めっきもこれら

の一つである.

一般に,溶融めっきにおいては反応拡散が起り,合 金層と呼ばれる金属間化合物の層が形成される.とこ ろが,この金属間化合物の形成・成長,あるいは反応 鉄量の時間依存性などのFeとZn-5mass%Al合金と の反応性についてはいまだ十分な解明がなされたとは 言い難い.そこで,本研究ではまずどのような金属間 化合物が形成されるかを,固一固拡散対を用いて明ら かにする.

2. 供試料および実験方法

電解鉄(99.9%)を高周波真空溶解して25×25×150

昭和60年9月30日

*材料工学科(Materials Science and Engineering, Faculty of Engineering, Nagasaki University, Nagasaki-shi, 852, JAPAN)

^{**}日立マイクロコンピューターエンジニアリング㈱(Hitachi Microcomputer Engineering, Co. Ltd., Kodaira-shi, 187, JAPAN)

^{***}凸版印刷㈱ (Toppan Printing, Co. Ltd., Kumamoto-shi, 860, JAPAN)

in mm の金型に鋳込み,出来た鋳塊から機械加工によ り20×10×2 in mm の平板を切り出し,20×10in mm の一面を研磨して鏡面とし,鉄試料とした.また, 5mass%のAl (99.9%)を含むZn (99.99%)を溶解 し,10×20×300in mm の鋳型に鋳込んだものから 20×10×2 in mm の平板を切り出し,鉄試料と同様に 20×10in mm の一面を研磨して鏡面としてZn -5mass%Al 合金試料とした.このZn-5mass%Al 合 金は,Fig.1のAl-Zn平衡状態図⁽²⁾からわかるように 共晶合金である.

これらの鉄試料とZn-5mass%Al合金試料の鏡面 を合わせてクランプし、石英管中にAr封入し、所定温 度に所定時間加熱・保持して拡散反応を行わせた.こ れらの試料は、冷却後樹脂埋めした後接合面に垂直に 切り出し、切断面を検鏡するとともにX線マイクロア ナライザーを用いてFe/拡散層界面に垂直な方向の Fe,ZnおよびAlの濃度分析を行った.また、Zn -5mass%Al合金試料側から接合面に平行に数百 μ m ~数 μ m研削しながら、その都度研削面を検鏡すると ともにX線回折図形を求めた.

3. 結果および考察

3.1 拡散層の組織

375℃,96時間加熱により形成された拡散層の組織を Fe, Zn および Al の濃度曲線とともに Fig. 2 に示す. Fig. 2 に示 す ご と く Zn-5% Al は Al-rich 相 と Zn -rich 相との2相組織である. 拡散層中には, Fig.2中 に1~5の番号を付した5つの相が形成される.

第1相は Fe/拡散層界面近傍に局所的に形成され, 顕微鏡下では歯牙状で茶褐色を呈している。第2相は 第1相より色がうすく,鉄/拡散層界面に対してほぼ 平行に層状に形成されている。第3相との界面近傍の 第2相は,局所的に第3相中へ浮遊している。第3相 は,全合金相の中で一番色がなく,所によっては形成 されない場合がある。第4相との界面近傍の第3相中 には灰色の第4相の結晶が浮遊している。第5相はう すい茶褐色を呈しており,詳細に観察するとZn -5mass%Al合金の共晶のZn-rich相と通じている。

X線マイクロアナライザーによると,Feは第1相と 第2相の区別はできないものの,鉄側より拡散層に向 うにつれて,やや減少し,その界面で急激に減少する が,第2相中ではほぼ一定濃度である.第2相と第3 相の界面では,やや減少するが,第3相中の鉄濃度は ほぼ一定である.さらに,第3相から第4相へ向うと, Fe 濃度は増加し,第5相およびZn-5mass%Al合金 中ではほとんど検出されない.Znは純鉄中では検出さ れないが,拡散層へ向うと増加し,さらに第2相と第 3相との境界で僅かに増加するが,第4相中では減少 する.第4相から第5相へ向うと,Znは再び増加し, Zn-5mass%Al合金の水準となる.Alは,純鉄側から 第2相まではほとんど検出されないが,第3相中には 僅かに存在し,第4相中で急激な増加を示す.第5相

Fig. 1 Phase diagram of Al-Zn system.

Fig. 2 Structure of diffused layer formed on Fe/Zn-5mass%Al couple annealed at 375°C for 96h, and Fe, Zn and Al concentration profiles. Intermediate phases are numbered as shown in this figure.

中では Al は減少し, Zn-5mass%Al 合金の水準となる.

3.2 合金層の同定

溶融亜鉛めっきあるいは Fe/Zn 固一固拡散対には 鉄側より Γ , δ_i , ξ 相が出現する. Γ は 2 重層として形 成される場合があるが⁽³⁾⁽⁴⁾, これは Γ と Γ_1 の 2 相であ ることが確立されている⁽⁵⁾. また, δ_i には $\delta_{i\kappa}$ と δ_{iP} の 2 相が存在するとの報告も出されている⁽⁶⁾*. Fe-Al 系に おいては FeAl₃, Fe₂Al₅などの相が形成される⁽⁸⁾. さら に, Al を含む Zn 浴と Fe との反応においては, この他 に Fe-Zn-Al 三元化合物が出現することが知られて いる⁽⁹⁾. しかしながら, これらの化合物相のX線回折結 果については研究者により種々の結果が報告されてい る.本研究においても形成された相の同定はX線解析 により行ったが, Γ 相 (Fe₃Zn₁₀) については Gellings ら⁽¹⁰⁾, Bastin ら⁽⁵⁾の結果および ASTM カードの Fe₃

^{*} $\delta_{i\kappa}$ と δ_{iP} とは、X線回折においては同じ回折図形を与える⁽⁷⁾。

Zn₁₀を、 Γ_1 相は文献10および5を、 σ_i 相(FeZn₁₀)につ いては Gellings $\varsigma^{(11)}$, Bablik $\varsigma^{(12)}$, Bastin $\varsigma^{(13)}$ の結 果及びASTM カードの FeZn₇*を、 ς 相については Gellings $\varsigma^{(14)}$ の結果を、FeAl₂相については Úfedníček $\varsigma^{(15)}$ の結果を、Fe₂Al₅相および FeAl₃相につい ては文献15の結果および ASTM カードの Fe₂Al₅お よび FeAl₃を、Zn、Al、Fe については ASTM カード のそれぞれの元素を参照した。また、 σ_i 相および ς 相 については、内山⁽¹⁵⁾の結果をも参照した。

合金層の形成は局所的に起っていることから,第1 相~第5相を単独でX線解析することはできず,各相 が混り合った面についてX線解析を行った.

375℃で72時間反応させた試料拡散対を、Zn -5mass%Al 合金側より Fe/拡散層界面に平行に研削 し、Fig.3に示す面についてX線解析を行った。それ らの結果の一部をTable 1~4 に示す. 表面のZn -5mass%Al合金から一部第5相が現われるまで (Fig. 3(a))は、Table1に示すようにZnとAlの回 折線が得られる。第5相中に第4相が出現した Fig. 3 (b) に示す面より得られた X 線回折の結果を Table 2 に示す。Znの回折線の他に θ-FeAl₃からの回折線が 得られる.主として第4相および第3相が存在する Fig. 3(C)および第5相, 第2相も存在する面からの回 折結果を Table 3 に示す. これによると θ -FeAl₃, δ_1 -FeZn₁₀, Γ₁-Fe₅Zn₂₁および Zn からの回折線が得られ る。(第4相 θ -FeAl_aからの回折線も現われるが、紙面 の都合上 Table 3 では省略した.) Fe/拡散層界面に近 い面からの回折線になるにつれて、 θ および δ_1 の回折 線の強度が減少していき、 Γ_1 の回折線の強度が大きく なる. さらに研削して, Fig. 3(d)に示すように一部 Fe 素地が現われた面からの回折結果を Table 4 に示す. 回折線はほとんど Γ1からのもので,第1相のものと思 われる回折線は識別できなかった.

以上の結果および先に述べたX線マイクロアナライ ザーによる濃度分析の結果より,第5相はZn-rich相 であり,第4相は θ -FeAl₃構造を持ち,Znを含むこと から Úfedníček ら⁽¹⁵⁾が報告している Fe(AlZn)₃と考 えられ,第3相はAlを含むFeZn₁₀ (Úfedníček らは Al-bearing FeZn₇と報告している)と考えられ,第2 相は Γ_1 -Fe₅Zn₂₁と考えられる.第1相については本研 究では何ら情報は得られなかったが, Γ 相の回折線の 内で強度の強い2本の回折線(d=0.2116 nm とd= 0.1918 nm)⁽⁵⁾とほぼ同じ位置に Γ_1 相の回折線(d= 0.2120 nm:最強回折線,とd=0.1918 nm⁽⁵⁾)が存在 すること、および Fe-Zn 系においては Γ_1 相の Fe 側に Γ 相が形成されることから考えて第 1 相は Γ -Fe₃Zn₁₀ と思われる.

Alを少量含む亜鉛浴へ Fe を浸漬すると、Al が Zn より先に Fe と反応して Fe-Al 系の化合物が形成され、 Fe と Zn との反応が抑制される. この Fe-Al 系の化合 物は Fe₂Al₅⁽¹⁷⁾あるいは Fe-Zn-Al 3元化合物⁽¹⁵⁾など と報告されているが、時間の経過とともに抑制作用が 無くなり Fe-Zn 間反応が起り、抑制相はより安定な Fe₂(AlZn)₅になると報告されている⁽¹⁵⁾. Fe₂Al₅の回折 線は FeAl₃とは明らかに異なっているが、本研究の拡 散対中に形成された化合物相からは Fe₂Al₅の回折線 は得られず、本実験の条件下では Fe₂Al₅は形成されな い.

 $5 \sim 10$ mass%のAlを含む450~590°Cの亜鉛浴と Feとを反応させた場合にはFeAl₃が形成される⁽¹⁵⁾.し たがって,Fe/Zn-5mass%Al合金固一固拡散対にお いても,Al量が多い場合にはFeAl₃が形成されると推 察される.このFeAl₃の生成のためにZn-5mass%Al 合金からAlがFe側へ拡散し,Al-rich相が消滅した 領域が第5相として出現することとなる.この推察は, 先に述べた第5相がZn-5mass%Al合金の共晶組織 のZn-rich相と通じているとの観察と対応している.

本研究では,反応時間に対する化合物相の形成状態 を明らかにした訳ではないが、第4相のみが形成され ている領域、あるいは第2相・第4相の厚さがかなり 均一なのに比して第3相の厚さはバラツキが大きく、 領域によっては存在しないことから,まず最初に第4 相が第5相の形成を伴なって起り、続いて第1相・第 2相が形成され、最後に第3相が形成されると推察さ れる.Fe/Zn 固一固拡散対の場合あるいは Fe と Al を 含まない亜浴液との反応においては、 ς , δ_{iP} , Γ , Γ_i , δικの順に化合物相が形成される(18).最初に形成される **ζ-FeZn**₁₃に対応した回折線は本実験で形成された化 合物相からの回折線中には存在せず、ζ-FeZn₁₃は形成 されないが、この相は Al を含む亜鉛浴と Fe を反応さ せた場合には長時間経過後に形成される(15)ことから, 96時間以上の反応において生成すると考えられる. FeAl₃の形成を除外し, FeAl₃相形成後の Fe-Zn 間反 応により形成される化合物相の形成順序を考えると、 Fe/Zn-5mass%Al 合金拡散対の場合の化合物の形成 順序は、Fe/Zn 拡散対の場合の順序とは異なる.

^{*}現在Gi相はFeZn10と考えられているが、古くはFeZn7などと表わされていた。

Fig. 3 Structures of X-ray diffracted planes. Each number represents the phase shown in Fig. 1.

4.結 言

375℃に72時間および96時間保持したFe/Zn -5mass%Al 合金拡散対に形成された拡散層中には5 つの化合物相が出現する.これら5つの化合物相をX 線マイクロアナライザーによるFe, Zn およびAl 濃 度の分析ならびにX線回折法を用いて同定した.

最も鉄側に形成される化合物相については何ら情報 は得られなかったが、Fe-Zn 系、Fe-Al を含む Zn 系に ついての結果などとの比較・検討から Γ 相と推察され る. この相の Zn-5mass%Al 合金側に形成される相は Γ_1 -Fe₅Zn₂₁相である.さらに、この相の Zn-5mass%Al 合金側には Al を含む δ_1 -FeZn₁₀, Zn を含む FeAl₃(Fe (AlZn)₃)相が続く.Zn を含む FeAl₃相と Zn-5mass% Al 合金との間の相は、Al が抜けた Zn-rich 相である. しかしながら、Fe-Zn系で最初に形成される ς -Fe Zn_{10} 相あるいはFe-Alを含むZn系で抑制相と考えられている η -Fe₂Al₅相は形成されない.

参考文献

- (1) 例えば、川崎文一郎:金属表面技術、33 [10] (1982)、440.
- (2) J. C. Zoccola, H. E. Townsend, A. R. Borzillo, J.
 B. Horton: ASTM Spec. Tech. Publ., (646) (1978), 165
- A. A. Hershman: "Proc. of 7th Intern. Conf. on Hot Dip Galvanizing", (1967), 189.
- (4) 古賀秀人,内山休男,安芸隆房,深堀博史:長崎 大学工学部研究報告,7〔7〕(1976),79.
- (5) G. F. Bastin, F. J. J. van Loo, G. D. Rieck: Z.

Table 1	X-ray	diffra	iction	data	obtained
	from Fe	/Zn-59	%Al co	ouple a	nnealed at
	375°Cfoi	72h.	(surfa	ce and	surface+
	5th laye	er)			

d(A)	Ι	Zn	Al	
1.2200	6		*	Tal
1.2414	18	*		
1.3317	200	*		
1.3456	255	*		d
1.4306	20		*	1
1.6894	170	*		1.
2.0039	5			
2.0230	16	~	*	1.
2.0915	2640	*		
2.1555	10			
2.1461	9			1.
2.3064	445	*		
2.3353	36		*	
2.4826	840	*		1.
3.3572	4			1.

Table 2	X-ray	diffra	iction	data	a o	btained
	from Fe	/Zn-59	%Al d	couple	ann	ealed at
	375°C fc	or 72h.	(4th	layer	and	others)

.

d(A)IZn $FeAl_3$ 1.243138*1.332052*1.3463110*1.44177*1.44577*1.691673*2.016624*2.040714*2.09351040*2.3089298*3.26908*3.348511*3.546225*3.98299*4.014911*				
1.2431 38 * 1.3320 52 * 1.3463 110 * 1.4417 7 * 1.4457 7 * 1.6916 73 * 2.0166 24 * 2.0407 14 * 2.0407 14 * 2.0935 1040 * 2.3089 298 * 2.4876 1630 * 3.2690 8 * 3.3390 12 * 3.3485 11 * 3.5462 25 * 3.9829 9 * 4.0149 11 *	d(A)	Ι	Zn	FeAl ₃
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2431	38	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3320	52	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3463	110	*	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4417	7		*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.4457	7		*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.6916	73	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0166	24		*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0407	14		*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.0499	14		*
2.3089 298 * 2.4876 1630 * 3.2690 8 * 3.3390 12 * 3.3485 11 * 3.5462 25 * 3.8273 8 * 3.9829 9 * 4.0149 11 *	2.0935	1040	*	
2.4876 1630 * 3.2690 8 * 3.3390 12 * 3.3485 11 * 3.5462 25 * 3.8273 8 * 3.9829 9 * 4.0149 11 *	2.3089	298	*	
3.2690 8 * 3.3390 12 * 3.3485 11 * 3.5462 25 * 3.8273 8 * 3.9829 9 * 4.0149 11 *	2.4876	1630	*	
3.3390 12 * 3.3485 11 * 3.5462 25 * 3.8273 8 * 3.9829 9 * 4.0149 11 *	3.2690	8		*
3.3485 11 * 3.5462 25 * 3.8273 8 * 3.9829 9 * 4.0149 11 *	3.3390	12		*
3.5462 25 * 3.8273 8 * 3.9829 9 * 4.0149 11 *	3.3485	11		*
3.8273 8 * 3.9829 9 * 4.0149 11 *	3.5462	25		*
3.9829 9 * 4.0149 11 *	3.8273	8		*
4.0149 11 *	3.9829	9		*
	4.0149	11		*

Table 3	X-ray	diffra	action	data	a o	btained
	from Fe	/Zn-59	%Al c	ouple	ann	ealed at
	375°C fo	or 72h.	(3rd	layer	and	others)

d(A)	Ι	Zn	δ_1	Γ_1
1.2236	12			
1.2311	13		*	
1.2339	11			
1.2449	12	*		
1.2494	9	-		
1.2654	16			
1.2746	14		*	
1.2798	18		*	· · ·
1.2981	16			
1.3020	15			
1.3126	11		*	
1.3432	13	*		
1.4981	10		*	
1.5994	11		*	*
1.6900	12	*		
1.7420	11		*	
1.7712	11			*
1.8158	14	-	*	*
1.8451	19		*	*
1.9148	9			*
1.9466	14			
1.9803	16			*
1.9897	25		*	
2.0022	10			*
2.0615	20		*	
2.0947	252	*	*	*
2.1348	390		*	*
2.1592	30		*	*
2.1902	65			*
2.1943	76		*	
2.2025	92			*
2.3075	44	*		
2.3463	16		*	*
2.3666	21		*	
2.4124	20		*	*
2.4213	21		*	
2.4886	278	*	*	
2.5218	20		*	*
3.2143	16			
3.3669	11			
3.8225	12		<u> </u>	

Table 4	X-ray	diffraction	data	obtained
	from Fe	/Zn-5%Al c	ouple a	nnealed at
	375°C fc	or 72h. (1st l	ayer ar	nd others)

d(A)	Ι	Γ_1	others
1.2148	6		
1.2242	12		
1.2613	6		
1.2721	16		
1.2968	10		
1.3001	10		
1.3160	8	*	
1.3440	5	*	
1.3556	5		
1.3786	4	*	
1.4060	5	*	
1.5010	5	*	
1.5267	5	*	
1.5938	4	*	
1.6752	4	*	
1.7335	5		
1.7672	8	*	
1.8149	5	*	
1.8398	11	*	
1.8897	11	*	
1.9201	10	*	
1.9774	18	*	*
2.0329	23	*	Fe
2.0814	60	*	
2.1238	210	*	
2.1867	60	*	
2.2023	20	*	
2.3480	20	*	
2.4111	33	*	
2.5293	8	*	
2.6070	6	*	
2.7509	5	*	
2.8553	6	*	
3.0133	4	*	
3.3756	13		

Metallkde., 65 (1974), 656.

- (6) M. A. Ghoniem and K. Löhberg: Metall., 26 (1972), 1026.
- (7) 大西正己,若松良徳,福本弘一,相良学:日本金 属学会誌,36〔2〕(1972),150.
- (8) 例えば、加藤良雄、山崎隆夫:信州大学工学部紀 要、44(1978)、45.
- (9) A. R. P. Ghuman, J. I. Goldstein: Met. Trans.,2 (10) (1971), 1903.
- P. J. Gellings, G. Gierman, D. Koster, J. Kuit: Z. Metallkde., 71 (1980), 70.
- P. J. Gellings, E. W. de Bree, G. Gierman: ibid., 70 (1979), 312.
- (12) H. Bablik, F. Götzl, F. Halla: ibid., 8 (1938), 249.
- (13) G. F. Bastin, F. J. J. van Loo, G. D. Rieck: ibid.,67 (1976), 694.
- P. J. Gellings, E. W. de Bree, G. Gierman: ibid., 70 (1979), 315.
- (15) M. Úředníček, J. S. Kirkaldy: ibid., 64 (1973), 899.
- (16) 内山休男:京都大学学位論文,(1983).
- D. Horstmann: "Proc. of 7th Intern. Conf. on Hot Dip Galvanizing", Pergamon Press, Oxford, (1967), 146.
- (18) 若松良徳,大西正己:鉄と鋼,64 (14) (1978), 2215.