下向き水平伝熱面の沸騰熱伝達の研究

時田雄次*・川江信治**・茂地 山田 昭**・外尾暢 晧***

A Study on the Boiling Heat Transfer from a Horizontal Heating Surface Facing Downward

by

Yuji TOKITA*, Nobuji KAWAE**, Tohru SHIGECHI**, Takashi YAMADA** and Nobuhiro HOKAO***

The boiling heat transfer from a downward-facing, horizontal heating surface to saturated or subcooled water has been studied experimentally. The heating surface is one end of a copper cylinder with a diameter in 20 mm, which is heated by an electric heater wound around it. Heat flux at the heating surface may be increased up to about 1.7×10^6 W/m². The system pressure was changed in the range from 0.01 MPa to 0.3 MPa and the subcooling in the range from 0°C to 70°C. The experiments are performed under two conditions; (1) the heating surface is kept stationary in water and (2) the heating surface can be moved reciprocally between the vapor and the liquid at a period of 0.67 sec to 2 sec and cooled intermittently. Boiling curves are obtained for these two cases.

From the observations, it is seen that, on the downward-facing heating surface, bubbles formed beneath the heating surface can easily coalesce and form a large blanket of vapor which prevents primary bubbles from separating on the heating surface. In such a case, the boiling curves obtained become discontinuous in the nucleate boiling region and, at low heat flux, they are shifted to the film boiling region.

The burn-out heat fluxes are lower in comparison with that for an upward-facing, horizontal surface. The intermittent cooling due to the reciprocal motion of the heating surface and the pressures less than atmospheric pressure may reduce the value of burn-out heat fluxes.

1.まえがき

沸騰現象はその熱伝達率が著しく大きいことから蒸 気ボイラ,原子炉,化学工業など広く多岐にわたって 応用されている.この沸騰熱伝達率は,過熱度の関数 として変化する.低熱負荷領域では,液体は自然対流 によって加熱されるが,熱負荷が増すと伝熱面に気泡 が活発に発生し始め,熱伝達率は急激に増大する核沸 騰領域に入る. さらに熱負荷が増大すると伝熱面に蒸気膜が形成さ れ膜沸騰領域に移行するが、このとき伝熱面と液体は 隔離された状態となって伝熱面温度は異常に上昇する 従来からこれら沸騰熱伝達に関する研究は非常に多 く、伝熱機構の全域にわたってほぼ解明されてはいる が、伝熱が複雑かつ特殊な条件下で行われる実際の応 用面では、熱伝達率およびバーンアウト熱負荷を精度 よく理論的に求めたり、あるいは類似のデータから推

昭和63年9月30日受理

1

^{*}大学院海洋生産科学研究科(Graduate School of Marine Science and Engineering)

^{**}機械工学科(Department of Mechanical Engineering)

^{***}三菱重工業㈱(Mitsubishi Heavy Industries, Ltd.)

定することが困難な場合が多い.

例えば、本研究で取り上げた下向き伝熱面の場合で、 圧力は大気圧以下、伝熱面が間欠的に冷却されるとき の沸騰熱伝達に関してもデータは少ない.下向き伝熱 面に関しては石谷ら¹¹や Huplik ら²⁰の大気圧における プール沸騰の実験がある.これらによれば、伝熱面下 近傍に大きな蒸気塊が停留すること、上向きに比べて バーンアウト熱負荷が低いことなどが報告されている.

低圧領域の沸騰熱伝達に関しては,西川ら³⁾や Ponter ら⁴の実験など比較的多いが,いずれも上向き伝熱 面や細線あるいは円管によるものである.これら西川 らの報告の中で,特異な現象として,約200mmHg以下 の低圧では核沸騰領域で核沸騰が休止する.すなわち, 間欠沸騰が起こることが報じられている.伝熱面を気 液間に往復動させて周期的に冷却する場合の沸騰に関 しては,その実験例はほとんど見当たらない.

そこで、本研究では、一般の伝熱機器にも多く存在 する伝熱面が下向きの場合について沸騰熱伝達の実験 を行い、圧力、冷却水温度および冷却の周期など各種 要因がどのように沸騰特性に影響するかを明らかにし て、熱伝達率とバーンアウト熱負荷に関し実用上信頼 できる定量的数値を求める.

2. 実験装置

実験装置の系統図を Fig.1 に示す. 作動流体として 使用する脱気水は、タンクからテストループ内へ補給 される.テストループ内に保有された水はキャンドポ ンプで循環し,加熱器で所定の温度に加熱されてテス トセクション(沸騰槽)に流入する.沸騰槽は7.56× 10⁻³m³のステンレス容器で,使用圧力は最高0.51MPa, 最低0.0061MPa 程度の範囲である.

大気圧以上の実験では、コンデンサの冷却水量に よって凝縮量をコントロールして圧力を設定し、大気 圧以下の実験では真空ポンプの吸引量によって圧力を コントロールした.

容器内の水温調節は底部に取付けられた補助ヒータ と加熱器によって行い,流れは底部の三つの配管を操 作してプール,強制対流あるいは噴流など各種を得る ことができる.

使用した発熱ブロックの詳細を Fig.2 に示す.この ブロックは、一端が直径20mmの伝熱面となっている銅 ブロックと、これを包む直径70mmのステンレスの外筒 から成る.銅ブロックはこれに取付けている700Wの シースヒータによって加熱され、これによって熱負荷 は伝熱面で最高1.7×10⁶W/m²まで得られる.

また,銅ブロックには伝熱面温度と熱負荷を測定す るための熱電対が軸方向に10mm間隔で3本,過熱監視 用のが1本埋込まれており,伝熱面中心には伝熱面の 乾きとぬれを検出するための双極式センサが取付けら れている.伝熱面と外筒間の断熱シールには0.5mm以下 の薄いステンレス鋼板を用いた.

伝熱面を往復動させる駆動装置は, 駆動モータ, 変

(5) heating surface
(6) test vessel
(7) vacuum pump
(8) heater
(9) circulating pump
(9) heat exchanger
(19) pressurizer
(12) water tank
(13) temperature controller

Fig. 2 Cross section through heater block

速機および発熱ブロックと直結しているピストンクラ ンクから成っている。回転数は変速機とプーリの組合 せによって30~300rpm (伝熱面の往復動周期で0.2 ~2 sec)の範囲でコントロールできる。

テストセクションを出た水は冷却器に入り,ここで 余分の熱は吸収されてテストループ内のヒートバラン スが保たれる.

各部の温度(銅ブロック,容器内水温など)の検出 にはすべてCA熱電対を使用し,起電力はmV計で測 定した。しかし,パーンアウト近傍あるいは間欠沸騰 のときなど伝熱面温度に変動が伴うような場合は,D Cアンプを介して電磁オシロによって記録した。伝熱 面の乾きとぬれの検出は既述のように双極式センサを 用い,伝熱面近傍の電気抵抗の変化を動ひずみ計を介 して電磁オシロで記録した。容器内の圧力は,大気圧 以上の場合はブルドン管式圧力計,大気圧以下の場合 には水銀マノメータで測定し,真空領域から大気圧以 上にわたる大きな圧力変動がある場合は圧力ピック アップで検出して,その測定記録には上記と同様動ひ ずみ計と電磁オシロとを用いた。

伝熱面の熱負荷は、断面積 A₀ (Fig. 2 の熱電対 I と IIの間の平均値)の伝熱面付近熱電対 I とIIの間隔 δ₀ の2点にそう入した熱電対で温度差 ⊿ta を測定し,

$$q_s = \lambda_{Cu} (\Delta t_0 / \delta_0) (A_0 / A_s)$$

として求めた.ここに、 q_s 、 A_s はそれぞれ伝熱面の熱 負荷および面積、 λ_{cu} は銅ブロックの熱伝導率である. この熱負荷は加熱用シースヒータの消費電力からも推 定できるが、測定には標準電力計を用いた.

沸騰槽にはのぞき窓を設け、伝熱面近傍の気泡の挙 動など沸騰の様相を観察するとともに、窓にビデオカ メラをセットしてこれら沸騰の過程を記録した.

3. 実験結果

3.1 沸騰の様相

沸騰の様相は、圧力、水温あるいは周期などによっ て異なるが、共通した点は Fig.3 に示すような伝熱面 下方に常に大なり小なりの蒸気塊が存在していること である.

熱負荷を徐々に増加していくと、自然対流領域を過 ぎるころから伝熱面に小さな気泡が発生し始め、合体 して比較的大きな気泡となる。熱負荷を増すに従い、 やがて Fig. 3 に示したような伝熱面を覆うほどの大 きな蒸気塊が形成される。

核沸騰領域ではこの蒸気塊と伝熱面の間には常に液 層が存在し、伝熱面から発生した1次気泡の一部は上 記の薄い液層を通って周囲に逃げるが、一部は蒸気塊 に吸収合体される.1次気泡を吸収した蒸気塊は成長 し、やがて伝熱面周囲のフランジからはみ出して伝熱 面から完全に離脱してしまうか、あるいは分裂し一部 離脱して小さな蒸気塊が残ったりする.

このように蒸気塊は伝熱面下で膨張,収縮(あるい は消滅)を繰返す.さらに熱負荷を増加すると,伝熱 面の液層は消失し蒸気膜が面を完全に覆った状態とな り,バーンアウト点に達して膜沸騰領域に移行する.

往復動がある場合は,核沸騰領域では蒸気塊は伝熱

Fig. 3 Vapor blanket beneath the downwardfacing heating surface

面が水面を出入りする際に乱されて大きな塊に成長し にくい。しかし、バーンアウト点に近くなると、静止 伝熱面の場合と同様に大きな蒸気塊が停留するように なる.

以上に述べた伝熱面の様相を,伝熱面の中心に取付 けたぬれと乾きを検出するセンサの信号とメタル温度 の関係からみると, Fig.4のようになる.

period 0.67 s(90 rpm)

gas phase UihuuuhuummyalumMuhuhuhu liquid phase

metal temperature

(1) zero heat flux

(2) heat flux $5.90 \times 10^4 \text{ W/m}^2$

(3) heat flux $3.20 \times 10^5 \text{ W/m}^2$

Fig. 4 Conditions of heating surface at periodical cooling Fig.4の(1)は非加熱の場合で伝熱面のぬれ具合を示 すものであるが、伝熱面が水面を離れる瞬間に水が完 全に切れないので、信号は必ずしもステップ状ではな く鈍った波形になっている。(2)は低熱負荷の領域で気 相と液相がほぼ等間隔で繰返されているのがわかる。 (3)は熱負荷が3.2×10⁵W/m²付近の核沸騰が盛んな領 域で、気相の期間が長くなっているがメタル温度は安 定している。

同じく Fig. 4 の(4)は, さらに熱負荷を増したパーン アウト点直前の状況を示すものであるが, 気相の占め る割合が極めて大きく, そのうえ蒸気膜が形成されか かるためメタル温度が一時的に上昇するなど不安定に なる.(5)はパーンアウト発生後の状況を示すもので, 伝熱面が水面に接触する瞬間にぬれを検出するのみで ほとんど気相である(静止伝熱面の場合はぬれは全く 検出されない).伝熱面は蒸気膜に覆われるため,メタ ル温度は急激に上昇する.またセンサ近傍の電場が変 化するために, センサの信号レベルも変動するのがこ の領域の特徴である.

3.2 圧力0.1MPaの場合

冷却水が飽和温度の場合の沸騰曲線をFig.5に示 す.パーンアウト熱負荷は、伝熱面が静止している場 合が最も大きく、往復動がある場合は周期が長くなる に従い減少する.核沸騰熱伝達率は伝熱面が静止して

Fig. 5 Boiling curves for saturated water on a downward-facing surface (0.1MPa)

Fig. 6 Boiling curves for subcooled water on a downward-facing surface (0.1MPa)

いるか,往復動しているかにかかわらずほとんど差は ない.

冷却水が飽和温度以下の場合のサブクール沸騰曲線 を Fig.6 に示す.サブクールがある場合は,静止した 伝熱面では熱負荷が5.8×10⁴~15×10⁴W/m²程度の低 領域で,発生した気泡(径約40mm以下)が伝熱面全体 を安定した状態で覆い,伝熱面温度はバーンアウト点 に達したときと同様な急激な上昇を示す.伝熱面が比 較的長い周期(2秒)で往復動する場合,熱負荷が2.3 ×10⁵W/m²以下の領域では蒸気塊が乱されて伝熱面 には部分的に液層が存在する.したがって,伝熱面温 度は通常の沸騰曲線から外れた高い値で平衡状態にな る.

熱負荷をさらに増して2.3×10⁵W/m²以上にすると, 熱伝達率は飽和沸騰の場合より若干低下するが通常の 沸騰特性を示す.このように沸騰特性曲線上,例えば 熱負荷2.3×10⁵W/m²付近に不連続な領域が存在する. この領域では,核沸騰と緩慢な合体気泡の成長および フランジからの離脱あるいはフラッシングによる蒸気 塊の急激な収縮,これらの繰返しによって生ずる間欠 沸騰の現象がみられる.

伝熱面温度も気泡の成長に伴い上昇し,収縮あるい は消失と同時に急激に下降する.往復動周期が短い場 合は,核沸騰熱伝達率は飽和沸騰のときに比べ低下す

Fig. 7 Boiling curves for saturated water on a downward-facing surface (0.3MPa)

るが、バーンアウト熱負荷は増加する.

3.3 圧力0.3MPaの場合

冷却水温が飽和温度133℃の場合の沸騰曲線を Fig. 7 に示す. 伝熱面が静止している場合は,大気圧の沸騰 特性とほとんど差は認められない. 伝熱面での気泡発 生は連続的に行われ, フランジからの気泡離脱も盛ん である. 蒸気塊の形成は比較的遅く, 核沸騰の後半に 現れる.

伝熱面が往復動し周期が比較的長い場合には,静止 伝熱面でサブクールがあるときにみられた低熱負荷領 域での膜沸騰移行の現象が生じた。周期が短くなると, この異常な温度上昇は起こらない。冷却水温度が80℃ 前後のサブクールがある場合,Fig.8に示すように伝 熱面が静止しているときには,大気圧の場合と同様に 低熱負荷領域で膜沸騰に移行する。

伝熱面が比較的長い周期で往復動する場合は, 飽和 沸騰の静止伝熱面の場合と比較して核沸騰熱伝達率は 著しく低下し, バーンアウト熱負荷も減少する.

3.4 圧力0.01MPaの場合

冷却水温度が飽和温度46°Cの場合の沸騰曲線を Fig.9に示す.沸騰特性は大気圧の場合と比較すると、 得られた曲線から判断する限りでは、核沸騰熱伝達率 が幾分小さい程度であまり差異はないが、低圧の場合 には低熱負荷領域で間欠沸騰が起こっている.しかし、

Fig. 8 Boiling curves for subcooled water on a downward-facing surface (0.3MPa)

Fig. 10 Boiling curves for subcooled water on a downward-facing surface (0.01MPa)

Fig. 9 Boiling curves for suturated water on a downward-facing surface (0.01MPa)

伝熱面温度の変動はほとんど認められない。

サブクールがある場合の沸騰曲線を Fig. 10 に示す. 伝熱面が静止しており,冷却水温が飽和温度に近い場 合には熱負荷10⁶W/m²以下の領域で間欠沸騰の現象 がみられる.サグクール温度が大きいときは膜沸騰に 移行してしまうが,この領域では冷却水の温度の影響 は極めて微妙であって,わずかな温度変動でも沸騰の 様相が異なってくる.

3.5 圧力0.05MPa の場合

飽和沸騰とサブクール沸騰それぞれの特性曲線を Fig. 11 および Fig. 12 に示す. 冷却水温, 往復動周期の 影響など大気圧あるいは0.01MPaの場合と特に変 わったことはなく,いずれの条件に対しても沸騰特性 は上記圧力と同じ傾向を示している.

4.考 察

下向きの伝熱面が静止および往復動しているときの, 沸騰伝熱特性についての実験結果をまとめると Table 1のようになる。表中の(1)については,圧力が高いほど 発生気泡の径が小さくなり,気泡発生ひん度が増大す るために,核沸騰領域の熱伝達率は増加する。しかし バーンアウト点付近では,伝熱面下方に停留している 蒸気塊がいずれの条件の場合にも巨大化し,伝熱面か らの気泡の離脱を妨げるなど影響が大きいため,バー

Fig. 11 Boiling curves for saturated water on a downward-facing surface (0.05MPa)

Table 1	Effects of pressure, water temperature					
	and period of reciprocal motion on the					
	characteristics of boiling heat transfer					
	from a downward-facing heating sur-					
	face					

項	Ē	要因	圧	力	水	温	周	期		
静	府上云熱 (1)飽和沸騰 (2)サブ	バーンアウト 熱負荷	影響は	少ない						
止		核沸騰 熱伝達率	圧力が 増加す	高い程 る						
伝熱		バーンアウト 熱負荷	圧力に く小さい	関係ない	水温が 増加す	高いと る				
面	クール沸騰	、 核沸騰 熱伝達率	低熱負荷 で膜沸 行する	苛領域 騰に移	水温が高くな ると間欠沸騰 が起る					
往復動伝熱面	(3) 飽和沸騰	バーンアウト 熱負荷	影響は	少ない			周期か 増加す	³ 短い程 る		
		核沸騰 熱伝達率	圧力が わずか する	高い程 こ増加			- 影響は	:少ない		
	(4)サブクール沸騰	バーンアウト 熱負荷	圧力が (負圧) する	「低い と減少	水温が 増加す	低いと る	周期か ると減	。 長くな 〔少する		
		核沸騰 熱伝達率	圧力が 減少す	高い程 る	水温が 減少す	低いと る	周期が 増加す	³ 短い程 る		

Fig. 12 Boiling curves for subcooled water on a downward-facing surface (0.05MPa)

ンアウト熱負荷に差は生じない。

Table 1 の(2)については、気泡の成長の途中、気液 境界面で蒸気膜から液体への熱伝達があり、サブクー ル温度差が大きいと伝熱面から伝達される熱量とバラ ンスして蒸気膜はそれ以上成長しなくなる.このとき の熱負荷を試算する.蒸気膜から液体への伝熱は自然 対流であるから、水平伝熱面に関する次式⁵⁾から熱伝 達率を算出する.

$Nu = 0.27 (GrPr)^{0.25}$

蒸気膜温度を100℃,冷却水温度40℃の場合熱伝達率 は721W/(m²・K),したがって気液境界面の熱負荷は 10⁴W/m²となる.完全に平衡状態に達したデータがな いために厳密な比較はできないが,温度異常上昇が起 こる領域に入る.

サブクール温度差が小さい場合には上記のバランス が崩れやすく、蒸気膜がある程度成長すると崩壊して 核沸騰に戻るといったいわゆる間欠沸騰の現象がみら れる.

Table 1 の(3)については、伝熱面温度変動の振幅は 往復動周期によって変化し、長いほど伝熱面温度は過 熱されやすい。

Table 1(4)のサブクーリングがある場合は境界層が 厚く、しかも冷却水に接触するたびに新しい境界層が 形成されるから、ある期間対流熱伝達が占めるため平 均の熱伝達率は飽和沸騰の場合より低くなる。しかし 伝熱面がぬれている時間が長くなり、冷却効果が持続 するためバーンアウト熱負荷は増大する。周期に関し ては、2秒程度になると伝熱面が乾いている時間が長 く過熱されやすくなって、バーンアウト熱負荷は減少 するが、短い周期では影響は現れていない。

一方,往復動によって境界層が乱されるから,上述 の対流熱伝達率が増加する.したがって,より多くの 乱れを促す短い周期のほうが,熱伝達がよくなる.圧 力が低いと発生する気泡の径が大きく,気泡の離脱を 妨げる巨大な蒸気塊を形成しやすい.

伝熱面が冷却水に換触してから沸騰が始まるために は、境界層の温度が飽和温度まで上昇する(過熱層の 形成)必要がある。したがって、一定冷却水温度に対 して飽和温度が高いほど1サイクル中に占める沸騰熱 伝達の割合が少なくなるから、熱伝達率は圧力の増加 に伴い低下する。

5. むすび

伝熱面が下向きで,プール沸騰および伝熱面が気液 間を往復動して間欠的に冷却される場合の沸騰,さら に圧力が大気圧以下になったときの沸騰,それぞれの 沸騰特性曲線を実験的に求め,沸騰の様相を観察し, 特異な特性を示すことがわかった.

すなわち,

- (1) 伝熱面が下向きの場合,伝熱面から発生した気泡 が合体して蒸気塊を形成し,伝熱面下方近傍に停留 して1次気泡の発生,成長および離脱に影響を及ぼ す.
- (2) 蒸気塊の存在が、核沸騰を休止させるため、沸騰 曲線が不連続になったり、低熱負荷領域で膜沸騰に 移行してしまうことがある。
- (3) 上向き伝熱面の場合に比べて、バーンアウト熱負

荷は一般に低くなる.

- (4) 間欠冷却は、伝熱面が液面に接触する際に物理的 な乱れが加わり、熱伝達率、バーンアウト熱負荷を 増加させることもあるが、熱的には周期が長くなっ た場合に水切れの現象が現れ、バーンアウト熱負荷 の低下を招くこともある。
- (5) 圧力が大気圧以下の場合は、発生する気泡が大きいために蒸気塊の影響を受けやすくバーンアウト熱 負荷の低下を促進することになる。

今後,さらに検討を要する問題点としては、下向き 伝熱面の場合には、気泡の離脱が伝熱面の形状寸法の 影響を大きく受けると予想されるので、伝熱面および フランジの径を要因として考慮せねばならない。また、 蒸気塊の停留を防ぐ一つの方法として伝熱面に平行な 流れを作る場合、必要最小の流速はどの程度かなど検 討しておく必要がある。

初めに述べたように,沸騰伝熱の現象は多くの工業 用機器類に応用されているが,中には伝熱面あるいは 冷却面が下向きの場合も少なくない.このような機器 類の設計の場合,本研究で得られた下向き伝熱面の沸 騰伝熱特性の特異性を十分考慮する必要がある.

参考文献

- 1) Ishigai S., Inoue K., Kiwaki Z., and Inai T.; Proceedings of the 1961-62 International Heat Transfer Conference, Boulder, Colo., (1962), 224.
- Huplik V.; Journal of Heat Transfer, Trans. ASME, Series C, Vol. 94, No.11 (1972), 403.
- 3) Nishikawa K., Fujita Y., Nawata Y. and Hirahaya K. ; Memoirs of the Faculty of Engineering Kyushu University, Vol. 30, No. 2 (1970).
- 4) Ponter A. B. and Haigh C. P.; Int. J. Heat Mass Transfer, Vol. 12, (1969), 413.
- 5) 甲藤好郎; 伝熱概論, 養賢堂(昭44), 174.