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CAE System for Framed Structure Using BEM
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   A CAE system

ds being develoPed.

examples are made

which can be zLsed to analyze both static and dynamic Problems

BEM (Boundu?Ty Element Method) is emPloyed as the solver in

to verij3, exactness, usdulness and versatility of this system.
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1. Introduction

  At present, with the rapid development of techni-

ques of computer, the memory capacity of computer

is increased in a large scale, and its computation

rate is speed up conspicuously. High accuracy fig-

ure display systems are being developed. With the

help of these facilities, many design systems have

been developed. Such systems provide remarkably,

highly efficient methods for designing as well as for

engineering, so they are called CAE (Computer

Aided Engineering). We can express what we are

designing on screen, calculate the data relevant to

its properties, then choose the best one. Using CAE,

we can also solve some problems in proper accuracy

with high speed which could be solved only approxi-

mately in using normal method.

  Here, we'd like to show a CAE system for framed

structures using BEM(i). Among various CAE

solvers, BEM shows its noticeable effectiveness.

Using this system, we can solve problems both in

statics and dynamics of framed structures and in

turn, design things in optimality.

2. The Basic Theory

  In this study, it is assumed that the deformation of

every beam in a framed structure is very small, and

within the sphere of elastic deformation.

2.1 StaticProblems

2. 1. 1 Basic Formulas

 In analyzing static problems of framed structures

using BEM, each member in the structure can be

treated as a beam, so differential equations of a

beam are used here. Figure 1 shows a beam with

span L on which lateral and longitudinal forces are

acted. In lateral direction, the leading differential

equation for it is given by

    d` W(x)
           =- q(x) (1)  ,E,l'

      du4

Y

            p(x)

--> - ---> -> --> -->---> -->

l t

Fig. 1

q(x)

Forces on a Beam

X

Here, q(x) is external distributed force on the beam

in the lateral direction, W(x) is the deformation in

this direction, E is longitudinal elastic coefficient

and I is inertia moment of the beam.

  In perpendicular direction, its longitudinal motion
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is controlled by the following differential equation:

 EA. d2£(,X) == p(x) ' (2)
 Where U(x) is the longitudinal deformation of the

beam, p(x) is distributed force in this direction and

A is beam's section area.

2. 1. 2 Formulation of BEM

 In this study, direct method of BEM is used to

translate differential equation into boundary inte-

gral equation.' The form of weighted residual

method is as follows.

                   '
  y['L[ ddu2 Y,I- EPL,4]u'dlx =O (3)

Here, U' is weight function defined as

  u*(x, y) =- -SZ (4)
where r=lx-y I. Treating Eq, (3) with partial inte-

gration, it finally gives

  u(y)=[it!!Il£Fst-U(XY)u(x)-EIAu'(x,y)dUdu(X)]:

       + EiA llLpu"(x, y)du (s)

About Eq. (1), multiplying it with w*(x, y) and doing

the same thing as above, we get

  taL(dth4 rm filw*du-o (6)

  ViV(y)=[ VV*(x, y)Q(x)- 0"(x, y)M(x)

      +M"(x, y) 0(x) - Q*(x, y) W(x)]oL

      +vaLqw*(x, y)du (7)
Here W' is weight function, defined as

            r3  W*(x, y)=                                      (8)
           12EI

and

              d2W(x)- M(x)  dW(x) -    du -0(X), du2 -M EI'

  d3 W(x) - Q(x)
    du2 - EI '
            dO* M* dM*  dur*   cig ==M0*' clv == El' cig =mQ*,

  d,Qly" --6(x, y) ' (g)
Differentiating Eq. (7), it becomes

                      M*  0(y)-[-0*(x, y)Q(x)- EI (x, y)M(x)-Q*(x,

y)o(x)+6(x, y) w(x)]o`-vaLqo*(x, y)du ao)

  Considering limits of y-> O and y-> L, and express-

ing Eq. (5), (7) and (9) in matrix of boundary values,

we get a set of linear equations:

  [A]{X,}+[B]{.Xb}-{b} (ll)
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 Here,

 {X,}=-[U(O) V(O) e(O) U(L) V(L) 0(L)]T,

 {Xle}-[IV(O) Q(O) M(O) IV(L) Q(L) M(L)]T

 {b} == [,(IL iA pu'(x, o) du ILqvv*(jc, o)du

     ,(ILq.gtl2Zl¥LQ)PV -(xO)duygLEIApu'(x,L)du

       '     .(1'Lqw"(x,L)du.(ILq-gtlZii£flLLt).W(xL)du]T

[A] and [B] are calculable matrices composed of

fundamental solutions.

 In the problems for a beam with one span, Eq. (ID

provides a set of simultaneous equations according

to various boundary conditions. Eq. (11) can also be

used as basic equations in treating framed structure

problems as shown in the followings.

2. 2. 3 Treatment of Whole Structure(2)

  The above is the case when one beam is treated,

so a local coordinate is used. To consider the whole

construction, local one must be changed to global

coordinate. (See Fig. (2)) For coordinate transla-

tion next ･formulas are used. Here the local coordi-
   '
nate vector is expressed with･--above:

  {5ir,}=[T]{X,}, {X,} -=[T]{ SgZ,} (12)

[T] is a matrix for coordinate translation.

        Y

  N  Y

(2)

Fig. 2

(1)

Coordinate: Local and Global

.

joint j

(n)

  ee.
Fig. 3 a Joint

.

 .
(i+1)

a)
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 On every joint, appropriate connecting conditions

are needed. Suppose a joint where n beams are lin-

ked together. Because this is one point, geometric

conditions are (see Fig. 3):

  VPI- YVh=-...=- Wh
                                    (13-1)
  Ui== ca= ･･･= Un

  If this point is fixed, another condition

                         ,  0i= 6!i=･･･ -- 0n (13-2)
is used. For a pin-connected joint, this condition is

untenable.

  When considering the construction of simultane-

ous equations, next equilibrium conditions are

needed:

  nn  2A,-Ail,,ZFZ,,-ATb (14-1)  i=1 i=l
  That is, all internal forces must be balanced by

external force. If the joint is fixed, the third condi-

tion is about balance of external moment Me, that is

  n

  2Mi=Me (14-2)  i=1

  It can't be used in case of pin-connected.

  Using these formulas and conditions, we can treat

framed structure problems whether they are stati-

cally determinate or statically indeterminate.

According to boundary conditions, the size of un-

known vector can be decided, then simultaneous

equations for the problem can be given.

2.3 DynamicProblems

  In this study, we only consider the lateral vibra-

tion since the longitudinal vibration is small com-

pared with lateral one.

2. 3. 1 Basic Formul as

  The motion equation of lateral free vibration of a

Euler-Bernoulli beam is:

     a2 W(x, t)                 04 VJV(x, t)
                         -O (15)  pA ot2 +El ox,
  Here, p is density of a beam.

  When the vibration of medium is a constant one

with a small amplitude, that is, when VV(x, t) is a

simple harrnonic function of vibration number w rel-

evant to time, we can get

  W(jc, t)-= V'V(Jc)eito` (1ol
  So Eq. (15) is transformed to

    d` W(x)
  El du4 ==pAto2W(x) (17)
2. 3. 2 Formulation of BEM

                                        3

 The procedure of forming a set of simultaneousi

equations is similar to that of static problems and

weight function of Eq. (8) can be used, then Eq. (17)

can be transformed into forms of Eq. (7) and (10), only

items of integration are different. Expressing

boundary values of Eq. (17) in matrix, we get

                        vv*(x, o)

  [A,]{x}==,A.2./['Lvv(.) mWo'igth,Lo)) du as)

                        - 0*(x, L)

  In this formula, [Ab] is a4×8 matrix composed of

calculable fundamental solutions, {x} in a 8×1 un-

known vector.

  Next, in order to find deformation in the region of

the beam, the region is divided into suitable number

of elements, then the formula is translated into dis-

cretizing equations in the form of Eq. (7):

                             W*(x, gb)
  { VI'Zt} == [Ad] {X} + pA to2.(IL w(x) VV"(9, Y') du

                             l)IZ"(x, gm)

                                        (19)

m is the number of dividing. {Wlr} is a (m+1)×1

unknown vector. [Ad] is a (m+1)×8 matrix com-

posed of calculable fundamental solutions.

  Now discretizing to integrative items in Eq.(18)

and (19), they are transformed to

  [A,] {X}-pA w2[Kb]{ VP7U} (20)
  { VV2,}-[A,]{X}+ pA w2[Klr]{ W2,} (21)

  [Kb] and [Klr] are 4×(m+1), (m+1)×(m+1)

matrices respectively.

  At last, using boundary conditions of the beam to

decide the size of unknoWn vector we can reach the
                           '
form of finding eigenvalues from Eq. (20) and (21):

          1  [A]{X} =           ,{X} (22)          to

  From this, using the existing subroutine of finding

eigenvalues, natural frequencies of each order and

its modes can be found.

2. 3. 3 Formulation for Continuous Beam<3)(`)

  What discussed above is the case of one span.

Suppose the beam structure have n spans, Eq. (20

and (21) are enlarged to

  [Abn]{Xh} == pA ca2[Kbn]{ VZtn} (23)
  { V'Xtn} =: [Adn]{X)i}+ PA ca2[Kbn] ･{ P'P'lrn} (24)

  From various boundary conditions, some un-

known items can be eliminated so that the number
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of equations fit that of unknown items, the problem

has a definite solution.

  At last, from Eq. (23) and (24), we reach the form of

Eq. (22), and then natural frequencies of each order

and its mode can be found just like the case of one

span.
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3 . Analysis Examples

  In this system, work station and personal com-

puters are used for analyzing. Pre and post proces-

sor are also instrumented, though they are still in-

complete.

3.1 Static Problems

3. 1. 1 Static problems of Continuous Beam

  See figure 4. This is a picture of the system for

analyzing the status of a beam of any type on which

static forces are acted. From keyboard, a user can

input beam's data following the screen's instruction.

The type of the beam can be either one span or con-

tinuous, and the forces on the beam can be both con-

centrated and continuously distributed. The system

will show the user data of deformation deformation
                               '
angle, moment and shearing force on any section of

the beam.

3. 1. 2 Framed Structure

  Every beam in the framed structure in which we

dealing with is under following conditions:

  a ) Every beam is straight and homogeneous;

  b ) Stress of beams is within the elastic limit of

the material of beams;

  c ) Deformation of every beam is very small and

Fig. 5 a 3-dim. Truss Analysis System

have no influence to the shape of all structure, so we

can take the shape of undeformed structure into

consideration.

3. 1. 2. 1 Truss Analysis

  A truss is constructed by more than 2 straight

beams linked with frictionless pins, supported by the

ground or other structure. Here we also suppose:

  a ) Each center of pin is identical with each axis

of the beam;

  b) External forces exist in the plane of the struc-

ture, acted only on joints.

  Under these conditions, every beam in the struc-

ture is only endured the force in the axial direction

and hence, deformed only in this direction. So, in

this case, only Eq. (2) and in turn, Eq. (5) are used.

  Fig. 5 shows a 3-dimensional truss analysis sys-

tem. Here, beam units with green color are within

safe stress, the region with red color are reaching

critical value of stress. (Now that it is printed in

black-white, you can't distinguish so clearly.)

183cm

P
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2

45'

P

183cm

Fig. 4 a Static Forces Analysis System for Con-

       tinuous Beam Fig. 6

3

a Step-shaped Rigid Frame

4



CAE System for Framed Structure Using BEM 5

Table 1

solution V, 02 V3 e,

BEM
-O,2os36gPEL73

PL2-O.250069El PL3-O.208369El PL2
O.250069.EI

exact
PL3-O.208333EI PL2-O.25EI PL3-O.208333EI PL2

O.25EI

Table 2

solution U, 02 U3 03

BEM
PL3

O.0595245EI
PL2-O.0357155EI

PL3
O.059524EI

PL2-O.035715EI

exact
PL3

O.059524EI
PL2'

-O.035714EI
PL3

O.059524EI
PL2.-O.035714EI

EI =1 EA=106

P 2 L 3

L

1 4

  Fig. 7 a Portal-type Rigid Frame

forces act m the plane of the structure.

Here, two examples are analyzed using this

CAE system. One is step-shaped structure

as shown in Fig.'6 and another is the gate-

type structure as shown in Fig. 7.

  In the case of model 1, material property

and sectional area are assumed to be con-

stant, that is El==1 and EA==1. Boundary

conditions are ui= vi == 0i = u4 == v4 = 04 =O･

The force P is 1. Table1 shows the results

being compared with,the exact values. As

easily found, they are agree well with each

   x

Using this system, we can see clearly where we must

pay special attention to and design the structure sci-

entifically and economically.

3.1.2.2 Rigid Frame Analysis

  Usually, all joints in this type of framed structures

are fixed. We also suppose that external

         . 1 Ooxl o-3

    90

eo
vo
Z
-o
=

80

70

60

50

ro

30

other and the errors are very small.

  In the case of model 2, boundary conditions are

given as ui = vi = ei=u4=v4== 04=O. The force p is 1.

Usually, rigid frame's axial displacement is neglect-

ed. In such a case, it is enough to give a'big value

to EA. Here EI==1' , EA=106are given in comput-

ing. Table 2 lists the calculation results and exact

solutions. It also shown no much difference w･ith

exact solution. From these two examples, the pres-

ent CAE system is verified to be accurate.

  On the other hand, it should be noticed that the

axial displacement can not always be neglected

according to the sectional shape. In this study, the

effects of tensile rigidity are investigated. Value of

EA is varied from EA=1 to EA ==105. Fig 8 shows

typical results, that is, the displacement of node 3.

Numerical results when EA =1 are shown in table 3.

  From the results in Table 3 and Fig. 8, we find

l
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        Table 3

Node U V 0

2
PL3

O.204974EI
PL3

O.096742EI
PL2-O.264113EI

3
PL3

O.079973EI
PL3-O.'096742EI･ PL2-O.139113EI

l
I

span k span k+1

      Fig. 9 a Simply Supported Beam

Table 4.

           Length == IO E=1 I== 1

   boundary conditions: both simply supported

Fig. 10 a Median Supporting Point of a Continu-

       ous Beam

m= 10 Error %

!
l

mode ExactValue BEM Value,

1

2

3

4

5

O.028491093

O.113964375

O.256419844

O.4558575

O.712277344

O.02849123797

O.11397353.177

O.25652279291

O.45642518803

O.71438892930

O.OO07

O.O080

O.0401

O.1245

O.2965.

that the effects of tensile rigidity are existent when

its value is less than 10 and then it should not be

neglected.

3.2 DynamiG Problem of Continuous Beam

3. 2.1 the Case of a Beam with One Span

  Fig. 9 shows a simply supported beam. Through

this example, we try to verify the rightness of the

theory in calculating a continuous beam. Let's see

whether results from treating one simply supported

beam as one piece fit results from treating it as sev-

eral pieces of beam or not. Table 4 shows exact

values of natural frequencies and results of treating

the beam as one piece using BEM, Table 5 is results

of treating it as 2 and 3 pieces separately, in this

case, connecting conditions are;

  ( Wl･)x=L=( VJV}+i)x=o, (0i)x=L=(0i+i)x=o,

  (Mi)x-L == (Mi+i)x-o, (Qi)x==L=(Qi+i)x-o

  From these results, the rightness of the theory is

verified though the exactness is rather decreased

when the number of dividing is increased. However,

it is within a tolerate range.

3. 2. 2 A Continuous Beam

  About connecting conditions of supporting point$

among the beam, in span k, (see Fig. 10)

  ( wa)x=L=( VVLe+i)x=o == O, ( 0k)x=L == ( 0h+i)x=o, (Mh)x =L

=(Mh+i)x=o

  At both ends of the beam, another 4boundary con-

ditions can be get, it is decided by supporting condi-

tions:

  simply supported : W=O, W"==o

  free : W"=o, urrrt==o
  fixed :VV==O, W'=o
  Another example is a continuous beam which has

2 spans, (fig. 11) and both ends are simply support-

ed. This example had been solved by S. P. Tim-

Table 5

as 2 beams as 3 beams

Ll:L2=1:1 ml==m2=10 Ll:L2:L3=3:4:3 ml =m2=m3=.1O

mode value errors % value errors %

1

2

3

4

5

O.02825626092

O.11396495187

O.25432027747

O.45589412711

O.70652388347

O.8242

O.OO05

O.8188

O.O080

O.8077

O.02827584576

O.11277679717

O.25613834661

O.45405135657

O.70412744562

o

1

o

o

1

7554

0420

1097

3962

1442
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lst mode

-zF====== ==F (3)

(4)

                                      7

                      '
S. P. Timoshenko, Vibration Problems in Engi-

neering, Third Edition, translated by Tanisita

and Watanabe (in Japanese)

R. W. Clough and J. Penzien, Dynamics of

Structures, Mc Graw-Hill Inc. 1975.

2nd' mode

3rd mode

Fig. 11 a 2-span Continuous Beam

            Table 6

mode (BEM Values)

1

2

3

O.02340189935

O.04594202127

O . 08975300225

   ratio of 3 modes: 1:1.9631823:3.8353032

oshenko(3) using graphic method. The result ls that

when the ratio of lengths of spans is 4:3, the ratio of

former 3 modes is 1:1.96:3.82. 0ur tesults are in

table 4 with E=1, I=1, Ll:L2= 12:9, ml=m2=10.

From comparing two results, the rightness of the

theory is verified further.

4. Conclusions

  This CAE system is constructed for analyzing the

framed structure problems both in statics and

dynamics. From examples we can see that this sys-

tem is reliable. We can use it to solve many prob-

lems. However, we must point out that there are

still many things remain which we must do, such as

vibration problems in framed structure, forced

vibration problem, etc. Study on these spheres as

well as in minding its application to the Linkage

Mechanism is going on.
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