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Abstract

We examine the effect of forest cover change on agricultural
productivity using household panel data and remote sensing data
on forest change. The focus of the study is rural Indonesia, where
deforestation is causing intensive biodiversity loss while agriculture is
the main industry. We estimate an agricultural production function
and find that farmers in rural Indonesia experienced a reduction in
agricultural productivity of 45% between 2001 and 2014 or US$2.63
billion in 2014. In addition, we explore the mechanisms underlying
the productivity loss and find that biological pest control is the most
plausible explanation.
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1 Introduction

Forest ecosystem services benefit human society through their environmental

and social effects such as food production, recreation, nutrient cycling,

and climate change mitigation (Costanza et al., 1997, 2017; Millennium

Ecosystem Assessment (MEA), 2005; TEEB Foundations, 2010). While such

roles are recognized, deforestation remains an important issue, particularly

in the tropics and African countries (FAO, 2015; Kim et al., 2015; Sloan and

Sayer, 2015). This has resulted in serious economic damages associated with

the degradation of direct and indirect forest ecosystem services (Costanza

et al., 2014).1 The economic value of direct ecosystem services (i.e., the

direct use value) has been assessed in various ways, such as the effect on

market prices. For example, forest income represents, on average, 22 to

60% of total household income in developing countries (Vedeld et al., 2007;

Angelsen et al., 2014; L’Roe and Naughton-Treves, 2014). In contrast, there

is limited assessment of the indirect economic value of ecosystem services

(i.e., the indirect use value) or the internalizing of externalities. Typically,

forest conservation policies consider the price the function of carbon storage

in forests.2 However, other functions of ecosystem services are not included

as monetary values in conservation policies. Therefore, forest conservation

policies have not considered ecosystem services in terms of monetary value.

This study empirically attempts to quantify the externality of forests in

terms of agricultural productivity. Specifically, we examine how agricultural

productivity is affected by a change in forest coverage in rural Indonesia

1 Costanza et al. (2014) estimated the global value of forest ecosystem services to be
US$ 16.2 trillion to US$ 19.5 trillion in 2011.

2 For example, the Reducing Emissions from Deforestation and Forest Degradation
plus (REDD+) mechanism considers payments for forest conservation, a type of
payment for ecosystem services (PES) for forest conservation and the amount of
carbon emissions that are avoided in conserved areas.
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by combining longitudinal household panel survey data and remote sensing

data of forest cover change for the targeted years 2000, 2007, and

2014. An empirical challenge is that agricultural productivity might be

heterogeneous in households with or without deforestation. Therefore, we

regress agricultural yield per planted area for regional forest cover along

with year and household fixed effects as well as other household and regional

characteristics. Since household fixed effects are controlled, the effect of forest

cover is identified by within-household variation in the change in forest cover.

The economic literature has paid little attention to the forest externality

for agricultural productivity although considerable ecological evidence

shows that forest biodiversity affects agricultural yields and productivity.3

Quantifying the externalities of forests and the effect on agriculture is

important for the following three reasons:

First, the existence of positive forest externalities might help to close the

gap between payment and agricultural revenue in forest conservation policies.

For forest conservation policies, payment for forest conservation tends to be

lower than agricultural revenue.4 These gaps are often wide in the case of

large plantations such as oil palm plantations (Butler et al., 2009). Failure to

quantify forest externalities potentially underestimates the value of forests,

resulting in delayed conservation policy implementation (Olbrei and Howes,

2012).

Second, improving agricultural productivity is important for poverty

alleviation in rural Indonesia. The majority of the poor in Indonesia live

3 Recently, studies on the economic value of forest ecosystem services have increased,
and many studies have assessed climate regulation, water flow regulation, and
recreation as the indirect use value of forest ecosystem services (de Groot et al.,
2012; Costanza et al., 2017).

4 For example, in REDD+, payment for conservation relies on the carbon price and is
considered compensation for the forgone chance of agricultural development.
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in rural areas, and they mainly engage in low-productivity agriculture (Aji,

2015) while recent economic growth has reduced poverty. For example,

the farmers who have not benefited from forest development, such as

the establishment of oil palm plantations, might engage in small-scale

agricultural work. Therefore, potential agricultural loss due to forest cover

change might affect farmer welfare, particularly in rural areas. In rural

Indonesia, agriculture employs more than 70% of the labor force (McCulloch

et al., 2007). Therefore, examining the effect of change in forest coverage

on agricultural productivity using rural household data is an important

contribution to the literature on rural development and the elimination of

rural poverty.

Third, the empirical evidence of this study is based on actual farming data

that have not yet been considered. While ecological studies have appreciated

the role of ecosystem services in agricultural outputs, these studies have

a common shortcoming in that their analyses rely on an experimental

approach. Thus, whether forest ecosystems can improve agricultural output

in practice remains under discussion in ecological studies. Quantifying the

effects of forest ecosystem services on agricultural productivity using practical

agricultural data is important to inform the debate on the role of natural

habitats.

Our estimation results suggest that a boost in households’ agricultural

productivity is a response to increasing forest cover in subdistricts.

The results are obtained after controlling for household and subdistrict

characteristics. In addition, these results remain robust when the sample

is restricted to rice farmers, while we find no significant effects when the

sample is restricted to some perennial estate crop farmers and non-farming

business income. This could support the existence of biological interaction
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between forest species and agricultural pest insects or biological pest control.

Further, we investigate the effect of forest cover on household welfare with

respect to differences in the expenditures of farmers. We find that forest

cover change negatively affects the non-food expenditures of rice farmers,

which is consistent with the lower productivity observed in deforestation

areas. On the other hand, we find no difference for expenditure on any

goods in non-farming households and perennial estate crop farmers. This is

consistent with our results.

The remainder of this paper is as follows. Section 2 presents the ecological

mechanism of forests and agriculture through a literature review. Section 3

describes the dataset and empirical model. Section 4 presents the empirical

results, which provide evidence of a positive forest externality on agricultural

productivity, but no evidence of forest extent externality on tolerant tree

farmers and non-farming households. Section 5 concludes.

2 Literature review

Forest ecosystem services can be broadly classified into direct and indirect use

values (Gregersen et al., 1995). The direct use values are quantified by food

security and livelihood through the provision of forest services, for example,

the production of food (Arnold et al., 2011; Powell et al., 2013; Ickowitz et

al., 2014; Pingali, 2015), timber (Singh et al., 2010), and non-timber forest

products (Mugido and Shackleton, 2018).

The indirect use values are assessed according to non-market goods such

as controlling water flows, preventing soil erosion, offering pollination habits,

and enhancing pest control. We review the ecological studies that analyze

the impact of indirect forest ecosystem services on agriculture to clarify the

research gap and the aim of this study.
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Forest ecosystem services affect agricultural output in several ways

including soil conservation (Mäder et al., 2002;), nutrient retention

(Raudsepp-Hearne et al., 2010), and crop pollination (Klein et al., 2003, 2007;

Ricketts et al., 2004; Carvalheiro et al., 2010). Mäder et al. (2002) found that

organic agriculture enhanced soil fertility, and greater biodiversity resulted

in less dependency on chemical inputs. With respect to nutrient retention in

soil, Raudsepp-Hearne et al. (2010) identified 20 ecosystem services based

on spatial land-use patterns and found that, in Canada, soil fertility in terms

of phosphorus retention is positively correlated with the forest cover rate.

Emphasizing crop pollination, Klein et al. (2003) identified the factors

influencing pollination and found that the number of pollinators (social

bees) decreased with increasing distance between the forest and the coffee

plantation. Similarly, Carvalheiro et al. (2010) found that the distance to a

natural habitat is associated with the number of flying pollinators while ants

were not affected. Ricketts et al. (2004) conducted pollination experiments in

Costa Rica and found that forest-based pollinators can increase yields and the

quality of coffee beans by reducing failures in production. These pollinators

in natural habitats contribute to agricultural production. Klein et al. (2007)

found that over 75% of the world’s important food crops increased yields

with natural pollinators.

Notably, according to numerous ecological studies, pest control has

provided agricultural benefits (Pimentel, 2005; Bianchi et al., 2006; Bátray

et al., 2011; Chaplin-Kramer et al., 2011; Thies et al., 2011; Blitzer et al.,

2012; Karp et al., 2013; Shackelford et al., 2013; Milligan et al., 2016;

Rusch et al., 2016). This mechanism is referred to as biological control,

or biological pest control, and is defined as the use of an organism to

reduce the population density of another organism. A natural habitat has a
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higher population of natural enemies, leading to enhanced pest suppression

to reduce the possibility of crop damage. Pimentel (2005) found that the

contribution of biological control is estimated to be 50 to 90% of total

pest control.5 Bianchi et al. (2006) reviewed ecological studies that used

a field experiment approach and found that many studies have concluded

that landscape complexity is associated with a higher population of natural

enemies and lower pest pressure in agricultural fields. Chaplin-Kramer et

al. (2011) conducted a meta-analysis and found that the population of

natural enemies has a positive response to landscape complexity. The authors

also found that the range of habitat effects differs depending on the enemy

types. Thies et al. (2011) conducted field experiments in Europe and found

that large areas of natural habitat mitigate pest damage in agricultural

fields through greater control of cereal aphids. Blitzer et al. (2012) found

that natural enemies move from natural habitats to agricultural fields and

discussed the potential of inverse effects, whereby natural enemies move from

agricultural fields to natural habitats. Bátray et al. (2011) found that

surrounding habitats play a role in determining on-farm biodiversity and

particularly influence the bird population. Karp et al. (2013) conducted field

experiments in coffee plantations in Costa Rica and found that forest-based

birds reduced insect pest damage to coffee beans by up to 50%. Shackelford

et al. (2013) conducted a meta-analysis of field studies and found that

both natural enemies and pollinators are likely to respond to natural habitat

complexities. In addition, the authors found that landscape complexity has

significantly stronger effects in non-woody crops and annual crops compared

to woody crops. Milligan et al. (2016) found that pest pressure in coffee

plantations was influenced by agricultural management and its surrounding

5 Pimentel (1988) found that pesticide inputs and host-plant resistance account for the
remainder of pest control (10 to 50%).
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habitats. In Kenya, the authors found that pest suppression was positively

associated with the surrounding tree canopy and negatively associated with

the distance to forest areas. Rusch et al. (2016) conducted a field experiment

in Sweden and found that pest control increased with landscape complexity.

Pest control decreased with distance or the proportion of natural habitat at

spatial scales.

Based on the field experimental approach, many ecological studies

have found that natural habitats have the potential to affect agricultural

yields positively through biological control. The proximity, largeness, and

heterogeneity of natural habitats are considered important factors that

enhance biological control efficiently. On the other hand, Tscharntke et

al. (2016) argued that natural habitats can fail to enhance biological pest

control in actual fields. They identified some conditions under which natural

habitats cannot increase agricultural output. For example, when forests offer

a habitat for pest insects rather than their predators, natural habitats create

agricultural loss. Thus, the effects of natural habitats on practical farming

are still unclear and should be examined.

The conversion of primary forest is leading to severe biodiversity loss in

Indonesia.6 In recent decades, forest cover change in Indonesia is closely

related to the rapid expansion of oil palm plantations. Indonesia and

Malaysia account for 87% of global oil palm production, and plantation

areas increased from 3.5 Mha in 1990 to 12.9 Mha in 2010 (Gunarso et al.,

2013; USDA, 2014). This rapid forest development caused severe biodiversity

degradation. By using data on bird and butterfly diversity, the estimated

biodiversity loss due to conversion of either primary or secondary forests

6 The primary forest loss in Indonesia is likely to overtake that of Brazil: annual primary
forest loss was estimated to be 0.84 million hectares (Mha) for Indonesia and 0.46
Mha for Brazil in 2012 (Märgono et al., 2014).

9



to oil palm plantations is estimated to be 73% to 83% in Indonesia (Koh

and Wilcove, 2008; Koh et al., 2011). Birds are considered an important

player, or natural enemy, in biological pest control to suppress insect pests

because more than 50% of species are predominantly insectivorous (Koh and

Wilcove, 2008; Wenny et al., 2011; Karp et al., 2013). Recent studies focusing

on the impacts of oil palm plantations on socioeconomics found that oil

palm plantations improve local living standards in areas such as nutrition,

expenditure, and wealth accumulation (Euler et al., 2017; Gatto et al., 2017).

However, the negative effects of biodiversity losses on local farmers through

ecological mechanisms require assessment to determine the economic impact

of forest development.

3 Data

3.1 Forest cover data

The data on changes in forest cover were obtained from satellite observations

provided by Hansen et al. (2013). The dataset has been updated, and the

latest edition is available for the period from 2000 to 2017.7 The data are a

compilation of records on global forest loss and extent at a spatial resolution

of 30 meters (m) obtained from multi-spectral satellite images. A pixel with

vegetation higher than 5 m is reported as the forest extent in 2000.8 In

addition, the data set reports that the pixel experienced forest loss (i.e.,

vegetation has been cleared in the pixel) in each year during the period 2000

to 2017. This data set allows us to estimate the amount of forest cover of our

7 See the website: https://earthenginepartners.appspot.com/science-2013-global-forest/
download v1.4.html. Although the 2000 to 2017 data on forest extent and loss are
available, the authors suggest that users should cite “Hansen et al., 2013” for the
data.

8 This might include perennial estate crops such as oil palm, rubber, and coffee
plantations established before 2000.
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considered administrative area and period (subdistrict level for the targeted

years 2000, 2007, and 2014).9

We first aggregate the forest extent of every pixel (Extentj) and the loss

(Lossjy) for pixel j for each year y (y = 0; 2000, ...y = 14; 2014) for every

subdistrict (s, with N pixels inside its borders) area. Extentj denotes the

forest extent in 2000, taking one if the pixel shows the forest extent more

than 10% and zero otherwise. Lossjy denotes the forest loss for each year

from 2001 to 2014 y, taking one if the pixel experienced forest loss in a

corresponding year and zero otherwise. Fcoverst denotes the forest cover

rate in subdistrict s for year t (t = 0; 2000, ...t = 14; 2014) .10 Because our

household data contain the place where households settle at the subdistrict

(kecamatan) level, we average the forest cover rate by dividing the forest

cover by area at the subdistrict level. We consider a pixel with more than

10% of tree cover as a forest.11 Then, the forest cover rate for the subdistrict

and for the year is estimated as follows:

Fcoverst =
1

N

N∑
j=1

t∑
y=0

(Extentj − Lossjy), if (Extentj, Lossjy ∈ subdistricts) (1)

We do not consider forest gain when calculating forest cover. The data

set reports the pixels in which vegetation gain has occurred. However, a pixel

with vegetation gain is defined as a place with vegetation of 5 m or higher

and where a forest has already been lost or originally did not exist. For

example, a pixel where a plantation or agricultural field has been established

9 As we explain in the next subsection, we need to combine forest cover data with three
years of our socio-economic outcome data (for 2000, 2007, and 2014). To combine
these data, we calculate the forest cover rate for 2000, 2007, and 2014 using the pixels
of forest extent in 2000 and pixels of forest loss in each year.

10 Note that when t = 0, Fcoverst is equal to Extentj because the value of Lossjy is
zero.

11 The data set offers information on the pixel with tree cover of 0 to 100%.
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after clearing forest would be defined as a forest. Thus, including the gain in

the calculation could lead to confusion regarding the agricultural area and

forest. To avoid this problem, we consider only primary forests as forest area.

Figure 1 shows the change in forest cover in Indonesia between 2001 and

2014. Figure 2 shows that Kalimantan and Sumatra account for a large part

of deforestation in Indonesia during the study period.

Note that we classified land-use type into forest and non-forest based

on the pixels. More detailed classifications are likely to be employed

in geographical studies to clarify the land-use and land-cover condition.

For example, Ekadinate and Vincent (2011) classified six land-use types

(natural forest, rubber plantation, oil palm plantation, shrub, rice fields, and

settlement area) to identify the landscape in Sumatra, Indonesia by using

remote sensing data.12

3.2 Household panel data and merged dataset

The household-level data we employ are from the three recent waves of the

Indonesian Family Life Survey (IFLS), a continuing longitudinal household

survey. The IFLS surveys were conducted in 1993 (IFLS1), 1997 (IFLS2),

2000 (IFLS3), 2007 (IFLS4), and 2014 (IFLS5). The survey covers 13 of

the 26 provinces covering 83% of the total population in Indonesia. The low

attrition rates are an advantage of the IFLS surveys; 86.9% of households

that participated in the IFLS1 in 1993 were re-interviewed in the IFLS5 in

2014. The survey contains information on agricultural inputs, outputs, and

characteristics of households.

Table 1 reports the mean of variables by year and farming type. We

12 An alternative method is to obtain geographical information from field surveys. Gatto
et al. (2015) quantified how socioeconomic factors and policy are associated with
land-use change combining geographical and socioeconomic information from village
surveys.
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employed data from IFLS3 (2000), IFLS4 (2007), and IFLS5 (2014). The

agricultural outcomes considered in this study are the agricultural revenue

per planted area of each household. The variables affecting agricultural

outcome include land size, number of workers, farming assets, age, gender,

and educational attainment of household head. We also consider a

community-level outcome, GDP per capita in the province. The data are

provided in real terms using deflators in spatial variations in prices.

The main agricultural produce of households is reported in the data.

The produce can be categorized as perennial crops, such as rubber, sugar

cane, wood, coffee, tobacco; annual crops including rice, corn, cassava; and

livestock such as goat, chicken, pig, and fish.

The data set contains agricultural output for 3,259 farmers excluding

livestock farmers. The logarithm of real agricultural revenue increased from

14.054 Indonesian rupiah (IDR) in 2000 to 14.722 IDR in 2014. This increase

is driven by the growth of revenue among non-rice farmers from 13.956 IDR

in 2000 to 14.746 IDR in 2014. Household heads’ average age increased from

47.02 years in 2000 to 52.37 years in 2014. This is because of the continuing

longitudinal survey.13

The share of rice farmers decreased dramatically from 50.4% in 2000 to

41.3% in 2014 as more Indonesian farmers started producing crops other than

rice. The number of farmers did not decrease during the period.

To merge the forest cover subdistrict-level data with the households’

socioeconomic data, we refer to the information from the specific subdistrict

where the household was located each year. IFLS provides the place

where the households settle at the province, district, and subdistrict levels.

Note that we compiled forest cover data based on boundaries at the

13 New households that split from the original household respondents were interviewed
in IFLS4 and 5.
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subdistrict-level and year preceding the IFLS interview.

We restrict the sample to households that did not live in provinces on Java

island (provinces of Jawa Barat, Jawa Tengah, Jawa Timur, and Yogyakarta)

as well as households that engage in self-employment agricultural activities.

We attempt to examine how forest cover change can affect agricultural

productivity in rural areas. We then restrict the sample to provinces that

experienced forest losses. This restriction is applied because four provinces

had very little or no forest cover change during the study period. In addition,

the heterogeneity in landscape composition and agriculture between Java and

other islands is substantial. Margono et al. (2014) noted that the rate of

primary forest, including intact and degraded forest, in Sumatra (34.3%) and

in Kalimantan (56.8%) are much more abundant than in Java and Bali islands

(0.04%) in 2000. This may mean that our forest data, Fcover, captures a

different land composition in Java and other islands. For example, Fcover

for Java island is likely to include agricultural plantations while Fcover for

Sumatra and Kalimantan, it includes primary and secondary forests. For

agriculture, the number of households engaging in agriculture decreased by

23.4% in Java and Bali islands while it decreased by 2.3% in other islands

from 2003 to 2013 (BPS, 2013). These data also imply that the role of

agriculture may be different in these islands. They would also lead to biases

in estimates if we include Java island in the estimation.

3.3 Model

We analyze the effects of changes in forest cover using a regression model.

Consider the following model:

lnYist = β0 + β1Fcoverst + β′
2Xist + θi + ζt + ϵit, (2)
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where Yist is the agricultural value of yield for a plot (revenue per planted

area) in household i in subdistrict s, Fcoverst is our measure of forest

cover in subdistrict s and year t; that is, the rate given by the ratio

of forest area to the subdistrict dimension in which household i settles

in interview year t. Xist is a vector of observed household and regional

characteristics, θi is household fixed effects, ζt is year fixed effects, and ϵit

is an error term that is not correlated with other variables. In Equation

2, t can be taken as 0, 7, and 14 corresponding to 2000, 2007, and 2014,

which are the years preceding the IFLS interview. The household fixed

effects capture unobserved household and regional characteristics including

traditional family procedures in agriculture and historical forest status in

the area. The year fixed effects capture factors that affect agricultural

output equally across households. For instance, improvements in agricultural

technologies in Indonesia and changes in industrial structure are included in

the year fixed effects.

4 Results

4.1 Forest cover change and agricultural production

The results of household and year fixed effect estimation are shown in Table

2.14 We run the Hausman specification test, and the value of the Hausman

test (p-value = 0.000) shows that the fixed effects (FE) specification is

preferred compared to the random effects in our models. In column (1), we

explore the relationship between agricultural productivity and forest cover

without controlling for household inputs and characteristics. We then include

in household characteristics and GDP per capita at the province level in the

14 In addition, we control for subdistrict (kecamatan) fixed effects rather than household
fixed effect in Table A1. There are no significant differences in the effects of forest
cover. The coefficient of Fcover is 3.418 and statistically significant at the 1% level.
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regression as shown in column (2). As a reference, column (3) reports the

estimation result using the interaction between a dummy of farmers settled

in Sumatra or Kalimantan and a year trend of 2014 as a proxy for Fcover. In

this specification, the coefficient of the Sumatra and Kalimantan dummy can

be interpreted as the average change in Sumatra and Kalimantan relative to

other islands.15

In addition, we estimate a two-stage least squares (2SLS) regression

using lagged forest cover data as an instrumental variable.16 The result

is presented in column (4) in Table 2. The effects of forest cover remain,

but the magnitude decreases in the instrumental variable (IV) estimation.

The coefficient of Fcover is 2.241 and statistically significant at the 10%

level while, in the FE estimate, it is 3.671 (column 2). We test the disparity

of the FE and the IV results using the Durbin-Wu-Hausuman (DWH) test.

The p-value from this test is 0.669. We fail to reject the exogeneity null of

Fcover even at the 10% significance level, indicating that the ordinary least

squares (OLS) estimate is consistent. The IV result thus supports our FE

result of a positive and statistically significant effect of forest cover change

on agricultural yields. In light of the DWH test result, we rely on the FE

specification in the remainder of the manuscript since it is more efficient.

Our variable of interest, Fcover, shows that there is a significant positive

15 Figures A1 and A2 show the change in forest cover and agricultural output between
2000 and 2014. Sumatra and Kalimantan experienced large-scale forest loss of
approximately 10 percentage points between 2007 and 2014. In addition, growth
in agricultural output in Sumatra and Kalimantan slowed between 2007 and 2014.

16 Because the forest cover data before 2000 does not exist, we use forest cover data for
the years from 2000 and 2007 to estimate the production function for the years 2007
and 2014. The result of the first stage of the 2SLS estimation is presented in column
(1) in Table A3. The F -statistics for the excluded instrument in the first stage is
46969.92, which indicates that our instrumental variable is not weak.
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impact on agricultural productivity in every estimation.17 This finding

indicates that the amount of forest has the potential to affect agricultural

productivity positively. In other words, this result confirms the existence

of positive externality of forests on agricultural output.18 The results are

consistent with the findings from the ecological literature on a positive

relationship between natural habitat and agricultural outputs (see Section

2).

Among agricultural inputs, labor and assets have a positive effect on

productivity. Land has a negative sign, which indicates that agricultural

productivity decreases with increasing plot size. This inverse relationship

between land productivity and farming size is known as inverse productivity

and has been observed in many developing countries (Larson et al., 2014). To

check the endogeneity of labor input in estimating agricultural production

functions, we estimate a 2SLS regression using input endowments of the

number of household members as instruments for labor input (the number

of working-age members).19 It is possible that forest loss affects agricultural

output through change in local labor demand. For instance, the expansion

of agricultural plantations in the forest area increases demand for local

agricultural labor. Then, forest loss could lead to reduced labor input for

household farming activities.

17 In column (3), the coefficient for Sumatra and Kalimantan in 2014 has a negative
sign. This result supports our finding of a positive relationship between forest cover
and agricultural output.

18 We confirm that the results are robust if households who mainly engage in livestock
are included in the estimations (the results are presented in columns (1) and (2)
in Table A2). On the other hand, we found that the coefficients of Fcover are
statistically insignificant for households that live in Java island. The results are
presented in columns (3) and (4) in Table A2. This is because there are substantial
differences between Java island and other areas in terms of forest and agriculture that
we explained in subsection 3.2.

19 The result of the first stage of the 2SLS estimations is presented in column (2) in
Table A3. The F -statistics for the excluded instrument in the first stage is 847.12,
which indicates that our instrumental variable is not weak.
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The variable rice farmer is a dummy variable that takes one when the

farmer produces rice as a main product and zero otherwise. The coefficient

of rice farmer is negative but statistically insignificant indicating that there

is no difference between rice and other crops in terms of productivity. This

reflects that rice is still an important crop for farmers in rural Indonesia.

In fact, rice is the most-produced main crop (41% of farmers) followed by

rubber (8.4%), corn (6.3%), and cassava (3.5%).

We find that GDP per capita significantly decreases agricultural

productivity. This might reflect the change in labor supply for agricultural

and other work. Once regions are developed, the labor force tends to be

reluctant to perform agricultural work.

4.2 Cost of deforestation on agricultural production

The magnitude of the effect is important for forest management policies.

The coefficient of Fcover in column 2 in Table 2 is 3.671 indicating that a

1% reduction in deforestation increases productivity by approximately 3.7%

in the region. Using this result and the historical deforestation trend, the

total agricultural loss in Indonesia due to deforestation is estimated to be

45% between 2001 and 2014 or US$2.63 billion in 2014.20

This result takes into account that economic returns to agriculture could

help to mitigate the conversion of forest to new agricultural land. According

to the Bureau of Statistics Indonesia (BPS) (2016), approximately 1.8 MHa

was newly cultivated as agricultural land between 2001 to 2014 in Indonesia

except for Java island.21 Multiplying the average revenue, the revenue from

20 The deforestation rate and agricultural production growth in Indonesia were 13.1%
and US$ 5.5 billion, respectively, between 2001 and 2014. Then, the total agricultural
loss can be obtained by multiplying 0.131 by 0.037 by US$5.5 billion.

21 We aggregated the new agricultural land for rice, maize, cassava, mung bean, peanut,
soybean, and sweet potato between 2001 and 2014.
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these new cultivated areas is estimated to be approximately US$1.05 billion.

Because the average agricultural loss due to deforestation is US$2.63 billion,

the return from forest conservation would be around 250%. Thus, forest

conservation proves to be highly cost effective.

4.3 Biological pest control versus other mechanisms

Our main results suggest that forests have a positive externality on

agricultural productivity. However, as discussed in Section 2, forests have

the potential to affect agricultural output in several ways such as biological

control, soil conservation, nutrient retention, and crop pollination. In

addition, forest loss could occur alongside forest fires in Indonesia, with

damage to both forests and agricultural land. To explore the likely channels

driving the relationship between forests and agriculture, we restrict the

samples based on cultivated crop types in the estimation of the production

functions and estimate the effects of forest cover for annual crop farmers,

vulnerable tree farmers, and tolerant tree farmers.

A difference between annual crops (including rice) and perennial crops

is their susceptibility to pest insects through their life cycles. According to

Coley et al. (1985), the strength of plants’ defenses against herbivores is

related to their growth speed. Fast-growing species show less defense against

pests than slow-growing species, which implies that annual crops might be

more vulnerable to pests than perennial estate crops. In addition, perennial

crops can be classified into vulnerable and tolerant trees. Vulnerable trees

mainly consist of fruit-bearing trees. Typically, pest insects might severely

damage the fruit or crop and affect the viability of the trees. Thus, tolerant

trees are less susceptible to pest damage than annual crops and vulnerable
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trees.22

Table 3 presents the estimation results by farmers’ crop types: column

(1) for rice; column (2) for annual crops (including rice); column (3)

for vulnerable tree crops; and column (4) for tolerant tree crops.23 The

coefficients of Fcover are positive and statistically significant for rice, annual

crops, and vulnerable tree farmers while the coefficients of forest cover for

tolerant tree farmers are statistically insignificant. These results imply that

biological pest control is likely be a factor in the relationship between forests

and agricultural outputs. Because ecosystem services other than biological

control, such as water, should affect agricultural output regardless of crop

type, the effects should be found in other types of crops. The difference

between rice and estate crops is their susceptibility to pest insects.

Similarly, if forest fires could damage entire agricultural areas and forests,

then the effect should be found not only in rice but also in estate and

livestock. We argue that a plausible channel of this relationship is biological

control through forest diversity.

4.4 Placebo test for non-agricultural income

Since the forest cover change does not occur randomly, it is possible that

our results suffer from omitted variable bias. For instance, there might be

unobserved variables that influence both regional income and forest cover

change. We test for omitted variable bias by applying the estimation

to non-farming income, which is unlikely to be associated with forest

cover change. If other latent factors were related to the effects of forest

cover change, then forest cover change would be related to income from

22 Table A4 shows the classification of crops in our estimates.
23 The restriction is performed according to the type of crop that the farmer cultivated

as a main crop.
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non-farming business also.

The test sample is composed of 3, 369 households that engage in

non-farm family business. The descriptive statistics for non-farming business

households are presented in Table A5. The dependent variable is household

income from non-farming business. The explanatory variables include

household and year fixed effects as well as household characteristics such

as age of head, education of head, and family size. Column (4) in Table 3

presents the results of the placebo test. The coefficient for forest cover rate

is statistically insignificant. This result offers support for our identification

strategy.

4.5 Attrition and household re-composition biases

Since farmers could stop farming by decreasing output, the effects of forests

could cause sample attrition bias. In addition, as mentioned above, our

estimates include split-off households that are observed as new households

for the survey rounds of 2007 and 2014. There is possible bias if the variables

of these new households are associated with forest cover change in the region.

To check if the sample attrition and re-composition are systematically related

to the forest change, we restrict the sample to strongly longitudinal data. We

first report our main result in column (1) in Table 4. The coefficients of forest

cover decreased from those of our main results (in column (1)) but are still

statistically significant at the 1% level.

This result suggests the possibility that our main results underestimate

the effect of forest cover change on agricultural productivity. If farmers

who stop farming have a serious effect on agricultural productivity, then the

estimation results on farmers who continue to farm would be biased.
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4.6 Change in household strategy

An alternative explanation for lower levels of agricultural productivity is

related to the farming strategy of households such as farming land size and

assets. If farmers change farming plot size or assets in response to converted

forest, then productivity changes.

Table 5 shows the results. We find no increase in land size and farming

assets in response to changes in forest cover. This result indicates that the

change in productivity is driven not by household strategy but by changes

in forest cover.

4.7 Effects on household consumption

Our estimation results show the link between forest cover and agricultural

productivity. We expect that changes in forest cover subsequently lead to

changes in living standards such as household consumption. It is possible

that the effects could be averted. For example, plantation companies that

are typically established in cleared forest areas employ local workers and

improve the local economy (Gatto et al., 2017).

To examine this issue, we regress household consumption on forest cover.

The results are presented in Table 6. The coefficient of forest cover on food

consumption (column (1)) is positive but statistically insignificant, while the

coefficient on non-food consumption (column (2)) is positive and statistically

significant. The sample of these two models consists of rice farmers, whose

productivity is strongly affected by forest cover change (see Table 2). These

results reflect the fact that income elasticity of non-food demand is higher

than that of food demand.

In addition, we restrict the sample to households engaging in estate crops,

livestock, and non-farming business (the results are reported in columns (3),
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(4), and (5) in Table 6, respectively). Note that the agricultural productivity

of these households is not affected by forest cover change (see Table 2). Fcover

also has no significant effect on either food or non-food consumption.

5 Conclusion

This study examines an important externality that forest cover loss might

impose; that is, reducing agricultural productivity. We find robust evidence

that agricultural productivity has decreased due to forest cover losses. The

reduction is economically significant at a decline of approximately 45% or

US$2.63 billion in mean production between 2001 and 2014.

In addition, we find that biological control seems to be a plausible

mechanism between forest and agricultural productivity. Rice, fruit, and

vegetables are relatively susceptible to insect damage compared to estate

crops such as rubber, sugar, wood, and livestock.24 Rice crop loss due to

pest damage is reported to be 95% at maximum (Teng et al., 1990). On

the other hand, the rubber tree is not seriously affected by pest insects.25

If other mechanisms of the forest ecosystem, such as water, soil, and forest

fires, are related to productivity, then the effect of forest cover change might

be observed in both the rice and estate farmer estimations.

These findings have important implications for environmental and

development policies. In particular, the results suggest that forest

conservation policies should consider the externalities of forests on

agricultural productivity and farmers’ welfare. In Indonesia, the use of

pesticides has been subsidized by the government to control rice pests.

24 For example, rice is reported to be a host plant of more than 800 insect species (Dale,
1994). Every part of the rice plant is exposed to these pest insects (e.g., root, stem,
leaf, and grain) and at every growth stage (e.g., seedling, matured) (Dale, 1994).

25 There are few reports of pest damage to rubber trees because insect pest attacks on
rubber trees are mostly sporadic and localized (Jayarathnam, 1992).
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However, the use of pesticide has killed more natural predators than pest

insects, thereby removing the enemies of pests. This lack of enemies has

resulted in significant pest damage to crops. The loss of rice production

has affected farmers’ livelihoods and is estimated to be valued at US$ 100

million in Indonesia (Settle et al., 1996; Tscharntke et al., 2016). Therefore,

it is essential that policymakers pay significant attention to the conservation

of forest ecosystems rather than the expansion of pesticide usage to improve

the livelihood of farmers.

The potential costs from lost crop production are neglected in forest

conservation policy, which usually focuses on the trade-off between

agriculture and conservation. Our results suggest that forest conservation

could improve the living standards of local farmers. Using the result, the

average annual loss due to the change in forest cover is estimated to be

US$2.56 billion between 2001 and 2014. This loss offsets the benefits from

agricultural expansion in forest conservation policies.

Finally, several limitations of this study should be mentioned. First,

we cannot clearly determine the mechanism between change in forest cover

and agricultural productivity. Although we run several robustness checks,

it is possible that mechanisms other than biological control could affect

productivity, such as the quality and nutrients of soil, water, and forest

fires. Similarly, we cannot examine in detail the changes in farmers’ decisions

on agricultural production that are affected by forest cover changes. For

example, farmers could change their agricultural behavior or investment

in response to change in forest income. Second, we cannot examine the

detailed effects of different land-use types on ecosystem services due to a

lack of land use data. The forest cover data we employed includes forest

extent and perennial estate crops such as oil palm, rubber, and coffee
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plantations. The decline of forest cover might include biodiversity loss

from both deforestation and plantation destruction. Therefore, there is a

possibility that our estimates underestimate the effects of forest cover change

on agricultural outcomes through biological pest control because the level

of biodiversity on agricultural plantations is considered less than that in

forests (Koh et al., 2008). Third, several household and community-level

variables to control for agricultural outcome are excluded from our models

because of data limitations. Therefore, we cannot fully rule out the possibility

of bias that households’ unobserved characteristics or strategies explain a

part of the reduction in agricultural productivity. For example, we omit

household’s technological adaptation such as pesticide input. Households’

choices of pesticide use may be associated with the pest condition of their

agricultural fields. Unfortunately, information on pesticide is not available

on IFLS. Future studies should attempt to address these issues.
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[36] Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U.,

2002. Soil fertility and biodiversity in organic farming. Science 80(296),

1694–1697. doi:10.1126/science.1071148

[37] Märgono, B.A., Potapov, P.V., Turubanova, S., Stolle, F., Hansen,

M.C., 2014. Primary forest cover loss in Indonesia over 2000–2012. Nat.

Clim. Chang. 4, 730–735. doi:10.1038/nclimate2277

[38] McCulloch, N., Weisbrod, J., Timmer, C.P., 2007. Pathways out of

poverty during an economic crisis: An empirical assessment of rural

Indonesia. Center for Global Development Working Paper No. 115.

doi:10.2139/ssrn.980328

[39] Millennium Ecosystem Assessment (MEA, 2005). Ecosystems and

human well-being: Biodiversity synthesis. World Resources Institute,

Washington D.C.

[40] Milligan, M.C., Johnson, M.D., Garfinkel, M., Smith, C.J., Njoroge, P.,

2016. Quantifying pest control services by birds and ants in Kenyan coffee

farms. Biol. Conserv. 194, 58–65. doi:10.1016/j.biocon.2015.11.028

[41] Mugido, W., Shackleton, C.M., 2018. Price determination of non-timber

forest products in different areas of South Africa. Ecol. Econ. 146, 597–606.

[42] Olbrei, E., Howes, S., 2012. A very real and practical contribution?

Lessons from the Kalimantan Forests and Climate Partnership.

Development Policy Centre, Crawford School of Economics and

Government ANU College of Asia and the Pacific, Australian National

University

[43] Pimentel A.D., 1988. Herbivore population feeding pressure on plant

hosts: Feedback evolution and host conservation. Oikos 53, 289–302.

32



[44] Pimentel, D., 2005. Environmental and economic costs of the application

of pesticides primarily in the United States. Environ. Dev. Sustain. 7,

229–252. doi:10.1007/s10668-005-7314-2

[45] Pingali, P. 2015. Agricultural policy and nutrition outcomes – getting

beyond the preoccupation with staple grains. Food Security 7(3), 583–591.

[46] Powell, B., Ickowitz, A., McMullin, S., Jamnadass, R., Padoch, C.,

Pinedo-Vasquez, M., Sunderland, T., 2013. The role of forests, trees

and wild biodiversity for nutrition-sensitive food systems and landscapes.

FAO and WHO (January), 1–25, Available at: http://www.fao.org/

fileadmin/user_upload/agn/pdf/2pages_Powelletal.pdf.

[47] Raudsepp-Hearne, C., Peterson, G.D., Bennett, E.M., 2010. Ecosystem

service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl.

Acad. Sci. 107, 5242–5247. doi:10.1073/pnas.0907284107

[48] Ricketts, T.H., Daily, G.C., Ehrlich, P.R., Michener, C.D., 2004.

Economic value of tropical forest to coffee production. Proc. Natl. Acad.

Sci. USA, 101, 12579–12582.

[49] Rusch, A., Bommarco, R., Jonsson, M., Smith, H.G., Ekbom, B., 2013.

Flow and stability of natural pest control services depend on complexity

and crop rotation at the landscape scale. J. Appl. Ecol. 50, 345–354.

doi:10.1111/1365-2664.12055

[50] Rusch, A., Chaplin-Kramer, R., Gardiner, M.M., Hawro, V., Holland,

J., Landis, D., Thies, C., Tscharntke, T., Weisser, W.W., Winqvist, C.,

Woltz, M., Bommarco, R., 2016. Agricultural landscape simplification

reduces natural pest control: A quantitative synthesis. Agric. Ecosyst.

Environ. 221, 198–204. doi:10.1016/j.agee.2016.01.039

33



[51] Settle, W.H., Ariawan, H., Tri Asuti, E., Cahyana,W., Hakim, A.L.,

Hindayana, D., Sri Lestari, A., Sartano, P., 1996. Managing tropical rice

pests through conservation of generalist natural enemies and alternative

prey. Ecology 77, 1975–1988.

[52] Shackelford, G., Steward, P.R., Benton, T.G., Kunin, W.E., Potts, S.G.,

Biesmeijer, J.C., Sait, S.M., 2013. Comparison of pollinators and natural

enemies: Aa meta-analysis of landscape and local effects on abundance

and richness in crops. Biol. Rev. 88, 1002–1021. doi:10.1111/brv.12040

[53] Singh, G., Rawat, G.S., Verma, D., 2010. Comparative study of

fuelwood consumption by villagers and seasonal “Dhaba owners” in the

tourist affected regions of Garhwal Himalaya, India. Energy Policy 38, 4,

1898–1899.

[54] Sloan, S., Sayer, J. A., 2015. Forest Resources Assessment of 2015

shows positive global trends but forest loss and degradation persist in

poor tropical countries. Forest Ecol. Manag. 352, 134–145.

[55] The Economics of Ecosystems and Biodiversity (TEEB Foundations),

2010. In: Kumar, P. (Ed.), The Economics of Ecosystems and Biodiversity:

Ecological and Economic Foundations. Earthscan, London, Washington.

[56] Teng, P.S., Torres, C.Q., Nuque, F.L., Calvero, S.B., 1990. Current

knowledge on crop losses in tropical rice. Crop loss assessment in rice;

edited by J.A. Litsinger, pp.39–53

[57] Thies, C., Haenke, S., Scherber, C., Bengtsson, J., Bommarco, R.,

Clement, L.W., Ceryngier, P., Dennis, C., Emmerson, M., Gagic, V.,

Hawro, V., Liira, J., Weisser, W.W., Winqvist, C., Tscharntke, T.,

34



2011. The relationship between agricultural intensification and biological

control—experimental tests across Europe. Ecol. Appl. 21, 2187–2196.

[58] Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Batáry, P., DeClerck,
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(a) Forest cover in 2001

Figure 1: Forest cover change between (a) 2001 and (b) 2014 source: Hansen
et al. (2013).

36



0

5000

10000

15000

20000

25000

30000

35000

A
n
n
u
a
l 
fo

re
s
t 
lo

s
s
 (

k
m

2
)

2001 2004 2007 2010 2013 2016
Year

Total Sumatra Kalimantan

Figure 2: Total annual forest loss for Kalimantan and Sumatra in Indonesia
from 2001 to 2016 source: Hansen et al. (2013).
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Table 1: Descriptive statistics
2000 2007 2014

All farmers
Log of agricultural production 14.054 14.558 14.722
Fcover (Ratio of forest cover in subdistrict) 0.812 0.766 0.679
Land size (hectares) 1.151 1.173 1.248
Labor input (No. of working-age members) 2.824 3.638 4.034
No. of household members 3.647 4.508 5.163
Age of household head 47.016 49.400 52.366
Schooling years of household head 5.241 5.627 6.340
Household head women dummy 0.098 0.112 0.125
Family size 5.890 6.800 7.674
GDP per capita (billion Indonesian rupiahs) 4.994 6.302 7.401
No. of households 1,281 1,296 1,150
Rice farmers 0.504 0.500 0.413

Farmers produce mainly rice
Log of agricultural production 14.161 14.500 14.726
Fcover (Ratio of forest cover in subdistrict) 0.826 0.771 0.681
Land size (hectares) 1.116 1.010 1.054
Labor input (No. of working-age members) 2.868 3.634 4.103
No. of household members 3.721 4.528 5.356
Age of household head 47.822 49.397 53.013
Schooling years of household head 5.057 5.465 6.114
Household head women dummy 0.115 0.086 0.114
Family size 6.006 6.838 7.931
GDP per capita (billion Indonesian rupiahs) 4.840 5.842 7.031
No. of households 646 648 475

Farmers produce mainly products other than rice
Log of agricultural production 13.945 14.615 14.720
Fcover (Ratio of forest cover in subdistrict) 0.798 0.760 0.677
Land size (hectares) 1.186 1.336 1.385
Labor input (No. of working-age members) 2.778 3.642 3.985
No. of household members 3.572 4.488 5.028
Age of household head 46.195 49.404 51.911
Schooling years of household head 5.428 5.789 6.499
Household head women dummy 0.080 0.137 0.133
Family size 5.772 6.762 7.493
GDP per capita (billion Indonesian rupiahs) 5.150 6.762 7.661
No. of households 635 648 675

Source: Indonesia Family Life Survey 2000–2014
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Table 2: The effects of change in the forest cover rate on agricultural output
Dependent variable ln(value of yields per planted area)

Considering endogeneity

of labor input
(1) (2) (3) (4) (5)

Fcover 3.504(0.912)∗∗∗ 3.671(0.772)∗∗∗ 2.241(1.280)∗ 3.813(0.782)∗∗∗

Sumatra & Kalimantan
× IFLS5 −0.420(0.094)∗∗∗

ln(land) −0.809(0.028)∗∗∗ −0.811(0.027)∗∗∗ −0.797(0.034)∗∗∗ −0.814(0.028)∗∗∗

ln(labor) 0.130(0.072)∗ 0.115(0.071) 0.349(0.166)∗∗ 0.623(0.217)∗∗∗

ln(asset) 0.136(0.016)∗∗∗ 0.132(0.016)∗∗∗ 0.125(0.022)∗∗∗ 0.134(0.017)∗∗∗

Rice farmer (dummy) 0.040(0.072) 0.069(0.070) 0.078(0.105) 0.053(0.073)
Age of head −0.003(0.004) −0.003(0.004) 0.074(0.027)∗∗∗ −0.006(0.004)
Age of head squared /100 0.000(0.000) 0.000(0.000) −0.074(0.025)∗∗∗ 0.001(0.000)
Schooling years of head 0.019(0.014) 0.020(0.013) −0.012(0.021) 0.018(0.014)
Head of women dummy −0.055(0.103) −0.049(0.100) −0.290(0.157)∗ −0.009(0.112)
GDP per capita −0.154(0.054)∗∗∗ −0.074(0.057) −0.209(0.079)∗∗∗ −0.157(0.054)∗∗∗

Constant 12.033(0.800)∗∗∗ 12.244(0.740)∗∗∗ 14.789(0.357)∗∗∗ 12.276(1.357)∗∗∗ 11.833(0.741)∗∗∗

Year fixed effects YES YES YES YES YES
Household fixed effects YES YES YES YES YES
Estimation OLS OLS OLS 2SLS 2SLS
R-squared 0.116 0.422 0.503 0.455 0.486
Number of observations 3,259 3,259 3, 259 2, 063 3,223

Note: (1) The dependent variable in all models is the logarithmic household’s agricultural
value of yield per planted area.
(2) Numbers in parentheses are standard errors clustered at the household level.
(3) ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%,5%, and 10% levels,
respectively.
(4) The number of samples for column (4) is smaller compared to others because we drop
the sample in IFLS 3 due to data limitations.

Table 3: Regression results for various types of output
Dependent variable ln(value of yield per planted area) ln(non-agricultural income)

Annual crops Perennial crops
(1) (2) (3) (4) (5)

Fcover 2.361(1.238)∗∗ 2.978(0.914)∗∗∗ 6.228(3068)∗∗ −2.928(2.582) 0.331(1.217)
Year fixed effects YES YES YES YES YES
Household fixed effects YES YES YES YES YES
Sample Rice farmer Annual crop farmer Vulnerable tree farmer Tolerant tree farmer Non-farming business
R-squared 0.536 0.520 0.575 0.417 0.075
Number of observations 1,813 2,379 564 458 3,369

Note: (1) Each column presents the results from separate regressions.
(2) The other covariates for columns (1), (2), (3), and (4) are the same as those in column
(2) of Table 2.
(3) The covariates for column (5) are the household characteristics such as age of head,
squared age of head, education of head, and household size.
(4) The numbers in parentheses are standard errors clustered at the household level.
(5) *** and ** denote statistical significance at the 1% and 5% levels, respectively.
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Table 4: Robustness check
Dependent variable ln(value of yields per planted area)

(1) (2)
Fcover 3.671(0.772)∗∗∗ 3.557(0.8727)∗∗∗

Year fixed effects YES YES
Household fixed effects YES YES
Sample Full sample Non-drop
R-squared 0.478 0.497
Number of observations 3,259 2,182

Note: (1) The dependent variable in all models is logarithmic household’s value of
agricultural yield per planted area.
(2) The other covariates for columns (1), (2), (3), and (4) are the same as those in column
(2) of Table 2.
(3) The numbers in parentheses are standard errors clustered at the household level.
(4) ∗ ∗ ∗ denotes statistical significance at the 1% level.

Table 5: Forest cover and household strategies
Dependent variable ln(land size) ln(farming asset)

(1) (2) (3) (4)
Fcover 0.156(0.770) 2.611(1.591) 0.400(0.840) 1.707(1.093)
Year fixed effects YES YES YES YES
Household fixed effects YES YES YES YES
Sample Full sample Rice farmer Full sample Rice farmer
R-squared 0.042 0.064 0.071 0.082
Number of observations 3,259 1,813 3,259 1,813

Note: (1) The dependent variables are logarithmic land size for columns (1) and (2); and
farming assets that households own for columns (3) and (4).
(2) The numbers in parentheses are standard errors clustered at the household level.
(3) All regressions are estimated using OLS and include household and year fixed effects
as well as household characteristics such as age of head, squared age of head, education
of head, and household size.

Table 6: Forest and household consumption
Dependent variable ln(food consumption) ln(non food consumption)

(1) (2) (3) (4) (5)
Fcover 0.331(0.400) 1.158(0.675)∗ 1.756(2.581) 1.070(2.174) −1.296(1.606)
Year fixed effects YES YES YES YES YES
Household fixed effects YES YES YES YES YES
Sample Full sample Rice farmer Perennial crop farmers Perennial crops + livestock farmers Non-farming business households
R-squared 0.024 0.157 0.160 0.145 0.147
Number of observations 3,259 1,813 674 797 3,369

Note: (1) The dependent variable in all models is logarithmic household consumption
per capita (IRP).
(2) The numbers in parentheses are standard errors clustered at the household level.
(3) ∗ denotes statistical significance at the 10% level.
(4) All regressions are estimated using OLS and include household and year fixed effects
as well as household characteristics such as age of head, squared age of head, education
of head, and household size.
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Table A1: Regression results with kecamatan fixed effects
Dependent variable ln(real agricultural output)

(1) (2)
Fcover 2.247(1.349)∗ 3.418(1.272)∗∗∗

ln(land) −0.739(0.028)∗∗∗

ln(labor) 0.161(0.033)∗∗∗

ln(asset) 0.150(0.013)∗∗∗

Rice farmer (dummy) 0.130(0.070)∗

Age of head −0.009(0.002)∗∗∗

Age of head squared /100 0.001(0.000)∗∗∗

Schooling years of head 0.004(0.006)
Head of women dummy −0.287(0.064)∗∗∗

GDP per capita −0.150(0.100)
Constant 2.247(1.349)∗ 13.711(1.238)∗∗∗

Year fixed effects YES YES
kecamatan fixed effects YES YES
Number of observations 3,259 3,259
R-squared 0.299 0.587

Note: (1) The dependent variable in all models is the logarithmic household’s value of
agricultural yield per planted area.
(2) Numbers in parentheses are standard errors clustered at the household level.
(3) ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels,
respectively.
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Table A2: Regression results including every type of farmer or Java sample
Dependent variable ln(real agricultural output)

(1) (2) (3) (4)
Fcover 2.824(0.976)∗∗∗ 3.055(0.700)∗∗∗ 0.303(0.645) −0.254(0.453)
ln(land) −0.815(0.024)∗∗∗ −0.833(0.015)∗∗∗

ln(labor) 0.065(0.071) 0.079(0.051)
ln(asset) 0.137(0.014)∗∗∗ 0.098(0.011)∗∗∗

Rice farmer (dummy) −0.077(0.063)∗ −0.011(0.056)∗

Age of head −0.001(0.003) −0.003(0.003)
Age of head squared /100 0.000(0.000) 0.000(0.000)
Schooling years of head 0.020(0.013) 0.016(0.010)
Head of women dummy −0.100(0.096)∗∗∗ −0.170(0.072)∗∗

GDP per capita −0.190(0.051) −0.001(0.045)
Constant 12.189(1.238)∗∗∗ 12.804(0.679)∗∗∗ 14.730(0.440)∗∗∗ 14.630(0.388)∗∗∗

Year fixed effects YES YES YES YES
Household fixed effects YES YES YES YES
Number of observations 3,820 3,820 6,687 6,687
R-squared 0.113 0.587 0.083 0.583

Note: (1) The dependent variable in all models is the logarithmic household’s value of
agricultural yield per planted area.
(2) Numbers in parentheses are standard errors clustered at the household level.
(3) ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels,
respectively.
(4) The sample for columns (3) and (4) include households that live in Java island
(provinces of Jawa Barat, Jawa Tengah, Jawa Timur, and Yogyakarta).

Table A3: First-stage regressions of columns 4 and 5 in Table 2

Dependent variable
First stage
Fcover

First stage
ln(labor)

(1) (2)
Fcovert−1 0.9382(0.0052)∗∗∗

ln(no. of household members) 0.439(0.032)∗∗∗

Year fixed effects YES YES
Household fixed effects YES YES
Number of observations 2,063 3,223
R-squared 0.9985 0.387
F-test on the excluded instrument 46969.92 847.12

Note: (1) All estimations include household and year fixed effects and household and
region controls. See columns 4 and 5 in Table 2 for details on the second stage.
(2) Numbers in parentheses are standard errors clustered at the household level.
(3) ∗ ∗ ∗ denotes statistical significance at the 1% level.
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Figure A1: Forest cover change by region
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Figure A2: The unconditional mean of ln(real value of agricultural yield per
planted area)
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Table A4: The classification of crops

Annual crops
Rice, Cassava, Other tuber,
Ground nuts, Soybean, Corn,
Red onion, Other vegetables

Perennial crops
Vulnerable

Coffee, Banana, Cashew nuts,
Coconut, Chili, Other fruits

Tolerant
Rubber, Wood, Sugarcane,
Tobacco, Spice

Source: Indonesia Family Life Survey (IFLS)
Note: (1) the classification for perennial crops is based on
strength against pest damage.

Table A5: Descriptive statistics for non-farming business households
2000 2007 2014

Households engaging in non-farming business
Log of non-farming production 14.297 14.754 14.983
Ratio of forest cover in subdistrict 0.807 0.759 0.678
Age of household head 44.828 48.101 50.250
Schooling years of household head 6.312 7.140 7.859
Head of women dummy 0.141 0.139 0.163
No. of working-age members 3.835 4.667 5.177
No. of children (age<15) 1.678 1.576 1.365
GDP per capita 4.963 6.453 7.486
Number of observations 1,092 1,191 1,089

Source: Indonesia Family Life Survey 2000–2014
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