大村湾の潮流に関する研究 (1)

中 村 武 弘* · 富 樫 宏 由* 加 藤 重 一* · 飯 塚 昭 二**

Currents in Omura Bay (1)

by

Takehiro NAKAMURA*, Hiroyoshi TOGASHI* Juichi KATOH*, and Shoji IIZUKA**

Omura Bay is located in the center of Nagasaki Prefecture and its shape is like a gourd with very nallow bay mouse. Because of its complicated shape, tidal currents in Omura Bay are not yet clarified. This paper is a study of tidal currents in Omura Bay by field observation and computer simulation. A weak counter - clockwise tidal residual current was confirmed to be in the northern part of Omura Bay.

1.序論

大村湾は長崎県の中央部に位置する非常に閉鎖性の 強い内湾である。このような内湾の海水は、一旦汚染 されると回復が遅いため、その悪影響は計り知れない。 大村湾においては、以前より水質の汚濁が進行してい ることが報告され、また、最近では、周辺域で大規模 なリゾート開発等が計画され、それらの影響によるさ らなる汚濁の進行も懸念される。このような時期に あって、大村湾内の潮流を正確に把握しておくことが 重要であることはいうまでもない、これまでに、大村 湾内の流れに関する研究は幾度かなされているが、特 に湾内の環流に関しては、まだ統一した結論が出てい ない. その最大の原因は、現地観測のデータの不足に よるものと考えられる。そこで、著者らは、大村湾全 域における流速,流向,水温,塩分の長期観測を計画 し、本年1月より実施している。他方、湾内の流れの 状況を知る手段として,数値シュミレーションによる 手法がある.そこで現地観測と平行して数値シュミ レーション解析を行い,大村湾内の潮流を明らかにす ることを試みた.しかし、大村湾の湾口針尾瀬戸は幅

200mと非常にせまいため、潮流の流入方向の設定が問題となる。そこで本研究では流入方向を2つの方向に仮定し、それぞれの方向に沿った2種類のメッシュを用いて計算を行った。本論文は、この研究の第一報としてまず、これまでに得られた大村湾中央部3測点における流速、流向、水温の観測結果ならびに潮流の数値シュミレーション解析の結果について報告する。

2.既往の研究

大村湾の潮流に関する既往の研究成果については, 中村ら¹⁾ (1978)がまとめている。それ以後の研究とし ては,本学機械工学科²⁾の数値シュミレーションによ る研究がある。それらによると,大村湾北部の環流の 向きに関して,時計廻りと反時計廻りの二説があり, 統一した見解が得られていない。反時計廻りの説は, 古くは辻田(1949)によって報告され,長崎大学水産 学部(1976)が行った現地観測の結果はそれを支持し ているようである。他方,時計廻りの説は,長崎県土 木部(1976)が行った現地観測の結果から示され,長 崎大学工学部(1978)が行った水理模型実験の結果が

平成元年4月28日受理

^{*}土木工学科(Department of Civil Engineering)

^{**}水産学部 (Faculty of Fisheries)

それを支持している。また,数値シュミレーションに よる解析も行われているが,その結果は,反時計廻り の環流を示しているが,その流速の大きさは,現地観 測の値に比して非常に小さいものとなっている.

3. 現地観測

これまでに行われてきた潮流の現地観測は,そのほ とんどが一昼夜の短期観測であった。これが,観測結 果のばらつきの一つの原因だと考えられる。そこで本 研究では15日間以上の長期観測を行うことにした。観 測地点を表ー1および図ー1に示す。観測計器はメモ リー電磁流速計(ACM-4M,アレック電子社製) を用い,計測項目は流向,流速,水温および水圧であ る。バースト間隔を10分とし,1秒間隔で30データを 最短15日間収録した。流速計は水中ブイで水底上5m の位置に係留した。観測値を図-2に示す。これより, 潮位および潮流の記録に半日周期の潮汐による変動が 明確に表れていることがわかる。観測期間が冬季で あったため,水温は一定しており,水温の記録には潮

Table 1 Locations of current measurement stations

Station	N Lat.	E Long.	Date of observation
P1	32°56.08′	129°52.03′	9 Jan26 Jan. '89
P2	32°58.63′	129°52.03′	26 Jan14 Feb. '89
P3	33°09.33′	129°51.90′	14 Feb 2 Mar. '89

Fig. 1 Omura Bay and stations of current measurement

汐の影響は現れていない. そこで、潮流及び潮位につ いて調和分解を行い,解析した.調和分解の方法は, 最小二乗法を用い,計測値を恒流成分 M。及び主要4 分潮 (M_2 , S_2 , K_1 , O_1) に分解した。調和分解した結 果を再度合成し,図-2に点線で示す。図-2で観測 値と調和分解の結果を較べてみると、潮位はよく一致 しているが、潮流に関しては一致していないところが 多くみられる、潮流の記録には、調和分解では表現し 得ない大きな値や、測点 P2 の記録にはっきり見られ るような長周期の変動成分が強く含まれていることが わかる、過去に行われた一昼夜程度の短期観測ではこ のような長周期の変動成分に乗ってしまうため、観測 のたびに恒流成分にばらつきが出たものと思われる。 つぎに、潮流楕円を図-3に示す。恒流成分の向きは 3 測点全てで東よりである。これより、今回の観測値 は反時計廻りの環流を示しているものと思われる。

4. 数値シミュレーション

数値シミュレーションは、水深方向に積分した運動 方程式および連続の方程式を用いた1層モデルで行い、 通常の二次元差分法³⁾で計算した。方程式を次に示す。

$$\frac{\partial M}{\partial t} + \frac{M}{h+\zeta} \frac{\partial M}{\partial x} + \frac{N}{h+\zeta} \frac{\partial M}{\partial y} - fN$$
$$= -g(h+\zeta)\frac{\partial \zeta}{\partial x} + \frac{\tau_{sx}}{\rho_w} - \frac{\tau_{bx}}{\rho_w} \quad (1)$$

$$\frac{\partial N}{\partial t} + \frac{M}{h+\zeta} \frac{\partial N}{\partial x} + \frac{N}{h+\zeta} \frac{\partial N}{\partial y} + fM$$
$$= -g(h+\zeta)\frac{\partial \zeta}{\partial y} + \frac{\tau_{sy}}{\rho_w} - \frac{\tau_{by}}{\rho_w} \quad (2)$$

$$\frac{\partial \zeta}{\partial t} = -\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y}$$
(3)

ここに、M, N はそれぞれx, y 軸方向の流量フラッ クス, h は水深, ζ は水位上昇量, f はコリオリのパラ メーター, g は重力加速度, ρ_{ω} は海水の密度, ρ_{a} は空 気の密度である。海面における摩擦応力 r_{s} , 海底にお ける摩擦応力 r_{b} はそれぞれ次式で表す。

$$oldsymbol{ au}_{s} =
ho_{a}\gamma^{2}|oldsymbol{W}|oldsymbol{W}$$
 $oldsymbol{ au}_{b} =
ho_{w}\gamma^{2}|oldsymbol{U}|oldsymbol{U} - k
ho_{a}\gamma^{2}|oldsymbol{W}|oldsymbol{W}$

 τ_{sx} , τ_{sy} はそれぞれ τ_s の x, y 成分, τ_{bx} , τ_{by} はそれぞ れ τ_b の x, y 成分であり, W は風速ベクトル, U は流 速ベクトルである. また, 計算に用いた係数の値はそ れぞれ, g = 9.8m/s, $\rho_w = 1.02g/cm^2$, $\rho_a = 1.293 \times 10^{-3}$ g/cm^2 , $\gamma^2 = 2.6 \times 10^{-3}$, k = 0.5 および $f = 7.943 \times 10^{-5}$ s^{-1} である.

Fig. 2 Records of N-S currents (A), E-W currents (B), tempratures (C) and tides (D) and resultants of 4 main tidal constituents (doted lines in A, B, D) at stations P1, P2 and P3 respectively

4.1 潮流

潮流のシミュレーションを行うにあたって問題とな るのは湾口における境界条件である。大村湾の湾口針 尾瀬戸は幅200mと非常にせまいため、上げ潮の時には 噴流のような流入状態となりその流入の方向が、大村 湾内の環流形状の形成に大きく影響すると考えられる。 しかし、針尾瀬戸付近の地形は非常に複雑であるため、 潮汐流の流入方向を現段階で特定することは困難であ る。そこで本研究では、湾口からの流入の方向を2つ の方向に仮定し、それぞれの方向に合わせて2つの異 なったタイプのメッシュを用意し、同様の計算を行い、 それらの結果を比較検討することにした。タイプAは 流入の方向が、大村湾西岸にぶつかる方向に設定され たメッシュであり、タイプBは、流入方向をタイプA より11°東方向に向け、大村空港へ向かうように設定 したメッシュである.メッシュ間隔は1km,時間ステッ プは20秒とし、60ステップごとに平滑化を行った。潮 汐の流入条件は、大村市の M₂潮差24cmに対応する流 量を針尾瀨戸のメッシュに正弦関数で与えた。

潮流の計算結果をタイプA, Bそれぞれについて恒 流成分と潮流楕円とに分けて, 図-4, 5に示す.ま ず,両メッシュタイプについて潮流楕円を比較すると, 湾口部および湾北部において楕円の傾きと長軸, 短軸 の長さに違いがみられる.次に現地観測の値と比較す

(a) tidal ellipse

(b) tidal residual current

Fig. 4 Calculated results of M_2 tide by A-type mesh

るために、 測点 P1, P2, P3 での潮流楕円を図-6 に 示す.3者を比較すると、まず全体的に計算値が実測 値より大きい値をしているが、これは、計算における 境界条件である湾口からの流入量の設定に問題がある と思われる。そこで楕円の長さを別とすれば、測点 P1, P2 についてはタイプA, Bともに実測値に近い状 態と思われる。しかしながら、測点 P3 における楕円は 3者ともに異なっている。これは測点 P3 が湾口に近 く、明らかに、流入方向の違いの影響を受けているも のと考えられる。楕円の傾きから判断すると流入の方 向はタイプAとBの中間の方向と考えられるが、この

3 測点の結果だけから特定することは現段階では、ま だ困難である、次に、恒流成分を比較すると、タイプ A, Bどちらの場合にも湾北部において反時計廻りの 環流がみられ、タイプBの場合の方でよりはっきりと 現れていることがわかる。しかし,その強さは,観測 値(図-3)と比較すると、1桁程度小さい値である。 4.2 風成流

潮流の数値シミュレーションによる恒流成分の値は 実測値に比較して、非常に小さいものであった。また、 実測値には主要4分潮では表現できない大きな値や長 周期の成分が含まれていた。そこで、湾内の流れに及

Fig. 7 Wind driven currents at 3 hours later from beginning of wind blowing (wind velocity 5m/s)

ぼす風の影響を検討した.簡単のため境界条件として 潮流は与えず,風応力だけを与えた.風速5 m/sの風 が3時間吹き続けたときに湾内に形成される流れを, 風向を東,西,南,北の4方向とした場合に付いて計 算し,それぞれの計算結果を図-7に示す.これより 大村湾内には風向に応じて,特有の環流パターンが形 成されることがわかる.特に,湾北部に形成される環 流のパターンは,東風の時には反時計廻りとなり,西 風の時には反対に時計回りとなることがわかる.そし て,その強さは,潮流シミュレーションの場合の恒流 の値の数倍程度の大きな値となっている.以上の結果 は,大村湾内に形成される環流の形状に対して,風が 影響を与え得ることを示していると思われる.

5. 結 論

大村湾内の環流について、湾中央部3測点における 流速,流向,水温および水圧の現地観測,ならびに1 層モデルによる数値シミュレーション解析によって検 討した。今回の結果は、どちらも反時計廻りの環流を 支持するものであった。しかし,現地観測記録には, 潮流の主要4分潮だけでは説明できない強い流れや, 長周期の変動成分が含まれ,時によっては時計廻りの 流れが起きている。また,数値シミュレーションから 得られる環流は反時計廻りであるが,非常に弱い流れ であり,風向によっては逆廻りにも成り得る可能性も ある。潮流の数値シミュレーションにおける流入方向 の特定は,現段階では困難であり,今後の現地観測デー タの集積を待たなければならない.現地観測は現在も 続けられており、データの蓄積が行われている.

本研究は昭和63年度教育研究学内特別経費の援助を 受けて行ったものである。

謝辞

現地観測における流速計の設置には、水産学部の練 習船「鶴水」の協力を得た。本研究は、古川素直船長 ほか乗組員の方々の多大な援助によって遂行できた。 ここに記して衷心より感謝致します。また、流速計の 設置を承諾して下さいました関係漁協の方々、特に取 りまとめの労をしていただいた大村湾海区漁業協同組 合長会会長 黒木倉一氏ならびに大村湾南部漁業協同 組合専務理事 志田安夫氏に衷心より謝意を表します。 最後に、現地観測やデーター整理等を手伝って頂いた 昭和63年度卒業生 曽 偉航君、広瀬克夫君、ならび に大学院生 福本 正君に感謝の意を表します。

参考文献

- 中村武弘・富樫宏由・田中清裕:大村湾の潮汐水 理模型実験による水質汚濁予測に関する研究(第 2報),第25回海講論文集,pp.552~555,1978.
- 2) 栗須正登・児玉好雄・田中清裕:大村湾・海水汚染の予測シミュレーション,長崎大学工学部研究報告,第15巻第24号,pp.7~15,1985.
- 伊藤 剛編:高潮の計算,数値解析の応用と基礎, アテネ出版,1971.