面内曲げを受ける薄肉 I 型断面曲がり桁の腹板の座屈特性

高橋和雄* · 夏秋義広** 平川倫明***·小西保則*

by

Kazuo TAKAHASHI*, Yoshihiro NATSUAKI**, Michiaki HIRAKAWA*** and Yasunori KONISHI*

Buckling of a web plate of the vertically curved girder with I-section subjected to in-plane moments at the radial edges is examined. The basic equation for deflection of an annular sector plate subjected to in-plane forces due to moments is solved by a Galerkin procedure. As numerical examples, stress distribution due to moments and buckling properties are obtained under various geometrical parameters of the web plate and flange plates.

1. はじめに

アーチ系橋梁やラーメン構造の隅角部などの曲線平 板構造の動的安定性を解析する場合、まず、振動およ び座屈特性を明らかにすることが必要である。曲線平 板の振動については数多くの研究が見受けられるが、 座屈に関しては、研究の蓄積が少ない。これまでのと ころ、面内圧縮を取り扱った Rubin¹⁾、Srinivasan ら²⁾ の研究、面内曲げ、せん断力および軸力を受ける薄肉 I型断面曲がり桁の扇形腹板の弾性局部座屈を解析し た Chu³⁾ および三上ら⁴⁾の研究,最近の著者らの研究⁵⁾ がある.しかし、I型断面曲がり桁のフランジの影響 を考慮した扇形腹板の局部座屈解析は、パラメーター の把握など、まだ不十分な点が認められる。そこで、 本研究はフランジを薄肉円筒シェル、腹板を平面応力 問題として、Chu³⁾によって誘導された応力分布を用 いて、フランジ付き扇形腹板の局部座屈の解析を行う ものである。ガラーキン法を用いた解析の手法を簡単 に述べたのち,数値解析において,まず,扇形腹板の

面内力の分布に及ぼすフランジの幅および厚さの影響 を評価する.次いで、応力分布の結果を用いて、座屈 特性に及ぼすフランジの幅および厚さの影響を、扇形 腹板の内外径比、縦横比、境界条件をパラメーターに 明らかにするものである。

2. 基礎式

I型断面曲がり桁の腹板の基本構造として、Fig.1 に示すような、外径 a、内径 b、開き角 a、腹板の厚さ d、高さ c、上フランジの幅 b_u 、厚さ t_u 、下フランジ の幅 b_t 、厚さ t_t のI型断面曲がり桁を考える。座標系 は図に示すような極座標系を用いる。この曲がり桁の 直線辺に静的曲げモーメント M が作用する。

曲げモーメント M が作用するときの腹板の応力分 布は、上下のフランジを円筒シェル、腹板を扇形平板 と考えて解析する³⁾

このときの,扇形腹板内の面内力は次のように与え られる.

平成元年4月28日受理

- *土木工学科 (Department of Civil Engineering)
- **大学院博士課程海洋環境建設学専攻(Graduate Student, Marine Environmental Production and Construction Engineering)
- ㈱片山鉄工所(Katayama Iron Works, Co., Ltd.)
- ***日本工営㈱(Nippon Koei, Co., Ltd.)

Fig. 1 Geometry and co-ordinates

$$N_{r} = -\frac{M}{a^{2}} \frac{1}{G_{4}} \left\{ \frac{G_{1}}{(r/a)^{2}} + 2G_{2} + 2G_{3} \left(1 + 2\ln \frac{r}{a} \right) \right\}$$
(1)

$$N_{\theta} = -\frac{M}{a^2} \frac{1}{G_4} \left\{ -\frac{G_1}{(r/a)^2} + 2G_2 + 2G_3 \left(3 + 2\ln\frac{r}{a}\right) \right\}$$
(2)

$$N_{r\theta} = 0 \tag{3}$$

ここに, G_1 , G_2 , G_3 , G_4 :形状によって決まる定数 (Appendix a).

このとき,腹板の分担する曲げモーメント M_w は次のように表される 5 .

$$M_w = \delta M \tag{4}$$

ここに、δ:形状によって決まる定数(Appendix b).

面内曲げモーメント *M* が作用する薄肉 I 型断面曲 がり桁の腹板の曲げに関する基礎式は次式で与えられ る.

$$D\nabla^4 w - \frac{1}{r} \frac{\partial}{\partial r} \left(r N_r \frac{\partial w}{\partial r} \right) - \frac{1}{r^2} N_\theta \frac{\partial^2 w}{\partial \theta^2} = 0$$
(5)

ここに、 $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}, D = Ed^3/\{12(1-\nu^2)\}, \nu: ポアッソン比, E: ヤング率, d: 腹板の板厚.$

本研究は、I型断面曲がり桁の局部変形のみを取り 扱うので、フランジの弾性変形は考慮しない.載荷辺 は半径方向の補剛材の位置において単純支持とし、円 弧辺においてはフランジのねじれ剛性を無限大(固定) もしくは無視(単純支持)とする.

直線辺 $(\theta = 0, \alpha)$ $w = 0, M_{\theta} = 0$ 円弧辺 $(r = b, \alpha)$ case I (単純支持) $w = 0, M_{\tau} = 0$ case II (固定) $w = 0, \partial w / \partial r = 0$ 座屈解析に先立ち次のような無次元化を行う. 半径方向の長さ $r, b: \xi = r/a, \beta = b/a$ (内外径比) 断面形状 腹 板 の 幅 厚 比: $e_w = c/d$ 上フランジの幅厚比: $e_u = b_u/t_u$ 下フランジの幅厚比: $e_t = b_t/t_t$ 上フランジの無次元板厚: $\overline{t}_u = t_u/c$ 下フランジの無次元板厚: $\overline{t}_t = t_t/c$

面内力 N_r , $N_{ heta}$, $N_{ heta heta}$ の無次元化を行うと次式のようになる.

$$N_{r} = -\frac{M}{a^{2}} \frac{1}{\bar{G}_{4}} \left\{ \frac{\bar{G}_{1}}{\xi^{2}} + 2\bar{G}_{2} + 2\bar{G}_{3}(1+2\ln\xi) \right\}$$
$$= \frac{M}{a^{2}} f_{I1}(\xi) \qquad (6)$$

$$N_{\theta} = -\frac{M}{a^2} \frac{1}{\bar{G}_4} \left\{ -\frac{\bar{G}_1}{\xi^2} + 2\bar{G}_2 + 2\bar{G}_3(3 + 2\ln\xi) \right\}$$
$$= \frac{M}{a^2} f_{I2}(\xi) \tag{7}$$

$$N_{r\theta} = 0 \tag{8}$$

ここに, \overline{G}_1 , \overline{G}_2 , \overline{G}_3 , \overline{G}_4 : G_1 , G_2 , G_3 , G_4 を無次 元表示した定数

$$f_{I1}(\xi) = \frac{1}{\overline{G}_4} \left\{ \frac{\overline{G}_1}{\xi^2} + 2\,\overline{G}_2 + 2\,\overline{G}_3(1+2\ln\xi) \right\}$$
$$f_{I2}(\xi) = \frac{1}{\overline{G}_4} \left\{ -\frac{\overline{G}_1}{\xi^2} + 2\,\overline{G}_2 + 2\,\overline{G}_3(3+2\ln\xi) \right\}$$

このように、 I型断面曲がり桁の扇形腹板の面内力 は f_{11} , f_{12} が扇形平板の面内力の式の f_{1} , f_{2} と違うだけ で、式の形自体は同じである⁵⁾.

3.解法

式(5)を変数 r を扇形板の外径 a を用いて無次元 化を行えば,次式のようになる。

$$L(w) = \nabla^4 w + \frac{M}{D} \left[\frac{1}{\xi} \frac{\partial}{\partial \xi} \xi \left\{ f_{I1}(\xi) \frac{\partial w}{\partial \xi} \right\} + \frac{1}{\xi^2} f_{I2}(\xi) \frac{\partial^2 w}{\partial \theta^2} \right] = 0$$
(9)

式(9)は変数係数の微分方程式であるから、厳密解 を求めることは不可能である。本論文では、Galerkin 法による近似解法を用いる。すなわち、式(9)の一般 解を次のように仮定する。

$$w = \sum_{s=1}^{\infty} a_{sn} W_{sn}(\xi, \theta) \tag{10}$$

ここに, asn:未定定数, Wsn:境界条件を満足する座

標関数

式(10)の座標関数として,扇形板の自由振動の基準 関数を用いる。自由振動の基準関数には直交性が成り 立つために,演算の一部が簡単になる。

$$W_{sn}(\xi,\theta) = R_{sn}(\xi) \sin \alpha_n \theta \tag{11}$$

ここに、 R_{sn} : ξ のみの関数

扇形板の基準関数 Wsn に関して、次式が成り立つ。

$$\nabla^4 W_{sn} = k_{sn}{}^4 W_{sn} \tag{12}$$

式(10)を式(9)に代入すれば,微分方程式は式(12)の 関係より,

$$L(w) = \sum_{s=1}^{\infty} a_{sn} k_{sn}^{4} W_{sn} + \frac{M}{D} \sum_{s=1}^{\infty} a_{sn} \left[\frac{1}{\xi} \frac{\partial}{\partial \xi} \hat{\xi} \left\{ f_{I1}(\xi) \frac{\partial W_{sn}}{\partial \xi} \right\} + \frac{1}{\xi^{2}} f_{I2}(\xi) \frac{\partial^{2} W_{sn}}{\partial \theta^{2}} \right]$$
(13)

式(10)は仮定した解で,式(9)の厳密解ではない.し たがって式(13)の右辺は一般に雰にならない.そこで, 仮定した基底関数が不平衡力に対して仕事をしないと いう条件を用いる.これは,微分方程式の近似解法と して知られている Galerkin 法に対応する.つまり,

$$\int_{\beta}^{1} \int_{0}^{\alpha} L(w) W_{pm} \cdot \xi d\xi \ d\theta = 0 \tag{14}$$

ここに、 *p* = 1, 2, …, *m* = 1, 2, … ここで,式(13)と式(11)を式(14)に代入すると,次式 のようになる。

$$\int_{\rho}^{1} \int_{0}^{\alpha} \sum_{s=1}^{\infty} \left\{ k_{sn}^{4} R_{sn} \sin \alpha_{n} \theta \cdot a_{sn} + \frac{M}{D} \sum_{s=1}^{\infty} a_{sn} \left[\frac{1}{\xi} \frac{d}{d\xi} \left\{ \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} \sin \alpha_{n} \theta \right\} - \frac{\alpha_{n}^{2}}{\xi^{2}} f_{I2}(\xi) R_{sn} \sin \alpha_{n} \theta \right] \right\} R_{\rho m} \sin \alpha_{m} \theta$$

$$\cdot \xi \ d\xi d\theta = 0 \tag{15}$$

固有振動形の直交性を利用すると、次式のようになる.

$$k_{pn}^{4} a_{pn} \int_{\beta}^{1} R_{pn}^{2} \xi \, d\xi \\ + \frac{M}{D} \sum_{s=1}^{\infty} a_{sn} \int_{\beta}^{1} \left[\frac{1}{\xi} \frac{d}{d\xi} \left\{ \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} \right\} \\ - \frac{a_{n}^{2}}{\xi^{2}} f_{I2}(\xi) R_{sn} \right] \cdot R_{pn} \cdot \xi \, d\xi = 0$$
(16)

ここで、式(16)の第2項に部分積分を行う。

$$\int_{\beta}^{1} \frac{1}{\xi} \frac{d}{d\xi} \bigg\{ \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} \bigg\} \cdot R_{pn} \cdot \xi \ d\xi$$

$$= \left| \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} R_{pn} \right|_{\beta}^{1}$$

$$- \int_{\beta}^{1} \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} \frac{dR_{pn}}{d\xi} d\xi$$

$$= - \int_{\beta}^{1} \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} \frac{dR_{pn}}{d\xi} d\xi$$

$$(\because R_{pn}(1) = R_{pn}(\beta) = 0)$$
(17)

したがって、本題の偏微分方程式は、最終的に次の代 数方程式となる。

$$k_{pn}{}^{4}I_{pn}a_{pn} - (M/D)\sum_{s=1}^{\infty} a_{sn}I_{spn} = 0$$
(18)

$$\mathbb{Z} \subset k\mathbb{Z}, \quad I_{pn} = \int_{\beta}^{1} R_{pn}{}^{2}\xi d\xi$$

$$I_{spn} = \int_{\beta}^{1} \left\{ \xi f_{I1}(\xi) \frac{dR_{sn}}{d\xi} \frac{dR_{pn}}{d\xi} + \frac{a_{n}{}^{2}}{\xi} f_{I2}(\xi) R_{sn}R_{pn} \right\} d\xi$$

式(18)を行列表示すれば、次式のように書き改められる.

$$[I]{X} = (M/D)[G]{X}$$
(19)

ここに, [I]: 単位行列,

$$[G]: I_{spn}/(k_{pn}^{4}I_{pn})$$
を要素とする行列,

$$\{X\} = \{a_{1n}a_{2n}a_{3n}\cdots a_{Nn}\}^T$$

式(18)において, $M/D = \lambda_{cr}$ とおけば, 固有値問題 に帰着される.

$$[G]{X} = \lambda{X} \tag{20}$$

ZZ k z, $\lambda = 1/\lambda_{cr}$

式(20)の固有値 λ と固有ベクトル {X} は通常の行列 の固有値問題のプログラムを用いて求められる. λ_{cr} = 1/ λ より座屈固有値が得られ,固有ベクトルを用い て,式(11)より座屈波形が得られる.

4. 数值結果

(1) 面内力の分布

Fig.2 は、種々の理論式による面内力の分布形状を 比較するため、フランジの腹板に対する断面積比 \overline{A}_{f} (= $e_{f} \cdot e_{w} \cdot \overline{t}_{f}^{2}$)を 0.29 と一定に保って、 $\beta = 0.5$ の扇 形腹板に対する計算結果を示したものである。図中、 大野公式^{4,60}による近似応力分布を破線で、Chu によ り導かれた弾性理論による応力分布³¹を実線 ($e_{w} =$ 48.5, $e_{f} = 15$)および一点鎖線 ($e_{w} = 145$, $e_{f} = 5$) で示す。なお、大野の公式ではパラメーターが不足で 両者を完全に比較することはできない。比較のため、 フランジを考慮しない平面応力問題としての解を二点 鎖線で示してある。 Fig. 2 より, フランジの存在を考慮すると, フランジ なしの場合に比べ円周方向の面内力 N_o が小さくなる. また, 半径方向の面内力 N_r は, フランジの影響により 内外径側, すなわち周辺で雰とはならない.大野公式 による近似応力分布は, フランジ幅が広くなってくる と弾性理論による値と異なってくるが, その差はわず かである.

Fig.3 は、フランジ幅を一定 ($e_w = 100$, $\bar{t}_f \cdot e_f = 0.3$) にして、フランジ厚を変化させたときの面内力の 分布形状の変動を調べたものである。フランジ厚が大 きくなるにしたがい、円周方向面内力 N_θ は小さくな る. 一方、半径方向面内力 N_r は円周辺での値が大きく なって、その分布形状が平滑化してくるのがわかる。

Fig.4 は、フランジ厚を一定 ($e_w = 100$ 、 $t_f = 0.02$) にして、フランジ幅の変化が面内力分布に及ぼす影響 を調べたものである。フランジ幅の変化は、フランジ 厚の変化ほど、面内力の分布に影響を与えない。

Fig.5 は内外径比 β の変化に伴う面内力分布の変動を示したものである ($e_w = 100$, $\overline{t}_f = 0.02$, $e_f =$

Fig. 2 Comparison of distribution of in-plane forces with Ono theory : $\beta = 0.5$, $\overline{t}_f = 0.02$

Fig. 4 Variation of in-plane forces with width of the flange plate: $e_w = 100$, $\bar{t}_f = 0.02$

15). 内外径比 β が小さくなるにしたがい, 半径方向面 内力 N_r が大きくなってくる. 円周方向面内力 N_{θ} も内 径側での値が大きくなってくる. このような面内力の 分布性状により, 内外径比が小さい場合には負の曲げ モーメントが作用するときの座屈耐力が低下すること が予想される.

(2) 座屈特性

Table 1 は本法により得られた座屈固有値 λ_{er} (= M/D) を Ritz 法による値ⁿ と比較したものである. Table 1 より、本法による値は Ritz 法による値より、 約3%程度小さいものの、良い一致を示しているのが わかる.エネルギー法に基づく Ritz 法による値が厳密 解より必ず大きめの値を与えることを考慮すると、本 法による値は十分な精度を有しているものと思われる.

大野の近似公式による応力分布を用いた解析と本研 究の厳密な応力分布による解析結果の相違を調べるた めに、Fig.6に内外径比 $\beta = 0.5$ の扇形腹板(case I、 $\overline{t}_{f} = 0.02$)の座屈曲線を示す。大野の公式では、 はり理論のために、パラメーターが不足で完全な比較

Fig. 3 Variation of in-plane forces with thickness of the flange plate : $e_{w} = 100, \ \overline{t}_{f} X e_{f} = 0.3$

Fig. 5 Variation of in-plane forces with radius ratio : $e_w = 100$, $\overline{t}_f = 0.02$, $e_f = 15$

は不可能である.したがって,本研究では e_w と e_f の 積を一定にして,パラメーター e_w , e_f を決めている. 横軸は開き角 α を縦横比 μ に換算して示している. 縦 軸は,式(4)の換算係数を考慮した座屈固有値 λ_w (= $\delta \cdot M/D$) である.図中, case-a は正の曲げ, case-b は 負の曲げに対する座屈固有値を示す.なお case-b の 座屈固有値は負の値である.図のように, case-b の負 の曲げの場合は,両者の間にほとんど差がない.case -a の正の曲げの場合は,大野の公式による解は小さ め、すなわち安全側の解を与えることがわかる.

Fig.7 および Fig.8 は, フランジの剛性が扇形腹板

Table 1	Comparison of present solution with
	the previous solution: $\alpha = \pi/3(60^\circ)$,
	$\beta = 0.5, e_w = 100, \overline{t}_f \times e_f = 0.20$

(a) Present solution (b) Ritz method				
\overline{t}_{f}	(a)	(b)	(a)/(b)	
0.05	-22.092	-22.590	0.978	
0.04	-22.134	-22.694	0.975	
0.03	-22.286	-22.916	0.973	
0.02	-22.674	-23.342	0.971	
0.01	-22.865	-24.189	0.987	
0	-26.083	-26.170	0.997	

の座屈モーメントに及ぼす影響を調査するため, case I で内外径比 $\beta = 0.5$, $e_w = 100$ の扇形腹板に対し て, フランジ厚($\overline{t}_f \cdot e_f = 0.3$)およびフランジ幅($\overline{t}_f = 0.02$)をそれぞれ変化させて得られた座屈曲線を示 したものである.これらの図より,フランジの断面が 増大するにしたがい, case-a と case-b との差が大き くなるのがわかる.また,応力分布に及ぼす影響と同 様,フランジ厚の変化の方がフランジ幅の変化よりも 座屈モーメントに及ぼす影響が大きい.

内外径比 β の変化に伴う座屈固有値の変動(case I, $e_w = 100$, $\bar{t}_f = 0.02$, $e_f = 15$)をFig.9に示 す. 内外径比 β が小さくなるにしたがい, case-aと case-bとの差が大きくなる.また, フランジなしの扇 形板では内外径比 β が 0.64 より大きい場合には, case -bの負の曲げに対する座屈曲線は極値をもつパター ンであった⁵⁾.しかし, フランジの存在を考慮すると, 半径方向面内力 N_r の影響により, 内外径比 β が0.75 と比較的大きい場合でも, case-b は単調減少曲線とな る.

以上の結果をもとに、case I についてフランジ厚と フランジ幅の変化に伴う case-a, case-b の座屈固有 値の変動を内外径比をパラメーターにプロットしたの が Fig. 10 および Fig. 11 である。正・負の曲げの方向

Fig. 6 Influence of in-plane forces on the buckling eigen-value: case I, $\beta = 0.5$

Fig. 7 Variation of buckling eigen-value with thickness of the flange plate case I, $\beta = 0.5$, $e_w = 100$, $\overline{t}_f \times e_f = 0.3$

Fig. 8 Variation of buckling eigen-value with width of the flange plate: case I, $\beta = 0.5$, $e_w = 100$, $\overline{t}_f = 0.02$

Fig. 9 Variation of buckling eigen-value with radius ratio : case I, $e_w = 100$, $\overline{t}_f = 0.02$, $e_f = 15$

Fig. 10 Variation of minimum buckling eigen-value with thickness of the flange plate: case I, $e_w = 100$, $\overline{t}_f \times e_f = 0.3$

Fig. 11 Variation of minimum buckling eigen-value with width of the flange plate: case I, $e_w = 100$, $\overline{t}_f = 0.02$

によってフランジの効果が異なること,および内外径 比が小さいほどフランジの存在の影響を著しく受ける といえる.

Fig. 12 および 13 に, フランジ厚, フランジ幅および 内外径比を変化させた場合の case II の座屈曲線を示

Fig. 12 Variation of buckling eigen-value with thickness of the flange plate case II, $\beta = 0.5$, $e_w = 100$, $\overline{t}_f \times e_f = 0.3$

Fig. 13 Variation of buckling eigen-value with width of the flange plate: case II, $\beta = 0.5$, $e_w = 100$, $\overline{t}_f = 0.02$

Fig. 14 Variation of buckling mode with thickness of the flange plate: case II, $\alpha = \pi/3(60^\circ)$, $\mu = 1.0$, $e_w = 100$, $\overline{t}_f \times e_f = 0.3$

す. case I と現象的に同じパターンを示すといえる. また, Fig. 14 はフランジ厚およびフランジ幅の変化 に伴う座屈モードの変動を, case IIの $a = 60^\circ$, $\mu =$ 1.0 の扇形腹板の case-b (負の曲げ)に対して示したも のである.フランジ厚が増大するにしたがって, 半径 方向面内力 N_r の分布形状が平滑化してくるため, 座 屈モードの腹の位置が内径側から中央に移っていくの がわかる.なお,フランジ幅の変化は面内力にあまり 影響を与えないので, 座屈モードにも大きな変化はみ られない.

5. まとめ

本文は、I型断面曲がり桁の腹板の座屈特性を明ら かにするために、まず、面内力の分布に及ぼすフラン ジ幅およびフランジ厚の影響を調べた。次に、座屈特 性に及ぼす境界条件、フランジ幅およびフランジ厚の 変化の影響について明らかにしたものである。得られ た結果をまとめると、次のようになる。

(1) 曲がり桁腹板の面内力は、フランジを考慮しない 1枚の扇形板の面内力と比較して、円周方向面内力が 小さくなる。また、半径方向面内力は、フランジの影響により、内および外周辺で雰とはならない。

(2) 従来の大野の梁理論による面内力を用いた座屈解 析は、負の曲げに対しては十分であるが、正の曲げに 対しては安全側、すなわち、小さめの結果を与える。 (3) フランジの断面が増大するにしたがい,正の座屈 曲げモーメントはより大きくなり,負の曲げモーメン トはより低下する.

(4) フランジ幅の変化よりもフランジ厚の変化の方が、 面内力分布および座屈曲げモーメントに及ぼす影響が 大きい。

Appendix a : G_1 , G_2 , G_3 , G_4

$$\begin{split} G_{1} &= 4\beta^{2} \Big\{ (1-\nu)^{2} \ln\beta - (1-\nu) \Big(\frac{t_{u}}{a} + \frac{1}{\beta} \frac{t_{\ell}}{a} \Big) \\ &+ \eta_{u} \Big[1 - \frac{1}{\beta} \frac{t_{\ell}}{a} + (1-\nu) \ln\beta \Big] \\ &+ \eta_{\ell} \Big[1 + \frac{t_{u}}{a} - (1-\nu) \ln\beta \Big] - \eta_{u} \eta_{\ell} \ln\beta \Big] \\ G_{2} &= -(1+\nu) \Big\{ (3-\nu)(1-\beta^{2}) \\ &+ 2 \Big(\frac{t_{u}}{a} + \beta \frac{t_{\ell}}{a} \Big) - 2\beta^{2}(1-\nu) \ln\beta \Big\} \\ &- \eta_{u} \Big\{ (1+\nu) + (3-\nu)\beta^{2} - 2\beta \frac{t_{\ell}}{a} \\ &+ 2\beta^{2}(1-\nu) \ln\beta \Big\} \\ &- \eta_{\ell} \Big\{ (3-\nu) + 2 \frac{t_{u}}{a} + \beta^{2}(1+\nu)(1+2\ln\beta) \\ &- \eta_{u} \eta_{\ell}(1-\beta^{2} - 2\beta^{2} \ln\beta) \end{split}$$

$$G_{3} = (1 - \nu^{2})(1 - \beta^{2}) + \eta_{u}\{(1 + \nu) + (1 - \nu)\beta^{2}\} + \eta_{\ell}\{(1 - \nu) + (1 + \nu)\beta^{2}\} + \eta_{u}\eta_{\ell}(1 - \beta^{2})$$

$$G_{4} = G_{1} \left\{ \ln\beta - \frac{1}{2} \left(\frac{t_{u}}{a} + \frac{1}{\beta} \frac{t_{\ell}}{a} \right) \right\}$$
$$- G_{2} \left\{ (1 - \beta^{2}) + \left(\frac{t_{u}}{a} + \beta \frac{t_{\ell}}{a} \right) \right\}$$
$$+ 2G_{3} \left\{ \beta \left(\beta - \frac{t_{\ell}}{a} \right) \ln\beta - \frac{1}{2} \left(\frac{t_{u}}{a} + \beta \frac{t_{\ell}}{a} \right) \right\}$$
$$\gtrsim \zeta \downarrow \zeta,$$

 $\eta_u = \frac{\lambda_u d \Big[2 + \cos h \frac{\lambda_u b_u}{(a + t_u/2)} + \cos \frac{\lambda_u b_u}{(a + t_u/2)} \Big]}{2t_u \Big[\sin h \frac{\lambda_u b_u}{(a + t_u/2)} + \sin \frac{\lambda_u b_u}{(a + t_u/2)} \Big]}$ $\eta_\ell = \frac{\lambda_\ell d \Big[2 + \cos h \frac{\lambda_\ell b_\ell}{(b - t_\ell/2)} + \cos \frac{\lambda_\ell b_\ell}{(b - t_\ell/2)} \Big]}{2t_\ell \Big[\sin h \frac{\lambda_\ell b_\ell}{(b - t_\ell/2)} + \sin \frac{\lambda_\ell b_\ell}{(b - t_\ell/2)} \Big]}$ $\lambda_u = 4\sqrt{3(1 - \nu^2)} \cdot \sqrt{(a + t_u/2)/t_u}$

$$\lambda_{\ell} = \sqrt[4]{3(1-\nu^2)} \cdot \sqrt{(b-t_{\ell}/2)/t_{\ell}}$$

Appendix $b: \delta$

$$\delta = \left\{ 1 + \frac{1}{G_4} (G_1 + 2G_2 + 2G_3) \cdot \left[1 - \beta + \frac{1}{2} \right] \right\}$$

$$\begin{aligned} &\left(\frac{t_{u}}{a} + \frac{t_{\ell}}{a}\right)\right) \\ &+ \frac{1}{G_{4}} \left[G_{1}\left(1 - \frac{1}{\beta}\right) + 2G_{2}(1 - \beta) \\ &+ 2G_{3}(1 - \beta - 2\beta \ln\beta) \left] \left(\beta - \frac{1}{2}(1 + \beta) - \frac{1}{2}\frac{t_{\ell}}{a}\right) \right\} \end{aligned}$$

参考文献

- Rubin, C.: Stability of Polar-Orthotropic Sector Plates, J. Appl. Mech., Vol. 45, pp. 448-450, 1978.
- Srinivasan, R. S. and Thiruvenkatachari, V. : Stability of Annular Sector Plates with Variable Thickness, AIAA Journal, Vol. 22, No. 2, pp. 315-317, 1984.
- 3) Chu, K.Y.: Beuluntersuchung von ebenen

Stegblechen Kreisförmig gekrümmter Träger mit I-Querschnitt, Stahlbau, 35Jg., Heft 5, pp. 129–142, 1966.

- 三上・赤松・武田:純曲げを受ける薄肉 I 断面曲 がり桁の局部座屈と連成座屈,土木学会論文報告 集,第230号, pp. 45-54, 1974.
- 5) 夏秋・高橋・小西・平川: 面内曲げを受ける曲線 平板の座屈特性,構造工学論文集, Vol. 34A, pp. 181-190, 1988.
- (6) 大野:曲梁の剪断応力度及び半径方向の垂直応力度に対する新公式、土木学会誌、Vol. 37, No. 7, pp. 300-305, 1952.
- 7)渡辺・川上・堺:扇形ラーメン隅角部の座屈に関する解析的研究,北海道大学工学部研究報告,第68号,pp.35-54,1973.