衝撃加振による道路橋の動的特性推定

 岡林隆敏*
 •小西保則**

 龍博志***
 •有角明*****

Dynamic Paramer Estimation of Highway Bridge by Impact Excitation

by

Takatoshi OKABAYASHI* • Yasunori KONISHI** Hiroshi RYU*** • Akira ARIKADO****

An algorithm of the nonliner least square method for the multi-degree of freedom curve fitting method is developed for obtaining the stable and convergent solution. An observation response of a structural system is simulated by adding Gaussian white noise to the response which is calculated by the impact response analysis for a Trussed Langer bridge based on the FEM modeling.

The modal circle fitting method and the multi-degree of freedom curve fitting method are tested on simulation data varying SN ratio 0 to 20%. The numerical results are shown that the proposed procedure derives the stable solution and this solution has higher accuracy than the solution by the modal circle fitting method.

1. はじめに

橋梁の耐風安定性,道路環境改善のための橋梁の防 振および振動による既設橋梁の健全度評価等において 迅速でかつ精度の高い動特性推定法が望まれている⁽¹⁾. 橋梁の振動測定には不平衡型起振機を用いたり,長大 橋の場合には、クレーンによる重錐の昇降法などが従 来より実施されている方法であり,信頼性の高い結果 を得ている。また,様々な微小外乱による橋梁の微動 を高精度の加速度検出器で測定し,得られた不規則波 形を F. F. T によりスペクトル表示をすることにより, 振動特性を推定する常時微動を測定する活用されてき た⁽²⁾.しかしながら,前者の方法では起振器の運搬,取 り付けなど準備に多くの時間と経費が必要である。後 者は,加速度検出器のみで実測ができるので広く用い られている方法であるが,外力が不明なために外乱の 影響が誤差として含まれる可能性がある。

著者等は,実験が比較的簡単で高精度の振動特性推 定が可能な衝撃加振法の橋梁振動への適用について検 討してきた⁽³⁾⁽⁴⁾. 衝撃加振法は,小型機械や自動車およ び航空機等の振動測定において発展させられた技術で あり,比較的小規模の構造物に適用されている.この 手法を大規模構造物である道路橋に適用するためには, 従来の構造物と比較して,推定する振動数が極めて低 い点,高いレベルの観測雑音が混在するなど,いくつ かの理論的,技術的な問題を解決する必要がある.

本研究は、非線形最小二乗法の数値解析的な安定性 を改善することにより、衝撃加振試験による構造物の モーダルパラメータ(固有振動数,減衰定数および固 有モード)推定の精度向上を試みたものである。各種 のモーダルパラメータ推定定法の有効性を検討するた

昭和63年9月30日受理

^{*}機械第二工学科(Department of Mechanical Engineering II)

^{**}土木工学科(Department of Civil Engineering)

^{****}土木工学専攻修士課程(Graduate Student, Department of Civil Engineering)

^{****(㈱}長大 (Chodai Co. Ltd)

Fig. 1 Impact excitation test

めに、 衝撃加振応答に任意の 雑音レベルを 設定可能な 衝撃加振シミュレーションのためのプログラムを作成 した. このシミュレータを用いて、トラスドランガー 橋の衝撃加振応答を行なった、観測波形のノイズ比を 増加させて,モーダルパラメータの推定誤差を評価す ることにより、モード円滴合法と多自由度曲線適合法 の有効性を検討した。

2. 衝撃加振法と系のコンプライアンス

2.1 衝撃加振法について

衝撃加振試験による橋梁の振動特性推定は、次の手 順で行う、Fig.1のように、橋梁上にロードセルを置き、 その上から橋梁に衝撃力を加え、橋に加えた力と同時 に加速度計によって橋の応答加速度を集録する。

得られたデータをフーリエ変換し、構造系の伝達関 数を推定する。橋梁を線形の多自由度系でモデル化す ると理論的な伝達関数が与えられる。理論曲線と実測 で得られた伝達関数に線形多自由度系の伝達関数を最 小二乗法により適合させ、橋梁の振動特性(固有振動 数,減衰定数,振動モード等)を推定する.

2.2 構造系の伝達関数

橋梁を n 自由度系と考えると、この系の運動方程式は、

 $\boldsymbol{M}\ddot{\boldsymbol{x}}(t) + \boldsymbol{C}\dot{\boldsymbol{x}}(t) + \boldsymbol{K}\boldsymbol{x}(t) = \boldsymbol{f}(t)$ (1)で与えられる.ここに, $x(t) \ge f(t)$ はn次元の変位べ クトルと外力ベクトルである. また, M, C および K は、それぞれ (n×n) 行列であり、 質量行列, 減衰行列 および剛性行列である、減衰行列として、一般粘性系 と考える。(1)式を状態方程式で表示すると、次のよう になる.

 $D\dot{y}(t) + Ey(t) = P(t)$ (2)

ただし,

$$\mathbf{y}(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}, \ \mathbf{f}(t) = \begin{bmatrix} \mathbf{f}(t) \\ 0 \end{bmatrix},$$
$$\mathbf{D} = \begin{bmatrix} \mathbf{0} & \mathbf{M} \\ \mathbf{M} & \mathbf{0} \end{bmatrix}, \ \mathbf{E} = \begin{bmatrix} \mathbf{K} & \mathbf{C} \\ \mathbf{0} & -\mathbf{M} \end{bmatrix}$$
(3)

である.(2)式の系の固有モード **Ψ**(2n×2n)が得られ ると、**D** 及び **E** が対角化できる. なお、Ψ は複素数 となる.

$$\begin{aligned} \boldsymbol{\Psi}^{T} \boldsymbol{D} \boldsymbol{\Psi} = [d_{r}] \\ \boldsymbol{\Psi}^{T} \boldsymbol{D} \boldsymbol{\Psi} = [e_{r}] \end{aligned}$$

$$(4)$$

固有モードマトリックス **Ψ** により.

$$\mathbf{y}(t) = \boldsymbol{\Psi} \boldsymbol{q}(t)$$

のような変換を考えると、(2)式は、次のような非連成 化した方程式

 $d_r \dot{q}_r(t) + e_r q_r(t) = \boldsymbol{\Psi}_r^T \boldsymbol{P}(t) \qquad (r = 1 \cdots 2n)$ (5)で表すことができる。ここに Ψ_r は、 Ψ のr列である。 ここで、(2)式の系の固有モード Ψ は、(1)式の系の固 有モード行列 $\Phi(n \times n)$ と固有値行列 $\Lambda(n \times n)$ によ Ŋ.

$$\Psi = \begin{bmatrix} \boldsymbol{\Phi} & \bar{\boldsymbol{\Phi}} \\ \boldsymbol{\Phi} \boldsymbol{\Lambda} & \bar{\boldsymbol{\Phi}} \bar{\boldsymbol{\Lambda}} \end{bmatrix}$$
(6)

で表される. ここに、 の記号は複素共役を表すもの とする.

次に系の伝達関数を求めるために、(5)式の両辺を フーリエ変換し、若干の演算を行うことにより、 k 点 に外力が作用した場合のℓ点の周波数応答は,

$$X_{l}(\omega) = \sum_{r=1}^{n} \left(\frac{\phi_{rk} \phi_{rl}}{\omega_{dr} + e_{r}} + \frac{\bar{\phi}_{rk} \bar{\phi}_{rl}}{\bar{\omega}_{dr} + \bar{e}_{r}} \right) F_{k}(\omega)$$
(7)

となる、ここで, $\phi_{rk} \cdot \phi_{rl}/d_r = U_r + jV_r$ (8)

$$\lambda_r = -e_r/d_r, \ \lambda_r = -\bar{e}_r/d_r \tag{9}$$

(10)

の関係を用いて,

$$\lambda_r = -\sigma_r + j\omega_{dr}$$
 (0)
で表す.変位応答の周波数伝達関数,コンプライアン
スは次式で定義される.ここに, $j = \sqrt{-1}$ である.

$$G_{lk}(\omega) = X_l(\omega) / F_k(\omega) \tag{11}$$

よって、一般粘性系のコンプライアンスは、

 $G_{lk}(\omega) = \sum_{r=1}^{n} \left\{ \frac{U_r + jV_r}{j(\omega - \omega_{dr}) + \sigma_r} + \right\}$ $U_r - iV_r$ (12) $\overline{j(\omega + \omega_{dr})} + \sigma_r$ で与えられる.

3. 周波数領域曲線適合法

3.1 モード円適合法

衝撃加振試験により、 k 点を加振したときのℓ 点の 加速度応答 $\hat{x}_{l}(t)$ と力 $\hat{f}_{k}(t)$ を収録する. これらを, F. F.T.によりフーリエ変換し、これを $\hat{x}_{l}(\omega), \tilde{F}_{k}(\omega)$ で 表す.加速度応答を変位応答に変換し,実測データに 基づくコンプライアンスを求めることができる。

 $\widehat{G}_{lk}(\omega) = \widehat{X}_l(\omega) / \widehat{F}_k(\omega)$ (13)

多自由度系において,モード間の連成が少なく, r 次の固有振動数が卓越している共振点付近では、他の モードの影響が少ないと考えられるので、各共振点近 傍の周波数範囲では、コンプライアンスは、次のよう

に1自由度系として表現できる。

$$G_{lk}(\omega) = \frac{U_r + jV_r}{j(\omega - \omega_{dr}) + \sigma_r} + \frac{U_r - jV_r}{j(\omega + \omega_{dr}) + \sigma_r} + R_r + jI_r$$
(14)

ここに、 $\omega_{dr} = \Omega_r \sqrt{1 - h_r^2}$, $\sigma_r = \Omega_r h_r$ である.系を比 例粘性減定数と仮定すると、 Ω_r はr次の固有円振動数、 h_r はr次の減衰定数である.また、 $R_r \ge I_r$ は他の モードからの影響を表す定数である.

(14)式の $G_{lk}(\omega)$ は複素数であり、 ω を変化されて複素 平面上で $G_{lk}(\omega)$ を表示すると円を描く、一方、実測デー タのコンプライアンスも共振点付近では、近似的に円 となると考えられる、そこで、実測データに(14)式を最 小二乗法により曲線適合させる、すなわち、

 $\varepsilon^{2} = |G_{th}(\omega_{s}) - \hat{G}_{tk}(\omega_{s})|^{2}$ ($\omega_{L} \leq \omega_{S} \leq \omega_{U}$) (5) を最小とするパラメータを推定する.これを Fig. 2 に 示した.中心角の変化量,円の中心,半径等の情報に より,モーダルパラメータを推定する.

 $\sigma_r = 2\Delta\omega/\Delta\psi_r$ $\omega_{dr} = (\omega_i + \omega_{i+1})/2$ (16)

ここに、 $\Delta \omega$ は周波数刻み、 $\Delta \phi_r$ は中心角の最大変化量 および ω_i 、 ω_{i+1} は、 $\Delta \phi_r$ を挟む周波数である。

この操作を各共振点付近について行ない,各振動次 数のモーダルパラメータを求める.

3.2 多自由度曲線適合法

ある周波数範囲 $\omega_L \leq \omega \leq \omega_U$ に n 個の共振点を有す る線形多自由度系のコンプライアンスは,近似的に

$$G(\omega) = \sum_{r=1}^{n} \left\{ \frac{U_r + jV_r}{j(\omega - \omega_{dr}) + \sigma_r} + \frac{U_r - jV_r}{j(\omega + \omega_{dr}) + \sigma_r} \right\}$$
$$- (C + jD)/\omega^2 + E + jF \tag{17}$$

で表される.このコンプライアンスは、(16)式と同じく,

Fig. 2 Modal circle fitting method

k点に力が作用したときのℓ点の応答によるものであ るが,式を簡略化するために,この添字を省略する. ここに, C, D, E, Fは,この周波数範囲の他から の影響を表示するための定数である.

多自由度曲線適合法では、実測のコンプライアンス に(17)式を曲線適合させることにより、 ω_{dr} 、 σ_r 、 U_r 、 $V_r(r=1\sim n)$ およびC、D、E、Fの4n+4個のパラ メータを決定し、これよりモーダルパラメータを決定 するものである。ここで、これらの推定するパラメー タを α で表すと、

 $\alpha = [\omega_{a1}\cdots\omega_{an}\sigma_{1}\cdots\sigma_{n}U_{1}\cdots U_{n}V_{1}\cdots V_{n}CDEF]^{r}$ (18) 実測より周波数範囲 $\omega_{L} \leq \omega_{s} \leq \omega_{U}$ において, m個のコ ンプライアンスを, α の関数として $G_{i}(\alpha)$ で表す. m 個の周波数点における(17)式と実測値 \hat{G}_{s} の残差をベク トル表示する.

 $H(\alpha) = G(\alpha) - \hat{G}$ (19) ここに、 $G(\alpha) \ge \hat{G}$ は、それぞれ $G_s(\alpha) \ge \hat{G}_s$ から構成 される m次元ベクトルである。

求めようとするパラメータαは、(II)式において非線 形であるので,非線形最小二乗法によって,残差の二 乗誤差

 $\varepsilon = H(\alpha)^{T}H(\alpha)$ (20) を最小とするパラメータ α を決定する. ここでは, パ ラメータを微小変化 $\alpha + \Delta \alpha$ させ, $\Delta \alpha$ について線形し た最小二乗法を用いると, $\Delta \alpha$ に関する正規方程式⁽⁵⁾を 得る.

 $B^{T}(\alpha)B(\alpha)\Delta a = -B(\alpha)^{T}H(\alpha)$ (21) ここに、 $B(\alpha)$ は次式で定義されるコンプライアンス $G(\alpha)$ のヤコビアンで m(4n+4)行列である.

 $B(\alpha) = \partial H(\alpha) / \partial \alpha$ (2) この式に基づいてパラメータ α を求める方程が文献 (5)で示されている偏分反復法である。しかし、この方 法は数値的に不安定である。そこで、安定にかつ収束 性の良い解を求める算法として、Marguardt 法^{(7) (8)}が ある。

 $(B^{\tau}(\alpha)B(\alpha)+v^{2}I)\Delta\alpha = -B^{\tau}(\alpha)H(\alpha)$ (2) ここに、定数vは、 $\Delta \alpha$ の値により適応的に変化させる。 さらに、数値誤差を小さくおさえる算法として、正規 方程式を解くのではなく、等価な方程式

$$\begin{bmatrix} \boldsymbol{B}(\boldsymbol{\alpha}) \\ \boldsymbol{v}\boldsymbol{I} \end{bmatrix} = -\begin{bmatrix} \boldsymbol{H}(\boldsymbol{\alpha}) \\ \boldsymbol{O} \end{bmatrix}$$
(24)

を,ハウスホールダー変換を用いて解く方法が知られ ている.本研究では,非線形最小二乗法の解法として, このような算法を適用した. 4. 衝撃加振シミュレーション

4.1 衝撃加振シミュレータについて

各種の推定法によるパラメータ推定の精度を評価す るために、構造物に所定の衝撃力を作用させ、応答波 形から構造物のコンプライアンス及び単位衝撃応答関 数を得るためのシミュレーションプログラムを作成し た.実測では、様な雑音が観測波形に含まれているの で、シミュレーションでも、任意のパワースペクトル 密度および SN 比が実現できるように考えている。こ のシミュレータの概要を Fig.3 に示した。

まず,構造解析の所定のデータを入力し,有限要素 法によるモデル化に基づいて振動解析を行ない,固有 振動数と固有モードを決定する.Fig.1に示した衝撃 加振試験により得られる衝撃力の波形は,半正弦波形 に近い形になるので,衝撃力を

$f(t) = a \sin\left(\pi t/b\right)$	$(0 \le t \le b)$	1	(25)
=0	(b < t)	ſ	(23)

とする. Fig. 5(a)にその波形を示した. 構造系の減衰定 数をこれまでの経験から仮定する. 衝撃力による構造 系の応答解析は,モード解析法により,Runge-Kuttaの 法を用いて計算する.

観測雑音は,正規乱数を用いて帯域制限された白色 雑音として発生させる.Fig.5(c)に0~20Hzまで帯域 制限された白色雑音モデルを示した.異なる系列の乱

Fig. 3 Impact test simulater

Fig. 4 Trussed Langer bridge

Change stanistics of buildes

Table T Characteristics of bridge		
Bridge length	115.0 (m)	
Rise	17.0 (m)	
Steel weight	469.0 (ton)	

T-11- 1

Table 2 Vibration characteristics

Mode	Frequency (Hz)	Dumping ratio
1	1.33	0.05
2	2.63	0.05
3	4.25	0.04
4	5.73	0.04
5	7.73	0.03
6	8.76	0.02
7	10.71	0.01

数を発生させることにより,互に独立な観測雑音を得 ることができる.

衝撃加振試験では,数回の観測波形を時間領域で平 均することにより,雑音の除去対策が可能である.そ こで,このシミュレーションにおいても,このような 操作を実行することにより,雑音の除去を行っている.

最後に,時間領域平均化された波形と衝撃力を FFT によりフーリエ変換して,構造系のコンプライアンス を求める.さらに,これを逆フーリエ変換することに より,構造系の単位衝撃応答関数を得ることができる. 4.2 トラスドランガー橋のシミュレーション

このシミュレータを用いて, Fig.4に示したトラス ドランガー橋の衝撃加振シミュレーションを行った. 橋梁の諸元を Table 1に示した.この橋梁を12節点の 等価なはりモデルに置換し,振動解析した結果を Table 2に示した.なお,減衰定数は仮定した値であ る.この橋梁の2点を加振した場合の2点の変位応答 は, Fig.5(b)のようになる.

本論文では、観測応答の SN 比を次のように定義し

た. 応答解析より得られた応答の最大値 y_{max} を用いて, 応答のパワーを $\sigma_s^2 = y_{max}/2$ で評価する. 観測雑音のパ ワーを σ_n^2 としたとき, 観測応答の SN 比を

 $r = \sigma_n / \sigma_s$ (20) により定義する. Fig. 5 (d)は SN 比20%の観測雑音を 付加した場合の, 観測応答である. 観測雑音を発生さ せ,加算平均処理を行ったものを Fig. 5 (e)に示した. この処理によって10%程度, すなわち雑音レベルをほ ぼ半減させることができる.

次に、応答波形と衝撃力をフーリエ変換し、コンプ ライアンスを求める。Fig. 6(a)は、Fig. 5(c)に対応する 観測雑音がない場合のコンプライアンスである。Fig. 6(b)は、SN 比20%の維音付加した系のコンプライアン スであり、また Fig. 6(c)は、上記の雑音処理をしたも

Fig. 5 Time histories of impact force, response and observation noise

のである。雑音処理の効果が現われていることがわかる。

5. モーダルパラメータの推定精度

モーダルパラメータの推定は、一次処理としてモー ド円適合法を適用した。本研究では、観測応答に観測 雑音を付加し、SN比を0から20%まで5%ごとに増 加させ、SN比の増加に伴う推定の精度について検討 を行った。固有振動数と減衰定数の推定値は、2点、 5点および6点加振を行った場合の、それぞれ、1~12 点の応答から得られる。しかし、それぞれの応答点に 節になる点がいくつかあり、この点の推定値は、誤差 が大きい。明らかに妥当ではない推定値を除いて得ら れた推定値の平均を図示した。

1) 固有振動数の推定

SN 比を0%から20%まで5%づつ増加させた観測 応答に対して推定を行った.Fig.7(a)は、1次振動から 7次振動までの推定誤差を示したものである. 点線が モード円適合法,実線が多自由度適合法による結果で ある. どの方法によっても,推定誤差は5%以内にあ る.SN 比が増加すると,推定誤差も増加する.しかし、 多自由度曲線適合法では、5次振動を除いて,推定精 度は、1%以内に収まっている.振動数の推定につい ては、多自由度曲線適合法による推定の改善がなされ ていることがわかる.

2) 減衰定数の推定

Fig.7(b)に両推定法による,減衰定数の推定誤差を

示した.モード円適合法では,推定誤差の関係を見る と,SN比の増加に伴って推定誤差は増加する.一方, 多自由度曲線適合法では、5次振動では,推定誤差は 50%を超えるが,それ以外では50%以内に収まってお り,モード円適合法と比べて高い精度の推定が可能で あることを示している.特に,1次から4次振動にお いては,SN比が20%の場合でも,10数%の誤差で減衰 定数を推定している.

3) 振動モードの推定

SN 比10%の観測応答の場合, Fig.8は,1次から7 次振動までのモード円適合法による振動モードの推定 値を示したものである.実線は,有限要素法による解, oが推定結果である.2点,5点および6点を加振し ても,1~12点の内いずれかが節かあるいは節に近い 点になる.そこで,この図のモードは,3点の加振に よって得られたモードの中から,真のモードに近いも のを表示したものである.4次振動までは,図形の上

Fig. 7 Estimation error

で識別できない程度に真のモードと一致している.高 次モードの5~7次振動において,真のモードと実測 に若干の差が表われるが,振動モードを推定するのに は十分な精度である.多自由度系曲線適合法による結 果とモード円適合の結果を比較すると,多自由度曲線 適合法による推定が,高次振動の推定において改善さ れる.しかし,モードの推定においては,モード円適 合法の推定によって,十分な精度の推定が可能である ことが明らかになった.

6. おわりに

著者らは、道路橋の振動測定の新しい方法として、 衝撃加振試験法を提案している.このような実測にお いては、測定データに観測雑音が含まれており、雑音 のレベルがパラメータの観測精度に直接影響する.本 研究では、観測雑音の発生と雑音除去対策を考慮した 構造物の衝撃加振シミュレータを作成した.トラスド

Fig. 8 Estimated modes by modal circle fitting method

ランガー橋の衝撃加振シミュレーションを行ない, モード円適合法と多自由度曲線適合法より,この橋梁 のモーダルパラメータを推定した.さらに,応答と観 測雑音の SN 比に対するパラメータの推定誤差より, これらの推定法の信頼性について検討を加えた.得ら れた結果を要約すると,次のようになる.

(1) シミュレーションによりトラスドランガー橋の 衝撃加振を行ない,加算平均による雑音除去対策の有 効性を検討した。5回の加振より得られた観測応答を 時間領域で加算平均すると,SN比が約½程低下する ことが確認できた。

(2) 衝撃加振シミュレーションより,トラスドラン ガー橋の振動数,滅衰定数および振動モードの推定を 試みた.モード円適合法では,応答に高いレベル,20% 程度の雑音が付加されている場合でも,それぞれのパ ラメータについて信頼性のある推定が可能であること が確認できた.特に,モードの推定が有効であること がわかった.

(3) 多自由度曲線適合理論では、モード円適合法よ り得られた推定値を初期値として、パラメータの推定 精度を高めることができた。特に、減衰定数の推定に おいては、高い精度の推定が可能である。

(4) 多自由度曲線適合理論では,非線形最小二乗法 を用いて解を求める必要がある.通常の正規方程式に よる解法では,数値計算は不安定になる.本論文で用 いた Marquart 法によれば安定した解が得られる.

参考文献

- 1)加藤・島田:橋梁の現地振動実験法,土木学会誌
 12月号, pp. 38-42, 1981.
- 小坪・島野:常時微動測定による構造物の振動性 状解析,土木学会論文報告集,№222, pp. 25-35, 1974.
- 3) 岡林・原・太田・森:道路橋の衝撃加振試験による動特性推定,九州橋梁・構造工学研究会,土木構造・材料論文集第3号, pp. 107-113, 1988.
- (4) 岡林・原:道路橋振動特性測定における衝撃加振 法の適用,構造工学論文集, Vol. 34A, pp. 731-738, 1988.
- 5) 長松:モード解析, 培風館, 1985.
- 6) Ewins, D. J.: Modal Testing: Thory and Practice, Research Studies Press LTD, England, 1984.
- 7)中川・小柳:最小二乗法による実験データ解析, 東京大学出版会, pp. 95-124, 1987.
- 8) 刀根:プレイマイコンシリーズ① BASIC, 培風 館, pp. 108-113, 1981.