磁気軸受におけるディジタル制御方式の比較

石 松 隆 和* • 下 町 多佳志* 田 口 喜 祥**

Comparisons of Digital Control Laws on Active Magnetic Bearing

by

Takakazu ISHIMATSU*, Takashi SHIMOMACHI* and Nobuyoshi TAGUCHI**

Digital control laws are implemented on an active magnetic bearing system with Digital Signal Processor. Three types of digital controllers are designed to control the horizontal single-axis magnetic bearing; PID controller, PID with second-order derivative controller (PIDD²) and dynamic compensator based on an identity observer. Results of these digital controls implemented with DSP are compared with those of analogue controls implemented with operational amplifier in control-lability. Comparisons of these experimental results show that while only a little difference between analogue control and digital one on control-lability is observed, the digital dynamic compensator proved to have some superiority. And these experimental results agreed with those of numerical simulation.

Key Ward : Application of Control, Magnetic Bearing, Active Magnetic Bearing, Thrust Bearing Numerical Simulation, Impulse Responce

1.緒 言

電磁石の吸引力でロータを非接触支持する能動形磁 気軸受は、機戒的ロスが極めて少ない,超高速回転が 可能,環境を潤滑油で汚染しない,粗悪な環境に強い 等,従来の機械軸受と比較して様々な優れた特徴を 持っている。磁気軸受はその特徴を生かして,主に宇 宙航空機器の分野で実用化されてきた。近年になって, ターボ分子ポンプ,軸流コンプレッサや送風機,工作 機械等一般工業用にも商品化され,その用途を拡大し ている¹.

磁気軸受システムは本質的に不安定な系であり安定

従来から、磁気軸受の制御系はアナログ制御が一般 的であり、より高度な制御の実現のためにはディジタ ル制御が望ましいが、演算速度の点でディジタル制御 を適用するのは実現困難であった.

しかし,近年になって高速・高性能なDSP (Digital Signal Processor)が開発され,磁気軸受のような高速 な制御系を要求する不安定系にもディジタル制御を適

化するためには、フィードバック制御が不可欠である。 そして、軸受性能を大きく左右する点で制御システム は極めて重要であり^{2),3)},磁気軸受の高性能化を図るた めには、より高度な制御則の導入が望ましい。

平成3年9月30日受理 *長崎大学工学部(〒852 長崎市文教町1-14) **長崎県工業技術センター(〒857 長崎県大村市池田2-1303-8)

用することが可能になった.

ディジタル制御を適用した研究としてはPID制御や 最少次元オブザーバを適用したもの^{4),5)},軸受機能のみ にとどまらずロータの不釣合いによる振れ回りや弾性 振動抑制機能を持つ磁気軸受の研究があるが^{6),7)},アナ ログ制御とディジタル制御の両面から各種制御則を採 用した場合の,磁気軸受性能の定量的比較を実験的に 行ったものは見受けられない.

本論文では、磁気軸受システムにディジタル制御を 適用し各種の制御則を用いた場合の軸受性能を比較検 討することを目的に、横形1軸制御のスラスト磁気軸 受実験装置を装作し実験を行った。制御系をDSP (µPD77230)により構成したディジタル制御系と、オペ アンプにより構成したアナログ制御系を使った制御実 験の結果を報告する。

2.磁気軸受システム

2.1 システム構成

Fig.1に本論文で使用した磁気軸受のシステム構成 図を示す.Fig.2に実験装置の概要を示す.Table1に

Fig. 1 System Diagram

Fig. 2 Thrust Magnetic Bearing

Table 1 Main Specifications

Mass of Rotor	m = 4.4 Kg
Gap length	$l_0 = 1.0 \mathrm{mm}$
Gain of Power amp.	b = 0.5 A/V
Bias Coil Current	$i_0 = 2.0 A$
Force Constant	$K_F = 170 N/A$
Time constant	T = 6.1 msec
Gap connstant	$a_{\ell} = 1600 A/N$
Gain of Displacement Sensor	$K_{\text{y}}=2.0\!\times\!10^{4}\text{V/m}$
Scale factor	a = 1000

装置の主要諸元を示す.

ロータ①及びステータ②はS25C削り出しのSolid鉄 心である.ステータは定盤に固定され,ロータはラジ アル方向へ振れないようにワイヤーで支持されている. ロータのスラスト方向の変位は渦電流式変位計③によ り検出され電磁石④の吸引力で制御される.パワーア ンプにはPWM (Pulse Width Modulation)形を用いた.

2.2 磁気軸受システムの運動方程式

スラスト磁気軸受系の線形化した運動方程式は平衡 点からの軸の変位量をxとすれば次式で表すことがで きる⁸⁾.

$$\dot{\mathbf{x}} = \mathbf{A}_{c}\mathbf{x} + \mathbf{B}_{c}\mathbf{u} \tag{1}$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} \tag{2}$$

$$\mathbf{x} = [\mathbf{K}_{\mathbf{y}}\mathbf{x} \quad \mathbf{K}_{\mathbf{y}}\dot{\mathbf{x}}/\mathbf{a} \quad \mathbf{q}]^{\mathrm{T}}$$
(3)

$$A_{c} = \begin{bmatrix} 0 & \alpha & 0 \\ 0 & 0 & \beta \\ \gamma & 0 & -\delta \end{bmatrix}$$
(4)

$$\mathbf{B}_{c} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{b}\boldsymbol{\delta} \end{bmatrix} \tag{5}$$

$$C = [1 \ 0 \ 0] \tag{6}$$

$$\begin{aligned} \alpha &= \mathbf{a} \\ \beta &= \mathbf{K}_t \mathbf{K}_y \mathbf{a}/\mathbf{m} \\ \gamma &= \mathbf{a}_t / (\mathbf{T} \mathbf{K}_y) \end{aligned} \tag{7}$$

$$\delta = 1/T$$

ここで, qは磁束に対応する変数でありその他の変 数の意味はTable 1に示す.

また,離散系の状態方程式は,ΔTをサンプリング時間として(1)式から容易に求めることができる。零次 ホールダ入力を用いた場合の状態方程式を次に示す。

$$\mathbf{x}(\mathbf{k}+1) = \mathbf{A}\mathbf{x}(\mathbf{k}) + \mathbf{B}\mathbf{u}(\mathbf{k}) \tag{8}$$

$$A = \exp(A_c \Delta T) \tag{9}$$

$$\mathbf{B} = \int_0^{\Delta T} \exp(\mathbf{A_c} \tau) \mathbf{B_c} \mathrm{d}\tau \tag{10}$$

上式において、状態量xは軸変位xとその微分xそし て磁束qから構成されるが、 $q = (m/K_F)x$ の関係があ り、軸変位を2度微分することですべての状態量を得 ることができる。従って、(1)~(7)式で表される磁気軸 受システムにおいてノイズが少ない場合、PID制御に 観測量yの2階微分を加えるのとにより、状態フィー ドバックを実現できることになる。

3. 制御方式

ここでは、前節で述べたように観測量yの2階微分 を行うことで状態フィードバックが実現できることに 注目して、従来のPID制御に2階微分を加えた制御と オブザーバを用いた制御の比較検討を行った。また、 比較のためにPID制御の結果についても示す。

3.1 アナログPID+2 階微分制御

(制御方式 1)(11)式に示すような伝達関数を持つ アナログコントローラを製作した。(13)式の最後の項で ある2階微分の項を除けば通常のPID制御の伝達関連 となる.なお,以下では,PID+2階微分制御をPIDD² 制御と呼ぶこととする.2階微分項は近似微分を2度 重ねることにより容易に得られる.

$$C(S) = k_{p} + \frac{K_{I}}{T_{I}S + 1} + \frac{K_{D}S}{T_{D}S + 1} + \frac{K_{DD}S^{2}}{(T_{D}S + 1)(T_{D2}S + 1)}$$
(11)

3. 2 ディジタルPIDD²制御

(制御方式2)(1)式に示されるPIDD²制御の伝達関数 を、オイラー法を用いて次のように離散化した。 以下に、制御入力u(k)を示す。

$$u(k) = -[u_{p}(k) + u_{1}(k) + u_{D}(k) + u_{D2}(k)]$$
(12)

ここで、 $u_p(k)$, $u_1(k)$, $u_p(k)$, $u_{D2}(k)$ は各々、比例、近 似積分、近似微分、近似2階微分項であり、次式で与 えられる。

$$u_{p}(k) = K_{p}y(k) \tag{13}$$

$$u_{I}(k) = \frac{1}{T_{I} + \Delta T} [T_{I}u_{I}(k-1) + \Delta TK_{I}y(k)]$$
(14)

$$u_{D}(k) = \frac{1}{T_{D} + \Delta T} [T_{D}u_{D}(k-1) + \{y(k) - y(k-1)\}K_{D}]$$
(15)

$$u_{D2}(k) = \frac{1}{T_{D2} + \Delta T} [T_{D2} u_{D2}(k-1) + \{u_{D}(k)\}]$$

$$-u_{D}(k-1)\}K_{DD}$$

 $tcttl, K_{DD} = K_{D}K_{D2}$ (16)

3.3 ディジタルオブザーバによる制御

(制御方式3) 全次元オブザーバを次式のように 構成し状能量を推定することで準最適制御を実現した⁴.

$$\hat{\mathbf{x}}(k+1) = (A - LC)\hat{\mathbf{x}}(k) + Ly(k) + Bu(k)$$
 (17)

$$\mathbf{u}(\mathbf{k}) = -\mathbf{K}\mathbf{\hat{x}}(\mathbf{k}) \tag{18}$$

ここで, x は状態変数の推定値, Lはオブザーバの設 計パラメータ, Kはフィードバックゲインである.

4. 実験結果

4.1 制御パラメータの決定

制御パラメータは次のようにして決定した.すなわ ち,PID及びPIDD²制御については最適応答基準の1 つであるITAE法を⁹,オブザーバによる制御について は,最適レギュレータ理論を用いた.また,オブザー バの設計パラメータLは極の位置を考慮して決定し た¹⁰.

Table 2に以上のようにして決定したフィードバッ クゲインを示す.

	アナログ・ディジタル 制御方式1,2		ディジタル 3
	PID	PIDD ²	Observer
Kp	0.28	0.85	_
K1	3.0	26.0	
K _D (msec)	1.6	3.3	—
K _{D2} (msec ²)		2.1	<u> </u>
T_{I} (sec)	0.48	0.48	·
T_{D} (msec)	0.33	0.33	_
T_{D2} (msec)	—	0.33	
\mathbf{k}_1			1.16
\mathbf{k}_2	—		5.34
k3	—	<u> </u>	8.21
l_1	—	_ `	0.8
l_2			3.0
13	— ,		3.0

Table 2 Feedback Gains

4.2 インパルス応答

各制御方式を用いた場合のインパルス応答及びシ ミュレーション結果をFig. 3に示す。インパルス応答 は軸端をハンマリングすることにより測定した。

Fig. 3 Impulse Responce

Fig. 3で制御をアナログ回路で実現した場合と、 ディジタル回路で実現した場合を比較するとPID制御 PIDD²制御ともに顕著な差異は見受けられなかった. また、実験結果と数値シミュレーション結果を比較す るとPID制御を除いて比較的よく一致している. PID 制御において差異が生じているのは、制御ゲインが他 の制御則と比較してかなり小さく、軸ラジアル方向の ワイヤー支持の影響を大きく受けたためと考えられる.

4.3 サンプリング周波数と制御性能

各制御方式の最高サンプリング周波数は、PIDD²制 御方式が38kHz,オブザーバによる制御方式が24kHz であった。Fig. 3の比較により磁気軸受の制御に十分 なサンプリング周波数であることが分かる。

Fig. 4 Effect of Sampling Speed

Fig. 3においてディジタル制御とアナログ制御の応 答に僅かの差異が見受けられた。そこで、サンプリン グ周波数の変化が各制御則の制御性能に与える影響を 調べるために、サンプリング周波数を変えてインパル ス応答実験を行った結果をFig. 4に示す.

Fig. 4より,本研究で使用した実験装置では約 10kHz以上のサンプリング周波数ではほとんど制御 性能に変化がないということができる.

興味深い事実として、PID制御はサンプリング周波 数が10kHz以下になると顕著な制御性能の劣化が見 受けられたが、PIDD²制御とオブザーバによる制御に おいては、依然十分良好な制御性能を維持しているこ とがわかる。このことを、確認するため各制御系の支 配極をTable 3に示す。ただし、理解を容易にするため

	Sampling Frequency 30 kHz		5 kHz	
	Dominant Poles	Natural Frequency ω_n and Damping Factor ζ	Dominant Poles	Natural Frequency ω_n and Damping Factor ζ
PID Control	−29±300 j	$\omega_{n} = 48 Hz$ $\xi = 0.096$	−16±299 j	$\omega_{n} = 48 Hz$ $\xi = 0.053$
PIDD ² Control	−179±310 j	$\omega_{n} = 57 Hz$ $\xi = 0.50$	-238±360 j	$\omega_n = 68 Hz$ $\zeta = 0.55$
Identity Observer	-239±333 j	$\omega_{n} = 65 Hz$ $\zeta = 0.58$	-229±338 j	$\omega_{n} = 64 Hz$ $\zeta = 0.56$

Table 3 Dominant Poles

に,連続系に変換した極を示している10).

Table 3よりPIDD²制御とオブザーバによる制御で は、サンプリング周波数の変化による支配極の大きな 変化が見受けられないのに対し、PID制御においては 不安定方向への移動が見受けられることがわかる.

このことは、オブザーバの様な複雑な制御則をディ ジタルで実現する場合、演算時間の増加からサンプリ ング周波数が低下するが、そのことが必ずしも制御性 能の顕著な劣化につながらないことを意味する.

1 台のDSPで多軸を制御するような場合に好都合 な点である。

4. 4 各制御方式の外力に対する軸剛性比較

ディジタル制御について, 軸剛性の点より制御性能 の比較を行った。軸に外力を加えることを想定して制 御信号uに正弦波状の外乱u₀を加算し,外乱u₀と軸変位 yとの周波数応答を測定した。Fig.5に磁気軸受系のブ ロック線図を示す。

測定結果をFig.6に示す.PID制御よりもPIDD²制御 やオブザーバによる制御の方が外乱に対するゲインが 低く軸剛性が高いことがわかる。これは、PIDD²制御 と、オブザーバにおいては近似的に状態フィードバッ クを実現しており、フィードバックゲインを高く取る ことが可能になった為である.なお、約20Hz以下でオ

Fig. 5 Block Diagram of Magnetic Bering

Fig. 6 Rigidity of Rotor

ブザーバによる制御に対して, PIDD²制御の方が優れ ているが, PIDD²制御は状態フィードバックにさらに 積分制御を加えた制御を行っているからである.

4.5 定常軸振動振幅

定常時の軸振動振幅はいずれの制御則についても両 振幅で1.0μm以下であった。

4. 6 アナログ方式の問題点

Fig. 7にPIDD²制御を用いたときのインパルス応答の一例を示す。

アナログ制御の場合に、応答の途中に段差が見受け られるが一部の制御回路に電気的飽和が生じたことに よるものである。同じ制御パラメータを用いてもディ ジタル制御系ではアナログ回路のような飽和が生じず 良好な制御性能が得られた。演算回路の飽和は、アナ ログ制御回路の設計の際に問題になりやすい点である。

5.結 論

DSPを用いてディジタル制御を実現した。制御則と してはPID制御, PIDD²制御及びオブザーバによる制 御を採用し,各々の制御性をオペアンプで実現したア ナログ制御と比較した。

(1)インパルス応答の比較の結果PID, PIDD²制御の 両者とも,アナログ方式をディジタル方式とすること によって性能の変化はほとんど見受けられなかった.

これは、DSPにより十分高速なディジタル制御が実 現できたことによる。

(2)アナログ回路での実現が難しいオブザーバによる 制御をDSPにより容易に実現し、良好な制御性能を持 つことを確認した。

(3)サンプリング周波数を低くすることによる制御性 能の劣化はオブザーバによる制御が最も少なく,続い てPIDD²制御, PID制御の順番であった。

(4)観測量の微分あるいは2階微分を行って状態量を

O

推定しフィードバックすることは、一般にノイズの影響を考慮して行われないことが多い.しかし、本研究 における実験では、2階微分を使用して状態量を推定 し、フィードバックすることで良好な制御性能が得ら れた.

(5)外乱に対する軸剛性は,通常のPID制御方式と比較してフィードバックゲインの大きく取れたPIDD²制御や,オブザーバによる制御が大きい。また,低周波数域においては積分制御の効果によってPIDD²制御が 最も優れた制御性能を有した。

(6)アナログ回路で制御系を構成する場合,演算回路 の飽和に十分注意して設計しなければならない。

参考文献

- 1) M. Brunet, ASME COGEN-TURBO (1987), 191.
- 2)深田,神谷,水町,計測自動制御学会九州支部講 演会,昭和63年11月.
- 3) 深田,神谷,下町,水町,久家,機論,56-526,C ('90),1524.
- 高橋,藤田,村松,電気学会リニアドライブ研究 会資料,LD-88-31, ('88), 11.
- 5) 久谷,井上,三井,機論,51-465,C('84),1095.
- 6) 水野, 樋口, システムと制御, Vol. 30, No. 8, 512.
- 7)野波,山中,富永,機論,54-507,C('88),2661.
- 8)深田,神谷,田村,機論,53-490,C('87),1201.
- 9) 増淵,システム制御理論,コロナ社.
- 10) 美多, ディジタル制御理論, 昭晃堂.