二段階レーザー励起オプトガルバノ法による ネオンホローカソード放電中の電界計測

松田良信*·天崎文晶** 藤山 寛*

Electric Field Measurement of a Neon Hollow-Cathode Discharge by the Optogalvanic Spectroscopy with Two-Step Laser Excitation

by

Yoshinobu MATSUDA*, Fumiaki AMAZAKI**, and Hiroshi FUJIYAMA*

Optogalvanic spectroscopy with two-step laser excitation was successfully applied to the electric field measurement of a Neon hollow-cathode discharge. Experimental results of the radial distributions of electric field and charge density in the cathode-fall region are presented.

1. まえがき

グロー放電の陰極降下領域は、エッチング、薄膜形 成、表面処理等のプラズマプロセスへの実用的な応用 から重要な役割を果たしている。陰極降下領域は放電 の維持に不可欠なプラズマと固体表面の境界領域であ り、非平衡領域であることから、基礎的な学問的興味 も非常に大きい。しかし、従来の研究は、その実用的 重要性と取り扱いの容易さから、主に平行平板二極の グロー放電を対象としており、スペクトル光源やレー ザー放電に幅広く利用されているホローカソード放電 の陰極降下領域を対象とした研究は、実験的にも理論 的にも非常に少ない¹⁾。ホローカソード放電では、準 安定原子や紫外・真空紫外光の幾何学的閉じ込め効果 により、陰極表面からの二次電子放出が、通常の平行 平板グロー放電より大きいと考えられている。その陰 極降下領域のキネティクスの理解のためには、陰極降 下領域内の電界を正確に知ることが最も本質的である。

陰極降下領域の電界計測は,非攪乱で信頼性が高い ことから,レーザー誘起蛍光法(LIF)^{2,3)}やレーザー オプトガルバノ法(LOG)^{4,5)}などのレーザー計測 がここ数年来盛んに適用されてきた。その結果,平行 平板二極グロー放電において,電界が陰極表面からの 距離に対し線形に変化する様子が明らかにされた。

LIF 法では,エネルギー準位間のシュタルクミキシ ングによる禁制遷移からの蛍光発生を利用する。この 方法では蛍光収率が電界測定の SN を制限するので, 上位準位としてあまり大きな主電子数 (n)を利用で きない。ただし,適当な n を選ぶことにより高周波 に追従した時間分解計測が可能である。しかし,本方 法は蛍光観測が制限されるホローカソード放電の電界 計測には適用困難である。

平成4年4月28日受理

*電気情報工学科(Department of Electrical Engineering and Computer Science) **大学院電気工学専攻(Graduate Student, Department of Electrical Engineering) 一方,LOG 法では,高リュードベリ状態原子をオ プトガルバノ検出するので,光電管等を必要とせず簡 単な装置構成で非常に高感度の電界測定が可能であ る。高リュードベリ原子は,わずかな電界でも大きな シュタルク効果を生じ,反応断面積が非常に大きいの でプラズマ中では容易に電離される⁶)。さらに陰極降 下領域では電子増倍作用により,さらに感度の増幅が 行われる⁷)。LOG 法は,時間分解能が数10µsに制限 されるため,おもに直流や低周波のグロー放電に適用 可能で,ホローカソード放電中の電界計測にも容易に 適用可能と考えられる。

しかし実際のところ,ホローカソード放電中の電界 のレーザー計測はほとんど行われていない。我々の知 っている限りでは,広瀬らの LOG 実験が唯一のもの である^{8.9})。彼らは,アルゴン (Ar)ホローカソード 放電中の電界分布を Ar 原子の2次のシュタルクシフ ト絶対量から評価し,電界分布が陰極面からの距離に 対して線形でないこと,その分布が陰極シース内の電 離を考慮した簡単なモデルで説明できることを示し た¹⁰。

そこで本研究では、広瀬らの結果の妥当性を検証す るために、彼らの方法とは異なる二段階励起 LOG 法 を用いて、ホローカソード放電の陰極降下領域の電界 計測を試みた。この方法は、もともと平行平板の直流 グロー放電中電界のピンポイント計測法として提案さ れたものである⁶⁾。本実験ではホローカソード放電の 陰極降下領域の電界計測を行うために、2本のレー ザービームをそれぞれ反対方向から同軸入射させるよ うな工夫を施した。

本論文では,二段階励起 LOG 法による Ne ホロー カソード放電の陰極降下領域の電界計測の原理と測定 結果について報告する。

2. 二段階励起 LOG 法の原理

準安定 Ne 原子の二段階励起 LOG 分光に用いる遷 移を図1に示す。Ne の最低励起状態は2p電子の3s 軌道への励起により作られる。この状態には電子スピ ンと軌道角運動量の組合せで4つの準位があり,パッ シェン表記で1s_j (j=2, 3, 4, 5), L-S 表記で¹P₁, ³P₀, ³P₁, ³P₂と表される。この状態のうち³P₀ (1s₃) と³P₂ (1s₅)が準安定状態で,それぞれ 24.4sと430sの放射寿命をもつ。他の2つの準位は基 底状態と放射結合しており,それぞれ放射寿命1.5×1 0^{-9} s, 2.1×10⁻⁸sをもつ¹¹⁾。一般に放電プラズマ中 では,衝突過程が準安定準位の寿命を縮め,放射トラ ッピング(自己吸収)が他の2つの状態の寿命を増す。 本実験でレーザー励起を行うのは ${}^{3}P_{2}$ (1s₅) 準位 である。図では準安定状態 ${}^{3}P_{2}$ (1s₅) は, 2p⁵ (${}^{2}P_{3/2}$) 3sとも表されている。2p電子が 3p軌道 以上に励起された状態では, jl 結合は jj 結合が重要に なるので, L-S 表記は必ずしも適切ではない。図で は基底準位以外の準位を,イオンコアと励起された1 電子のペアで表した電子配置表記と jl 表記の両方で 表している。

Fig. 1 Scheme of the two-step laser excitation of metastable Ne atoms.

波長588.2nmの第1のレーザー光で2p5 (²P_{3/2}) 3p(または³P₂, または1s₅) 準位から, 2p⁵ $({}^{2}P_{1/2})$ 3p(または ${}^{3}P_{1}$, または 2p₂) 準位に励 起し,波長439.2nmの第2のレーザー光で2p5 $({}^{2}P_{1/2})$ 3 p準位から 2 p⁵ $({}^{2}P_{1/2})$ 11dのシュタ ルク分裂準位に励起する。j=1/2のイオンコアを もつ高リュードベリ Ne 原子を用いるのは, 微細構造 分裂が小さいためである ($< 1 \, \text{cm}^{-1}$)。 2 p^5 $({}^{2}P_{1/2})$ 3p(${}^{3}P_{1}$ または 2p₂) 中間準位のシュタ ルク分裂はほとんど無視できるが、2p5 (²P_{1/2})11 dは大きなシュタルク分裂を生じる。高リュードベリ 状態は非常に大きな衝突断面積をもち、急速に衝突電 離されるので、高リュードベリ状態への励起により、 LOG 信号検出の SN は大幅に改善される。こうして, 第2のレーザーの周波数を掃引することで、シュタル ク分裂したスペクトルが SN 良く LOG 検出される。 さらに、本方法では2本のレーザービームの交差点の みからの情報を得ることが可能である。

リュードベリ準位の選択は,測定される電界の大き さによって決定される。電界が小さいほど,最適な主 量子数は大きくなる。Ganguly と Garscadden は, へ リウムの n=30のリュードベリ準位を用いて 10 ± 1 V もの小さな電界を測定しているが,本実験で測定する グロー放電の陰極効果領域の電界は数 kV/cm 程 度の大きさと考えられるので,その付近の電界で 線形シュタルク効果を示すような $n\sim11$ が適当であ る^{2, 12, 13}。

Ne の nd 準位への励起は都合がよい。なぜなら nd 準位の量子欠損は0.018と小さいためである。小さな 量子欠損は適当な電界で線形シュタルク効果をもたら すことがわかっている。*l*>3の nf, ng, nh,…準位の 量子欠損は0である。なお, ns と np 準位の量子欠損 はそれぞれ1.3と0.83である¹¹。

3.実験装置と方法

図2に実験装置の概略図を示す。LOG 分光用とし て市販されている、シースルーホローカソード放電管 (浜松ホトニクス製)を実験に用いた。陰極は Fe 製 で、陰極内径3mm,長さ18mm,陰極外側はガラスで カバーされている。封入ガスは Ne で、圧力6Torr である。封じきり放電管のため放電中の厳密な圧力は 不明である。放電管は、バラスト低抗50kΩを直列に 接続して動作させた。放電は放電開始後約10分でほぼ 定常状態に達し、放電の再現性は非常に良い。本実験 では、放電電流、放電電圧をそれぞれ1.6mA、156V

Fig. 2 Experimental setup for the electric field measurement of Ne hollow-cathode discharge by the optogalvanic spectroscopy with two-step laser excitation.

に設定した。

準安定 Ne 原子の二段階励起のために、1台の窒素 レーザーで励起された2台の色素レーザーを用いた。 これらのレーザーはすべて手製のものである13)。窒素 レーザーは LC 反転型で,スパークギャップスイッチ を用いて低気圧ガスフロー動作(窒素ガス圧約50 Torr)させている。窒素レーザーの仕様は,最大出力 3mJ/パルス,最大パルス繰り返し10Hz,出力変動 ±3%で、レーザー放電ノイズが大きい点を除いては 市販品とほぼ同程度の性能を有する。2台の色素レー ザーはいずれも回折格子斜入射形で、それぞれレー ザー色素のローダミン6Gとクマリン120を用いて, 準安定 Ne 原子の二段階励起に必要な波長588.189nm と439.213nmのレーザー光を発生する。いずれの色素 レーザーも最大出力約40µJ/パルス,スペクトル幅 約10pm,最大パルス繰り返し4Hz(色素セル内で色 素覚搬を行っていないため)である。

2本の色素レーザービームは、それぞれ焦点距離600 mmのレンズで集光し、ホロー陰極放電管に互いに反 対方向から同軸入射した。放電管内でのレーザービー ム直径は約0.1mmである。LOG 信号は、レーザー入 射にともなう放電電流の変化として図中の回路で検出 し、ボックスカー積分器を通して積算した後、ペンレ コーダーに出力した。シュタルクスペクトルは2段目 のレーザー光の周波数を掃引することにより得た。な お、光学系の配置を変えずに電界強度の空間分布を測 定するために、ホローカソードランプは可動ステージ 上に装着した。また、データの解釈を容易にするため に、色素レーザーの偏光方向とホローカソード内部の電 界方向とが平行(m=0)になる配置で実験を行った。

4.実験結果と考察

Fig. 3 Emission spectra of the Ne hollow-cathode discharge.

4.1 Ne ホローカソード放電の発光スペクトル 図3に Ne ホローカソードランプの中心軸における 発光スペクトルを,図4に関係する Ne のエネルギー 準位図を示す。ただし,図3中の585.249nmのスペク トル強度は,実際の強度の4分の1の大きさである。

図3の発光分布に見られるスペクトル線は,ほぼすべて Ne の遷移スペクトル(図4)と一致しており,本 実験で用いた Ne ホローカソードランプ中には, Ne 以外の不純物は存在しないことがわかる。

Fig. 4 Selected energy levels and transition data for NeI.

4. 2 二段階励起による LOG 信号

LOG 信号の1例を図5に示す。レーザー入射を行 わないとき, LOG 信号はほとんどみられないが, 1 段目のレーザーだけ入射した場合,約0.5Vの LOG 信 号が発生している。さらに2段目のレーザーも同時入 射した場合,LOG 信号は約3~4倍も増加している ことが確認できる。このように、高リュードベリ状態 への励起により、LOG 信号検出の SN は、大幅に改 善される。パルス (~ns)レーザーによる 2 p⁵ (²P_{1/2}) 3 p単位への励起は小さな速い (~µs)正 のオプトガルバノ効果と遅い (~10µs)負のオプトガ ルバノ効果を生じている。 $2p^5$ ($^2P_{1/2}$) 3p準位 は結合性電離のしきい値より低いので、これによる速 い電離は生じないはずであるが、 $2p^5$ ($^2P_{1/2}$) 3 p準位は2p53s1P1準位への遷移を有し、この共鳴 励起準位の占有数を増加させるので、基底状態への真 空紫外光遷移を増加させ、電離(速い正のオプトガル バノ効果)をもたらしている。遅い (~10µs)負のオ

Fig. 5 Examples of the LOG signals.

Fig. 6 Spatial distribution of LOG signal intensity.

プトガルバノ効果は、2 p⁵ 3 s³ P₂準安定準位の密度 が減少することによるものである。高リュードベリ状 態の2 p⁵ (² P_{1/2}) 11d準位への励起は、さらに大 きな速いオプトガルバノ効果をもたらしている。一般 に LOG 信号の強度は、準安定原子密度と光励起確率, 励起状態からの電離(電界電離や衝突電離)確率,放 電電界中での電子増幅などの複雑な関数であるので, 定量的な議論は非常に難しいが、この二段階励起によ る LOG 信号の著しい増加は、高リュードベリ状態が 非常に大きな衝突段面積を持ち、おそらく結合性電離 により急速に衝突電離されるためである。なお、放電 電流が1~5 mAの範囲内では、これら LOG 信号の 大きさにはほとんど変化がみられなかった。

4.3 LOG 信号の空間分布

レーザー波長を固定したまま放電管の位置を変化さ せて得られた LOG 信号の空間分布を図6に示す。図 からわかるように信号はほぼ左右対称になっており, ホローカソード電極に対し色素レーザー光がほぼ平行 入射していることがわかる。また,ホローカソードの 位置決め精度は±0.1mm以下と評価できる。ホロー カソード近傍の大きな信号は,LOG 信号に光電効果 による信号が重畳されたものである。

4. 4 LOG 信号の飽和特性

励起用の2本のレーザー光のそれぞれの入射エネル ギーに対する LOG 信号の飽和の様子を図7に示す。 本実験条件ではいずれのレーザーについても飽和条件 が満足されていることがわかる。また,2段目のレー ザーの飽和エネルギーは,初段のレーザーの飽和エネ ルギーより2桁以上大きいことがわかる。本実験では 2つのレーザーのエネルギー比はほぼ同程度とした が,励起効率の面からは,2段目のレーザーエネルギー を1段目のレーザーエネルギーに比べて圧倒的に大き くしたほうが望ましいことがわかる。

Fig. 7 Saturation characteristics of LOG signal against the first and the second laser energies.

4.5 シュタルクスペクトル

放電空間内に入射された2段目のレーザー波長を変 化させながらレコーダに記録したシュタルク分裂スペ クトルの例を図8に示す。図中,rは Ne ホローカソー ドランプの中心軸からの半径距離であり、r=1.5mm がホローカソード内面である。図中の太い実線はホ ローカソード放電管の中心軸で得られたもので、11d に対応する1本のピークが観測されている。このこと は、明らかにホローカソードの中心では電界が零であ ることを示している。r=1.15mm(カソード面から 0.35mm)では、分裂したスペクトルが確認できる。 理論的には9本のスペクトルピークが存在するが、そ のうちの1本はこの図の左端にはみ出している。また, 最も右側の2本のスペクトルは,図中では完全に分離 されていない。図のスペクトルピークの間隔をシュタ ルク分裂幅の理論計算結果と比較することにより、電 界強度は2150±50V/cmと評価できる。

Fig. 8 Experimental examples of Stark splitted spectra.

シュタルクスペクトルの分解能は、レーザースペク トル幅とレーザービームの有限寸法により決まるが、 本実験では後者の影響が大きい。レーザーのスペクト ル幅0.5cm⁻¹ (10pm)に比べて図8のスペクトル幅 が十分大きいのは、レーザービーム体積(ウエスト直 径0.1mm)内で電界が変化しているためである。本実 験条件ではレーザービームのレーリー長が5~10mm で、ホローカソード電極の軸方向両端では、ビーム直 径はさらに約25%も太くなっている。さらに、電極端 部では端効果により電界が変化していることが予想さ れ、それらがシュタルクスペクトルをなまらせる要因 になっていると考えられる。

4.6 **電界の空間分布**

半径位置およびカソード内壁からの距離に対する電 界強度の測定結果を図9に示す。電界の読み取り精度 は半径位置0.75から1.35mmでは±50V/cmである。 電界測定の下限は400V/cmである。これは主に本実 験で使用したレーザーのスペクトル幅,ビーム寸法に よって決まっており,その結果半径位置0.7mm以下 での電界強度の評価は困難であった。またカソードか ら0.1mm以下の点(半径位置1.4mm~1.5)では,レー ザービームが電極面に当たって生じる光電効果による 信号が LOG 信号に重畳されるため,SN 比が低下し, 電界の読み取りは困難であった。図中の実線は測定点 を外挿したものである。

一般に平行平板電極を用いた場合の電界分布は,カ ソードからの距離に対し線形になることが知られてい る。しかし,本測定結果により,ホローカソードを用 いた場合の電界分布は線形にならないことが確認され た。これと似た結果が広瀬らによって,アルゴンホロー

Fig. 9 Spatial distribution of the electric field in the cathode-fall region of the Ne hollow cathode discharge.

カソード放電について報告されている。彼らはこの原 因を,ホローカソードの幾何学的効果の寄与とシース 内での電離の寄与として理想化した単純な解析モデル を提案し,実験との良い一致を報告している。本実験 の結果も彼らのモデルで説明できるものと考えられる。

4.7 空間電荷密度の算出

図9をもとに計算したポテンシャル分布と、電荷密 度分布を図10に示す。電界を積分して求めた陰極降下 領域の電圧は、放電電圧(156.4V)と良い一致を示し ている。またガウスの法則($\rho = \epsilon \cdot \text{divE} = \epsilon (1 / r)$ d / dr(rE(r)))から求めた電荷密度分布はシース内で平坦ではない。これは、単にホローカソードの幾何学的な効果だけでなく、ポテンシャルに閉じこめられた電子によるシース端部での電離の寄与が大きいためと考えられる。

イオン密度(正味の電荷密度)はシース端で約5× 10¹⁰ions/cm³であり,これはバルクプラズマ中のイ オン密度(通常のホローカソード放電のプラズマ密度 は10¹¹~10¹²cm⁻³といわれている)に関係しているよ うである。ただし,ここでは市販の封じきりセルを用 いているため,プローブによるイオン密度の実測は行 っていない。一方,カソード前面でのイオン密度は 1.25×10¹⁰ions/cm³であり,カソード面に流入する イオン電流密度は0.66mA/cm²と計算される。ここ

Fig.10 Spatial distributions of potential and charge density in the Ne hollow-cathode discharge, calculated from fig. 9.

で E/p=2500/6=417V/cm·Torr のときの Ne ガ ス中の Ne イオンのドリフト速度を 3.3×10^5 cm/sと した。また,全電流密度は全電流がホローカソード内 面(表面積1.70cm²)のみに一様に流れるとすると0. 941mA/cm²である。これから二次電子放出係数が 0.43,またイオン電流と電子電流の比が2.4と計算さ れる。ただし,ホローカソードの放電電極面積が実際 はもっと大きく(ホローカソードの内面だけでなく端 面も放電に寄与する)放電電流密度が実際はもっと小 さいと考えられること,真空紫外光,準安定 Ne 原子 による二次電子放出への寄与が無視できないことを考 慮すると,上記の値はそれぞれ二次電子放出係数の最 大見積値とイオン電流と電子電流の比の最小見積値に 相当する。

5. まとめ

二段階励起を利用した LOG 法を用いて, Ne ホロー カソード放電の陰極降下部の電界を詳細に測定した。

Ne ホローカソード放電の陰極降下部の電界は,平 行平板電極を用いた通常のグロー放電で観測されてい る直線的な変化とは異なった分布を示した。この空間 分布は,広瀬らが Ar のホローカソード放電中で行っ た電界測定結果と良く一致しており,彼らが提案した シース内での電離を考慮した解析モデルを用いてうま く説明でるようである。

本計測法は、2本のレーザービームを交差させるこ とにより原理的に空間1点計測が可能である。したが って,本質的に空間異方性を有する磁化プラズマ中や, 幾何学的に複雑な形状の電極を用いた放電中の局所電 界計測に有効であると考えられる。 謝 辞

実験に関して貴重なご助言をいただいた Wisconsin 大学 J. E. Lawler 教授および熊本大学工学部助手山形 氏に感謝します。また,本研究に参加された電気情報 工学科卒論生,池田正史氏に感謝します。本研究の一 部は,文部省科学研究費(奨励研究 A)と御器谷科学 技術財団の補助を得て行われた。

参考文献

- E. F. Zalewski, R. A. Keller, and R. Engleman, Jr., J. Chem. Phys., Vol. 70 (1979) 1015.
- B. N. Ganguly, J. R. Shoemaker, B. L. Preppernau and A. Garscadden, J. Appl. Phys., Vol. 61 (1987) 2778.
- E. A. Den Hartog, D. A. Doughty, and J. E. Lawler, Phys. Rev. A, Vol. 38 (1988) 2471.
- 4) J. Derouard and N. Sadeghi, Opt. Commun., vol. 57 (1986) 239.
- C. A. Moore, G. P. Davis, and R. A. Gottsho, Phys. Rev. Lett., Vol. 52 (1984) 538.
- D. K. Doughty, S. Salih and J. E. Lawlar, Physics Letters, Vol. 103A (1984) 41.
- 7) R. Shuker, A. Ben-Amar, and G. Erez, Opt. Commun., Vol. 39 (1981) 51.
- T. Masaki, A. Wada, Y. Adachi, and C. Hirose, Appl. Spectrosc., Vol. 42 (1988) 49.
- T. Masaki, A. Wada, Y. Adachi, and C. Hirose, Appl. spectrosc., Vol. 42 (1988) 51.
- C. Hirose, Y. Adachi, and T. Masaki, Appl. Spectrosc., Vol. 42 (1988) 815.
- C. E. Moore, Atomic Energy Levels, NSRDS-NBS 35 (U. S. GPO, Washington, D. C., 1971).
- 12) M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A, Vol. 20 (1979) 2251.
- 13) 天崎,松田,藤山,長崎大学工学部研究科報告, 第22巻 第39号(平成4年)(投稿中).
- 14) 松田, 天崎, 藤山, 長崎大学工学研究科報告, 第22巻 第38号(平成3年)33-40頁.