層流下における熱・物質移動問題の数値解析 (第1報 直交選点法による円管内層流の流れ場と温度場の解析)

金丸邦康*,川江信治**,茂地 徹**,山田 岹**

Numerical Analysis of Heat and Mass Transfer Problems in Laminar Flow

(Part I: Application of Orthogonal Collocation Method to Velocity and Temperature Distributions of Laminar Flow in Circular Tube)

by

Kuniyasu KANEMARU^{*}, Nobuzi KAWAE^{**}, Tohru SHIGECHI^{**} and Takashi YAMADA^{**}

The developing profiles of the velocities and temperatures for laminar flow in a circular tube were numerically analyzed by means of two kinds of the orthogonal collocation methods, radial collocation method(RCM) and double collocation method(DCM). The numerical results of the velocities for the flow with the constant properties by the RCM and the DCM were compared with a finite-difference method(FDM) and the following results can be drawn: (1) Velocity profiles by the RCM show a satisfactory convergence on condition that the number of internal collocation points is greater than 11 and the dimensionless axial increment is less than 0.0005. (2) The profiles of the radial velocity by the DCM are inadequate at the first step because of the singularity, while the profiles of the axial velocity agree with the solutions by means of the RCM. (3) A good agreement betweent local Nusselt numbers by the DCM and those by the FDM is shown by use of 10 internal points in the radial direction and 1 point in the dimensionless axial increment of 0.0001.

Consideration is also given to the fluid with the variable properties. Velocity and temperature distributions by the RCM are compared with those by the FDM and a good agreement between both solutions is generally obtained. When the number of the internal collocation point is selected 20 and the initial axial increment is 0.0001, the RCM can predict the saddle-backed profiles of the axial velocity under condition that dimensionless heat flux is 20.

1.緒 言

流れ場や温度場を解析する数値解析法としては,従 来より差分法が用いられているが,複雑な幾何学形状 に効率的に対処するために,汎用の有限要素法や境界 要素法による手法が近年開発されている.これらの解 析は,重み付き残差法と称される原理に基礎をおく. この原理に従うその他の解法の一つに,直交選点法が ある¹⁾.直交選点法は,領域内を直交関数,たとえば ルジャンドル多項式の線形結合(試行関数という)で 近似し,領域内の選ばれた点(選点という)で,重み 付き残差を零にすることにより,離散式を得る.また, 選点には,試行関数における最高次のルジャンドル多 項式の零点を採用する.この解法の最大の特徴は,差 分法の離散点より少ない数の選点で,精度のよい解を 得ることができることであり,欠点としては前処理と して,微分項を評価するための行列を計算する必要が

昭和61年9月30日受理

^{*}共通講座・工業物理学(Applied Physics Laboratory)

^{**}機械工学科 (Department of Mechanical Engineering)

あることが挙げられる. 直交選点法は, 化学反応系を 初め, 伝熱流動に関する広範な分野^{2)~5)}で使用され ているが, 本報において, これまで適用例のない, 連 立した偏微分方程式を解析した. すなわち, 円管内で 流れ場と温度場が同時に発達する状況を解析し, 差分 法と比較することにより, 直交選点法の有用性を示し た.

2. 円管内層流の流動と伝熱に関する基礎式

円筒形流路内を層流で流動する流体の温度場 T と 速度場uおよびvの発達する過程は,図1を参照して, 境界層近似を適用すると,つぎの基礎方程式に従う. 連続の式:

$$\frac{1}{r} \cdot \frac{\partial(r\rho v)}{\partial r} + \frac{\partial(\rho u)}{\partial x} = 0$$
(1)

運動方程式:

$$\rho\left(u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial r}\right) = -\frac{dp}{dx} + \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r\mu \frac{\partial u}{\partial r}\right) \tag{2}$$

エネルギ式:

$$\rho\left(u\frac{\partial h}{\partial x}+v\frac{\partial h}{\partial r}\right)=u\frac{dp}{dx}+\frac{1}{r}\cdot\frac{\partial}{\partial r}\left(rk\frac{\partial T}{\partial r}\right)+\mu\left(\frac{\partial u}{\partial r}\right)^{2}(3)$$

ここで、hは流体のエンタルビ、p は静圧、 ρ は密度、
 μ は粘度、および k は熱伝導率である、下記の無次元
数を用いて、上式を変形する、ここで、添字は0 は、
入口を意味する、また、流体は理想気体であるとする、

ここで, R_g はガス定数, C₀ は入口音速である.得ら れる無次元基礎式は,

連続の式:

$$\frac{1}{\eta} \cdot \frac{\partial(\eta \rho^+ V)}{\partial \eta} + \frac{\partial(\rho^+ U)}{\partial \xi} = 0$$
(5)

運動方程式:

$$\rho^{+} \left(U \frac{\partial U}{\partial \xi} + V \frac{\partial U}{\partial \eta} \right) = -\frac{1}{2} \cdot \frac{dP}{d\xi} + 2P r_{0} \frac{1}{\eta} \cdot \frac{\partial}{\partial \eta} \left(\eta \mu^{+} \frac{\partial U}{\partial \eta} \right) (6)$$

エネルギ式:

$$\rho^{+} \left(U \frac{\partial H}{\partial \xi} + V \frac{\partial H}{\partial \eta} \right) = \frac{2}{\eta} \cdot \frac{\partial}{\partial \eta} \left(\eta k^{+} \frac{\partial \theta}{\partial \eta} \right) \\ + \frac{1}{2} (\kappa_{0} - 1) M_{0}^{2} \left[U \frac{dP}{d\xi} + 4P r_{0} \cdot \mu^{+} \left(\frac{\partial U}{\partial \eta} \right)^{2} \right]$$
(7)

となる.入口条件については,変物性の流体を解析す る場合,つぎのように与える.

$$U=2(1-\eta^2), V=0, \theta=1$$
 (8)

物性値一定の場合は、一様流入(*U*=1)とする.また,速度に関する境界条件は、

$$U = V = 0 \ (\eta = 1), \quad V = 0 \ (\eta = 0) \tag{9}$$

であり,温度に関しては,壁温一定または壁面熱流束 一定と設定する.

$$T = T_{w} \\ \phi = \frac{q_{w} \cdot R}{k_{0} \cdot T_{0}} = k^{+} \cdot \frac{\partial \theta}{\partial \eta} \Big|_{\eta = 1}$$

$$\left. \right\} (10)$$

状態方程式は、 $\rho^+ = P^+ / \theta$ となり、物性値 c_p^+, μ^+ および k^+ は、無次元温度 θ のべき級数で与えられる.

3. 数值解析

円管内の流動ガスの速度と温度の場をつぎの3通り の解法で求めた.

解法1: 半径方向に選点法,流れ方向に差分法を 採用する.(半径方向選点法: Radial Collocation Method, R C M)

解法2: 半径および流れ方向ともに,選点法を採用 する.(二重選点法: Double Collocation Method, D C M)

解法3: 半径および流れ方向ともに,有限階差法を 採用する. (差分法: Finite-Difference Method, FD M)

解法1 (R C M)は、重み付き残差法の一解法であ る直交選点法を半径方向の微分項に適用し、流れ方向 の微分項に対しては、差分近似を行う.すなわち、流 れ方向速度分布 U(7, 5) に対して、7に関する対 称性から、つぎの試行関数を選ぶ.

 $U(\eta, \xi) = U(1, \xi) + (1-\eta^2) \sum_{i=1}^{N} a_i(\xi) \cdot P_{i-1}(\eta^2)$ (11) ここで, $U(1, \xi)$ は,境界値(壁面)に対応し, $a_i(\xi)$ は展開係数であり, N は内部選点の数である. 関数系 $|P_i|$ は,つぎの直交関係を満足するルジャン ドル多項式である. $\int^1 w(\eta^2) \cdot P_j(\eta^2) \cdot P_i(\eta^2) \cdot \eta^{a-1} d\eta = C_{ii} \delta_{ij}$

(j=1, 2, ..., i-1) (12) ここで、 δ_{ij} はクロネッカのデルタであり、a は円筒 体系に対し2が選ばれる. w は重み関数で w = 1 また は、 $w = 1 - 7^2$ が推奨されるが、本解析ではもっぱ ら後者を用いた.式(11)を展開すれば、 $U(7, \xi)$ は、 7 に関して偶関数のみの線形結合で表示され、つぎの 試行関数を与えることに等価である.

 $U(\eta) = b_1 + b_2 \eta^2 + b_3 \eta^4 + \dots + b_{N+1} \eta^{2N} = \sum_{\ell=1}^{N+1} b_\ell \eta^{2\ell-2}$ (13) ここで、変数をは一定として、表示を省略した、

一方、 $V(7, \xi) = V(7)$ は、7に関して奇関数 で展開し、管軸(7=0)で、V = 0を考慮して、つ ぎの形を仮定する.

 $V(\eta) = c_1 \eta + c_2 \eta^3 + \dots + c_{N+1} \eta^{2N+1}$ (14)

あるいは、 $W(\eta) = V(\eta)/\eta$ なる試行関数を用いて、

 $W(\eta) = c_1 + c_2 \eta^2 + c_3 \eta^4 + \dots + c_{N+1} \eta^{2N} = \sum_{i=1}^{N+1} c_i \eta^{2i-2}$ (15)

となる. U(7)と W(7)について流れ場を解けば, ともに偶関数であり,同じ選点を利用できることは注 目に値する.

以下, UとWの試行関数を用い無次元基礎式(5)~ (7)を変形する.この変形により,連続の式は,つぎの ようになる.

 $2\rho^{+} \cdot W + \eta \cdot W \cdot \frac{\partial \rho^{+}}{\partial \eta} + \eta \cdot \rho^{+} \cdot \frac{\partial W}{\partial \eta} + \rho^{+} \cdot \frac{\partial U}{\partial \xi} + \frac{\partial \rho^{+}}{\partial \xi} \cdot U = 0$ (5a) 運動方程式(6)とエネルギ式(7)においては、対流項の *V* が ηW に変形されるのみである。

流れ方向の既知の ξ 面と未知の($\xi + 4\xi$)面を, σ : $(1 - \sigma)$ に内分する面について,基礎方程式(5 a), (6)および(7)の離散化を行う.物性値変化を考慮 した流動媒体の温度場と速度場について離散化された 式は、つぎのとうりである.

連続の式:
$$\Delta \varepsilon \cdot n \cdot o^+(\theta - P) \cdot \sigma \cdot \sum_{k=1}^{N+1} A - W^k + \int \sigma \cdot \Delta \varepsilon \cdot n$$

$$= \int \eta_{n} \rho^{k}(\theta_{\sigma}, \Gamma_{\sigma}) \circ \int_{i=1}^{k-1} \Pi_{n,i} \rho^{k} \eta_{n,i} + [0 - \Delta_{s}^{k} \eta_{n}] \\ \times \left\{ \sigma \cdot \sum_{i=1}^{N+1} A_{n,i} \rho^{k} \eta_{n,i} + (1 - \sigma) \cdot \sum_{i=1}^{N+1} A_{n,i} \rho^{k} \eta_{m-1,i} \right\} \\ + 2 \Delta_{s}^{k} \cdot \rho^{+}(\theta_{\sigma}, P_{\sigma}) \cdot \sigma] W_{m,n}^{k} \\ + \left[\rho^{+}(\theta_{\sigma}, P_{\sigma}) + \sigma \cdot (\rho^{k} \eta_{n} - \rho^{k} \eta_{m-1,n}) \right] U_{m,n}^{k} = \\ - \Delta_{s}^{k} \cdot \eta_{n} \cdot \rho^{+}(\theta_{\sigma}, P_{\sigma})(1 - \sigma) \sum_{i=1}^{N+1} A_{n,i} W_{m-1,i}^{k-1} - \Delta_{s}^{k} \cdot \eta_{n} \cdot (1 - \rho^{+}) \\ \times \left\{ \sigma \sum_{i=1}^{N+1} A_{n,i} \rho^{k} \eta_{n,i} + (1 - \sigma) \sum_{i=1}^{N+1} A_{n,i} \rho^{k} \eta_{m-1,i} \right\} \times W_{m-1,n}^{k-1} \\ - 2 \Delta_{s}^{k} \cdot \rho^{+}(\theta_{\sigma}, P_{\sigma})(1 - \sigma) W_{m-1,n}^{k-1} + \rho^{+}(\theta_{\sigma}, P_{\sigma}) U_{m-1,n}^{k-1} \\ - (\rho^{k} \eta_{n,n} - \rho^{k} \eta_{m-1,n})(1 - \sigma) U_{m-1,n}^{k-1}$$
(16)
(n=1, ..., N)

運動方程式:

$2\rho^{+}(\theta_{\sigma}, P_{\sigma}) \cdot \sigma \cdot U^{k-1}_{m,n} \cdot U^{k}_{m,n} + 2\varDelta \xi \cdot \rho^{+}(\theta_{\sigma}, P_{\sigma}) \cdot \eta_{n} \times$
$\{\sigma \cdot W_{m,n}^{k-1} + (1-\sigma) \cdot W_{m-1,n}^{k-1}\} \sigma \sum_{i=1}^{N+1} A_{n,i} U_{m,i}^k$
$-4\varDelta\xi \cdot P\tau_0 \cdot \mu^{\scriptscriptstyle +}(\theta_{\sigma}) \cdot \sigma \sum_{i=1}^{N+1} B_{n,i} U_{m,i}^k + P_m^k =$
$-2\rho^{+}(\theta_{\sigma}, P_{\sigma}) \cdot \{(1-2\sigma)U_{m,n}^{k-1} \cdot U_{m-1,n}^{k-1} - (1-\sigma)(U_{m-1,n}^{k-1})^{2}\}$
$-2\varDelta \xi \boldsymbol{\cdot} \rho^{+}(\theta_{\sigma} , P_{\sigma}) \boldsymbol{\cdot} \eta_{n} \boldsymbol{\cdot} (1-\sigma) \{ \sigma \boldsymbol{\cdot} W^{k-1}_{\boldsymbol{m},n} +$
$(1-\sigma)W_{m-1,n}^{k-1}\{\sum_{l=1}^{N+1}A_{n,l}U_{m-1,l}^{k-1}+4\varDelta\xi\cdot Pr_{0}$
$\times \Big[\sigma_{\underline{\lambda}=1}^{N+1} A_{n,i} \theta_{\underline{m},i}^{k-1} + (1-\sigma) \sum_{i=1}^{N+1} A_{n,i} \theta_{\underline{m}-1,i}^{k-1} \Big]$
$\times \left\{ \sigma_{\sum_{i=1}^{l+1}}^{N+1} A_{n,i} U_{m,i}^{k-1} + (1-\sigma)_{\sum_{i=1}^{l+1}}^{N+1} A_{n,i} U_{m-1,i}^{k-1} \right\} \cdot \left(\partial \mu^{+} / \partial \theta \right) \Big _{\theta_{\sigma}}$
$+4\Delta\xi \cdot Pr_{0} \cdot \mu^{+}(\theta_{\sigma})(1-\sigma)\sum_{k=1}^{N+1} B_{n,i}U_{m-1,i}^{k-1} + P_{m-1} $ (17)
$(n=1, 2, \dots, N)^{l=1}$
エネルギ式:
$c_{\rho}^{+}(\theta_{\sigma}) \cdot \rho^{+}(\theta_{\sigma}, P_{\sigma}) \cdot \{\sigma U_{m,n}^{k-1} + (1-\sigma) U_{m-1,n}^{k-1}\} \theta_{m,n}^{k}$
$+ c_{\rho}^{+}(\theta_{\sigma}) \cdot \rho^{+}(\theta_{\sigma}, P_{\sigma}) \cdot \varDelta \xi \cdot \eta_{n}$
$\times \int dW^{k-1} + (1 - \sigma) W^{k-1} \int \Delta \phi^k$
$ \wedge \{ \sigma W_{m,n} + \langle 1 - \sigma \rangle W_{m-1,n} \{ \sum_{i=1}^{n} A_{n,i} \sigma_{m,i} \} $
$-2\Delta\xi \cdot k^{+}(\theta_{\sigma})\sigma\sum_{i=1}^{n} B_{n,i}\theta_{m,i}^{k} = 2\Delta\xi \cdot (\partial k^{+}/\partial \theta) _{\theta_{\sigma}}$
$\times \left(\sigma_{t=1}^{N+1} A_{n,t} \theta_{m,t}^{k-1} + (1-\sigma)_{t=1}^{N+1} A_{n,t} \theta_{m-1,t}^{k-1}\right]^{2} + (1/2)(\varkappa_{0}-1) M_{0}^{2}$
$\times \left[\{ \sigma U_{m,n}^{k-1} + (1-\sigma) U_{m-1,n}^{k-1} \} (P_m^{k-1} - P_{m-1}^{k-1}) \right]$
$+4\varDelta\xi\cdot Pr_{0}\cdot\mu^{+}(heta_{\sigma})$
$\times \left\{ \sigma_{\sum_{l=1}^{k-1}}^{N+1} A_{n,l} U_{m,l}^{k-1} + (1-\sigma)_{\sum_{l=1}^{k-1}}^{N+1} A_{n,l} U_{m-1,l}^{k-1} \right\}^2 \right]$
$+ c_{\scriptscriptstyle P}^{\scriptscriptstyle +}(\theta_{\sigma}) \cdot \rho^{\scriptscriptstyle +}(\theta_{\sigma}, \ P_{\sigma}) \cdot \{ \sigma U^{k-1}_{m,n} + (1-\sigma) U^{k-1}_{m-1,n} \} \theta^{k-1}_{m-1,n} \\$
$= c_{\rho}^+(\theta_{\sigma}) \cdot \rho^+(\theta_{\sigma}, P_{\sigma}) \cdot \varDelta \xi \cdot \{ \sigma W_{m,n}^{k-1} + (1-\sigma) W_{m-1,n}^{k-1} \}$
$\times (1-\sigma) \sum_{t=1}^{N+1} A_{n,t} \theta_{m-1,t}^{k-1} (n=1, 2, \cdots, N) $ (18)
ここで, A_{ij} , B_{ij} は, $(N+1) \times (N+1)$ の行列であ
り,それぞれ、7nに関する1階微分とラプラシアンに
対応し、 η_n は前述の選点である.また、 $ ho^+(heta_\sigma, P_\sigma)$ 、
$c_{\rho}^{+}(\theta_{\sigma})$, $\mu^{+}(\theta_{\sigma})$ および $k^{+}(\theta_{\sigma})$ は、半径 η_{n}
での温度と圧力の内插値 すなわち $\theta_{\sigma} = \sigma \theta_{} +$
$(1-\sigma)\theta$ $P = \sigma P + (1-\sigma)P$ V^{\dagger}
(1 の) $m = 1, n, 1 = 0, 1 m, n, (1 の) m = 1, n (2, n)$ オス物州店でなる 詳具の上付活字なけ土加粉な主)
9 \circ 初任他 $(oo a \cdot in \pm 0 \cdot 1 \cdot 1 \cdot in m a \cdot 1 \cdot in $
(k-1) は既知と仮定して反復して水のる重である.
壁面熱流束が一定の境界条件は、つぎのようになる.
$k_{m,N+1}^{+}\sum_{i=1}^{N+1} A_{N+1,i}\theta_{m,i} = \phi $ (19)
また、連続の式を円管断面について積分した式をつぎ
のように離散化し補助方程式として用いる.
$\sum_{i=1}^{N+1} F_i \rho_{m,i}^+ U_{m,i} = 1/2 $ (20)
その他の境界条件は、つぎのとうりである.
$W_{m,N+1} = 0$ (21)
$U_{m,N+1} = 0$ (22)
式(16)~(22)より、(3N+4)個の連立方程式が得られ、

これらと同数の未知数 $\{U_m\}$, $\{W_m\}$, $\{\theta_m\}$ およ \mathcal{T}_P_m に対して反復解法により求める.

解法2 (DCM) は、二重選点法と言われる方法 であり、半径方向7に選点法を用いると同時に、流れ 方向 ξ に関しても選点法を用いる.すなわち、既知断 面 ξ と未知断面(ξ + 4ξ)の間の流れ方向速度分布 $U(7, \xi')$ をつぎの試行関数で近似する.ここで、Mは流れ方向の刻み 4ξ の内部選点の数である.

$$U(\eta, \xi') = U(\eta, \xi) + \xi' \sum_{j=1}^{M+1} d_j Q_{j-1}(\xi')$$
 (23)
この試行関数を用いて、物性値一定の管内流の速度場
の基礎式を離散化すると、つぎのようになる。

連続式:

$$2W_{m,n}^{k} + \eta_{n} \cdot \sum_{i=1}^{N+1} A_{n,i}W_{m,i}^{k} + (1/\Delta\xi) \sum_{j=1}^{M+2} A_{m,j}^{*}U_{j,n}^{k} = 0$$
⁽²⁴⁾

運動方程式:

$$(1/\Delta\xi)U_{m,n}^{k-1}\sum_{j=1}^{M+2}A_{m,j}^{*}U_{j,n}^{k} + \eta_{n} \cdot W_{m,n}^{k-1}\sum_{l=1}^{N+1}A_{n,l}U_{m,l}^{k}$$
$$=(1/(2\Delta\xi))\sum_{j=1}^{m+2}A_{m,j}^{*}P_{j} + 2Pr\sum_{l=1}^{N+1}B_{n,l}U_{m,l}^{k}$$
(25)

ここで, A^* は, $(M + 2) \times (M + 2)$ の行列であり, ϵ に関する1階微分に対応する.係数行列および定数 ベクトル中の $U_{n,1}^{1}$, $W_{n,1}^{1}$ を仮定して解を求め,相対 誤差 ϵ が所定の値より小さくなるまで反復する.

解法3 (FDM)は、Manohar⁶⁾や、Worsøe-Schmidtら⁷⁾により示された差分解法である。前者は、 半径方向速度vを、連続の式より解いて運動方程式に 代入し、流れ方向の速度uを求めており、後者は、 前進型解法において、既知のを面と未知の($\xi + \Delta \xi$) との間の任意の内分点σでの釣合を用いており、彼ら は、 $\sigma = 0.5$ の Crank-Nicolson 法は、この場合不安定 であることを指摘し、 $\sigma = 3 / 4$ を推奨している。ま た、Manohar⁶⁾の解法は、 $\sigma = 1$ の陰的解法である。

4. 計算結果および考察

4.1 物性値一定の場合

最初に、物性値が一定の流体について、円管内の速 度場を解法1により求めた結果を議論する.図2に、 流れ方向の刻みを $\Delta \xi = 0.00025$ としたとき、計算さ れた ξ の位置における解の収束に必要な反復回数 N_i を、実線で示している.以下の計算において、収束条 件は、相対誤差が、 $\epsilon = 1.0 \times 10^{-4}$ より小さくなるよ うに選んだ.この図より、内部選点の数を増加するに つれて、重みパラメータ $\sigma = 1.0$ の場合、第1回目の 計算ステップの位置 $\xi = 0.00025$ の反復回数が増大す る.これに対し、運動方程式(17の左辺第2項を、 ρ^+ ($\theta_{\sigma}, P_{\sigma}$) = 1に注意し、つぎのように未知数 W_{mn} に対する項と定数項とに分けて、連続の式(16)および(20) ~(22)と連立させて解を求めると(別法)、破線に示す

(Radial Orthogonal Collocation Method)

ように,第1ステップの解の収束に必要な反復解は大 幅に減少し,それ以降のステップでは,少し増加する ことがわかった.

Fig.4 Variation in Axial Velocity and Pressure vs. Axial Increment (Radial Orthogonal Collocation Method)

(Radial Orthogonal Collocation Method)

第2項=
$$(2\Delta\xi\cdot\eta_n\cdot\sigma^2\sum_{i=1}^{N+1}A_{n,i}U_{m,i}^{k-1})W_{m,n}^k + 2\Delta\xi\cdot\eta_n\cdot\sigma\times$$

(1- σ)・ $W_{m-1,n}\sum_{i=1}^{N+1}A_{n,i}U_{m,i}^{k-1}$
(定数項に移項)

なお、任意の ϵ の位置での解が収束するまでの緩和係数 ω , すなわち、 $U_{m,n}^{k} = U_{m,n}^{k-2} + \omega \cdot (U_{m,n}^{k-1} - U_{m,n}^{k-2})$ の ω は1として計算した.また、同図には、上記の移項を行い、重みパラーメタ σ =0.75の例も示しているが、この場合下流に計算を進めるに従い、反復回数が増加する.

図3に速度分布 U, Vに及ぼす半径方向の分割数 N の影響を示す.このときの流れ方向の刻みは $\Delta \xi =$ 0.001であり、 $\xi = 0.02$ の位置で比較した.これより、

内部選点数が, N =11以上になると十分な精度の解が 得られるのがわかる.

図4に、流れ方向速度分布 U および圧力 P に及ぼ す流れ方向刻み $d\xi$ の影響を示している. 圧力 P に ついては、助走部で収束があまりよくないが、速度分 布 U は、中心部 7 = 0 と壁面近傍 7 = 0.9での値を図 示しており、N = 11のとき、 $\xi = 0.001$ 以上で、 $d\xi$ の大きさによらず一致している.

以上の収束の状況より, N = 11, $d\xi = 0.0005$ と選 んだときの速度分布の発達のようすを, 図 5 (a)に実線 で示した. これより, $\xi = 0$ で一定の初期速度をもつ Uの分布が, 下流方向へ放物線分布状に発達していく のがわかる. また, 図 5 (b)に半径方向の速度分布 Vを示す. V は壁面近傍に最小値を有し, 下流方向に漸 次零に平担化していく, また, 図 5 (a), (b)には, 解法 3 の差分法 (Manohar の方法) により得られた結果 を破線で示す. この差分法の場合, 半径方向の分割数 は, N = 40であり, 初期刻み $d\xi = 0.0005$ とした.

つぎに、図6に同様の物性値一定の問題に対して、 解法2の二重選点法を適用し得られた速度分布*U*,*V* を示している.半径方向の内部選点の数は、N = 10で あり、流れ方向の刻みを、 $\Delta \xi = 0.001$ 、流れ方向の 内部選点の数を、M = 1に選んだ.この場合、流れ 方向速度*U*は、解法1の結果にほとんど一致した結 果を得たが、半径方向の速度に関しては、流れ方向の 第1ステップの計算に対して不適切な解を得た.これ は、 $V の \xi \rightarrow +0$ での解が、本質的に特異点であるこ とに起因すると考えられ、このような半径方向の速度 *V*を多項式で近似することに問題がある.また、下流 に計算を進めるにつれて、*V*の分布は、解法2と解法 1でほとんど一致した.

図7には、解法2(二重選点法)と解法3(差分法) について熱伝達の結果を示している、境界条件として 壁温一定で比較した、温度助走区間において、流れ方 向きざみを、 $4\xi = 0.001$ とし、二重選点法の場合、 M = 1で計算した、半径方向の選点Nを増加するに つれて、局所ヌセルト数は、より良い近似になり、下 流域ではほとんど一致してくる、さらに、解法3(差 分法)の場合の流れ方向初期きざみは、 $4\xi = 0.0000375$ を用いており、その約3倍の $4\xi = 0.0001$ を用いた二重選点法は、N = 10, M = 1の場合、図に 示すように、より良い精度の熱伝達係数の結果を助走 部で得た、ここで、局所ヌセルト数 Nu_{ξ} は、次式で 定義される。

 $Nu_{\varsigma} = \frac{2(\partial\theta/\partial\eta)}{\theta_{W} - \theta_{m}}^{\eta_{-1}}$

4.2 物性値変化の場合

流体の物性値変化を考慮したときの円管内層流助走

(26)

区間の流れ場と温度場は、Worsøe-Schmidt ら⁷⁾により、差分法を用いて詳細に解析された.この問題に対して、著者らは半径方向速度のx = 0 での特異性を考慮して、半径方向に選点法、流れ方向に差分近似を用いる解法 1 を適用し、彼らの結果と比較した.図8(a)、(b)および(c)は、空気を対象に壁面熱流束 $\phi = 5$ のときの、速度分布 U、V および温度 $(\theta_w - \theta) / (\theta_w - \theta_m)$ の発達の状況を示す.このとき、計算パラメータは、 $c_k^+ = \theta^{0.12}, \mu^+ = \theta^{0.67}, k^+ = \theta^{0.71}, M_0 = 0.01, \kappa_0 = 1.40, Pr_0 = 0.72$ であり、半径方向の内部選点の数は、N = 20、流れ方向の刻みは、 $4\xi = 0.0001$ 、重みは、 $\sigma = 1.0$ を選んだ.Worsøe-Schmidt ら⁷¹の差分法においては、加熱開始点において流れ方向刻みは、最初 $4\xi = 1.25 \times 10^{-4}$ 、その後、24度、44度と増

Fig.8 (a) Variation in Axial Velocity of Flow with Variable Properties (Radial Orthogonal Collocation Method)

Fig.8(b) Variation in Radial Velocity of Flow with Variable Properties (Radial Orthogonal Collocation Method)

Fig.8(c) Variation in Temperature Profile of Flow with Variable Properties (Radial Orthogonal Collocation Method)

加し、一方、半径方向の分割数は、N = 80, 40, 20と 減少させており、 $\epsilon > 1.0 \times 10^{-3}$ の範囲では、 $\Delta \xi =$ 1.0×10^{-3} , N = 20と選んでいる. 同図からわかるよ うに、差分法と直交選点法の定量的な一致は極めて良 い. さらに、図9に、壁面熱流束を、 $\phi = 20$ と増加さ せたときの、流れ方向速度成分 U / U_m の変化を示し ている. このとき、気体の速度分布は、壁面近傍で温 度上昇による粘度の増加のため減速効果を受け、下流 に進むにつれて、速度分布の最大値をとる位置は、管 路中心から壁側に移動する. このような状況を、差分 法とともに解法1は、十分に表示しており、定量的な 一致も良好である.

5. 結 言

物性値が一定および物性値変化を考慮した円管内単 相流(層流)の速度場と温度場を,解法1(半径方向 直交選点法),解法2(二重選点法),解法3(差分法), の3種の方法により,数値解析した.直交選点法にお いては,半径方向の速度分布 $V \varepsilon$, $V = c_1 \eta + c_2 \eta^3$ + · · · · + $c_{N+1} \eta^{2N+1}$ と試行関数を選ぶことに より,流れ方向速度分布の試行関数と同じ選点を用い ることが可能になった.

物性値が一定の場合の比較より,解法1による速度分布は,内部選点数N=11,流れ方向刻み Δξ = 0.0005程度で,十分物理的に妥当な解を得た.

(2) 解法2による流れ方向速度分布 Uは、解法1と 同じ結果を得るが、半径方向速度分布 Vの入口部の 分布は、その特異性のために、一部不適切になる。 (3) 熱伝達に関する解法2と解法3の比較において、 初期刻み $d\xi = 0.0001$ の区間を、半径方向の内部選点 数をN = 10、流れ方向のそれをM = 1と選ぶことに より、両方の解法のヌセルト数は、良好な一致を得た。 (4) 変物性の管内流を数値解析することにより、差分 解法の結果と比較して、内部選点数N = 20、初期刻 み $d\xi = 0.0001$ とした解法1の直交選点法の結果は、 良好に一致しており、壁面熱流束を $\phi = 20$ とした鞍型 の速度分布を十分予測できる。

謝辞 本論文の数値解析手法に関しては,九州大学工 学部の長谷川修教授および東京工業大学の越後亮三教 授に,ご討論頂いた.記して,心底より謝意を表す.

文 献

 Finlayson, B. A. (鷲津他訳),重みつき残差法と 変分原理,(昭49),98,培風館.

2) Lin, S. H., Letter in Heat Mass Transfer, 5(1978),
29.

3) Neira, A. M. and Payatakes, A. C., AIChE J., **24** (1978),43.

4) Duduković, M. P. and Lamba, H. S., Chem. Engng Sci., **33** (1978), 303.

5) Birnbaum, I. and Lapidus, L., Chem. Engng Sci., **33** (1978), 415, 427, 443, 455, 463.

6) Manohar, R., Int. J. Heat Mass Transfer, 12,1 $\left(1969\right),\,15.$

7) Worsøe-Schmidt, P.M. and Leppert, G., Int. J. Heat Mass Transfer, **8**, 10 (1965), 1281.