線状加熱による鋼板の変形に関する予備的考察

中 島 正 樹*•河 野 和 芳* 勝 田 順 一*

A Preliminary Study on the Angular Distortion by Line-Heating

by

Masaki NAKAJIMA*, Kazuyoshi KAWANO* and Jyunichi KATSUTA*

The line-heating process by oxy-acetylene gas flame is extensively applied to the bending of thicksteel plates in fabrication of steel structures. But it is one of the difficult manufacturing techniques in the ship-building industry. In order to solve the technical problems in plate-bending process, a lot of investigations were conducted in the past 30 years in Japan. Although their results have been reported many papers concerning line-heating method, there are many problems remaining unsolved and is not used enough yet in automatic and efficient process of ship-hull plate-bending.

The authors carried out the preliminary experiments on the effects of line-heating for the efficient method of plate-bending. The purpose of this study is to find a relation between several heating conditions and induced angular distortions.

In this investigation the following facts were clarified;

- 1) It is necessary to consider the heating breadth for calculation of angular distortion.
- 2) Angular distortion is influenced by not only the difference of peak temperatures at heating sufrace and back surface but also the value of peak temperature at heating surface.
- 3) Angular distortion is affected considerably by the pre-heating due to heat conduction.

1. はじめに

鋼構造物の外形には、その構造上および性能上の要 求によって、複雑な形状の自由曲面が多く存在する. この曲面板の製作には、プレス加工やローラ加工など による機械加工と、ガスバーナによる線状・点状加熱 加工がある.

複雑な自由曲面板の製作の自動化は、多点プレスが 開発されて、一部実用化されている.しかし、多点プ レスは大規模な設備であり、中・小規模の製造現場で は導入が困難であるという問題がある。それに比べて、 線状加熱による曲げ加工の設備は、ガス、バーナ、ホー スのみで大規模な設備を必要とせず、鋼板を曲げ加工 設備まで運搬する必要もないために、現在でも、多く の現場で用いられている。

ところが,線状加熱による鋼板の曲げ加工は,多く の経験によって蓄積された技能であり,その自動化に ついては古くから研究されてきたが,まだ実用化には 至らず,熟練工の技能に頼らざるを得ないのが現状で

*構造工学科(Department of Structural Engineering)

平成4年9月30日受理

ある.そのため最近の技能工の後継者不足は,鋼構造 物の製造現場にとって深刻な問題となりつつある。

線状加熱による鋼板の曲がり量を数値解析によって 推定する場合、熱伝導を考慮した弾塑性解析を行う必 要がある、しかも、鋼板表裏の熱弾塑性ひずみ量の差 や温度差で生じる強度差による拘束度を求めるために は、熱弾塑性解析を鋼板の板厚を考慮した三次元問題 として取り扱う必要がある。しかし、これをそのまま 解析したのでは大型コンピュータで多くの計算時間が 必要となって,現場に設置可能なパーソナルコン ピュータでは解析不可能となる可能性が高い.また, 線状加熱の最適経路を求めるまでの時間が非常に長く なり,曲げ加工の効率化・自動化の効果があまり期待 できなくなる可能性がある.したがって、線状加熱に よる鋼板の曲げ加工における最適経路を求める解析に おいては、解析法や解析モデルの効率化・簡略化が必 要になる.

本報告は、線状加熱による曲げ加工の自動化・効率 化を行うための最適加熱経路を求める解析法の開発を 目的に、まず、線状加熱による鋼板の曲がり変形の挙 動を把握して、線状加熱が鋼板の変形におよぼす影響 因子について考察したものである.

2. 実験概要

2.1 供試鋼板と試験片

供試した鋼板は板厚6mmと12mmの市販の一般構造用 圧延鋼 (SS400) である. Table 1 に化学成分と機械的 性質を示す.

試験片は各板厚の鋼板とも幅500mmで,加熱方向の長 さが500mm、250mmおよび125mmの3種類を用意した。そ の概要を Fig.1 に示す。これらの試験片には、加熱中 の温度を計測するために、熱電対を取り付けるための 2.1mm[®]の孔を加熱中央部付近にあけてある。Fig.1に は熱電対の取り付け孔の詳細も示してある.

なお, 試験片は, 圧延時に生じた残留応力を除去す るために、600℃で2時間の焼き鈍し処理を行った。

2.2 加熱条件と加熱方法

ガスバーナによる加熱には、酸素-アセチレンガス 炎を用いた.

線状加熱による鋼板の曲げ加工におよぼす影響因子 としては、酸素やアセチレンガスの圧力、酸素とアセ チレンガスの混合比およびそれらの流量、ガスバーナ の火口の大きさ,加熱速度,鋼板と火口との距離,加 工する鋼板の大きさおよび板厚などが考えられる.

今回の試験は、アセチレン流量、鋼板と火口との距 離、加熱速度に注目し、試験片幅中央を試験片長さだ け線状加熱して鋼板の角変形量におよぼす影響につい て調査した。なお、試験条件としては、先にも述べた ように、試験片の板厚2種類、試験片長さ3種類が加 わることになる. Table 2 に試験した加熱条件を示す. なお,酸素流量は加熱条件におけるアセチレンガスの 燃焼に最適な流量とした.

試験片は Fig.2 に示すように断熱材を介して幅方向 の端部を固定し,試験片幅中央を加熱した.また,も う一方の幅方向端部に変位計を設置して、加熱中の鋼 板の変形挙動を計測した.

ガスバーナは自動走行台車に固定して,鋼板と火口 との距離を調節可能とした。また、台車の速度を調節 することで加熱速度を変化させた。Fig. 2 に、試験片 の加熱要領を示す。なお、加熱後試験片はそのままの 状態で空冷した.

Fig. 1 Configuration of specimens for lineheating test

	(T) · · ·	Chemical Composition (%)				Mechanical Properties				
Specification	(mm)	С	Si	Mn	Р	S	Ceq.*	Y.S. (kgf/mm²)	T.S. (kgf/mm²)	El. (%)
	6	0.15	0.0	0.51	0.013	0.010	0.24	31	46	30
JIS SS400	12	0.16	0.15	0.62	0.024	0.010	0.26	32	47	30

Table 1 Chemical composition and mechanical properties of test steels

* : Ceq. (IACS) = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15

No.	Thick ness (mm)	Presure of Acetylene (kgf/cm²)	Pressure of Oxygen (kgf/cm²)	Length of Heating (mm)	Discharge of Acetylene (ℓ /min)	Dischage of Oxygen (ℓ /min)	Distance between gasburner and plate (mm)	Travelling speed of gasburner (cm/min)
1					10	12	25	30
2				125	15	10	20	30
3					15	18	20	25
4					10	12	25	30
5	6	0.5	5	250	15	10	20	30
6					10	18	20	25
7					10	1,2	25	30
8				500	15	10	20	30
9	1				15	18	20	25
10							20	30
11				125	15	18	20	20
12						1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	15	15
13							20	30
14	12	0.5	5	250	15	18	20	20
15							15	15
16	1		-				20	30
17				500	15	18	20	20
18	1						15	15

Table 2 Conditions of line-heating test

Fig. 2 Schematic diagram of line-heating test

3. 線状加熱による鋼板の変形

3.1 鋼板の変形挙動

今回行った試験のうち,板厚12mmで500mm×500mmの 試験片を1回線状加熱した場合の鋼板の変形や温度の 時間経過を,Fig.3に示す.なお,この場合の加熱条 件はTable2に示した加熱条件No17であり,温度は加 熱線中央の表面と裏面に設置した熱電対の計測結果, 変位は加熱線中央での計測結果である.この図から, 加熱を開始した鋼板は、まず、加熱側とは反対側に曲 がり、その後加熱側に変形していることがわかる、こ れは,加熱側の膨張量が裏側の膨張量よりも大きいた めに加熱反対側に変形するものの(Fig. 4(a)参照),加 熱域は高温になるにつれて鋼板の弾性係数や降状応力 が低下するため、その周囲の弾性係数や降伏応力が高 い部分に拘束されることによって加熱域に圧縮の塑性 変形が起こる(Fig. 4(b)参照). その後, ガスバーナ通 過とともに冷却が始まり, 圧縮塑性変形した領域が収 縮して加熱側への変形が起こるもの(Fig.4(c)参照) と考えられる.加熱終了までに大きな変形は終わり, 約200°Cまでに変形はほぼ収束している。また,加熱線 中央部ではガスバーナが到達する前に上述の変形が発 生しており, これは熱伝導がガスバーナの移動速度よ りも速いためと、先に変形が進行する加熱線端部の影 響のために起こるものと考えられる。なお、加熱線端 部と中央部とでは,若干変形量に差異があったが,こ れは,加熱線端部と中央部とのガスバーナによる加熱 時間(入熱量)の差異や拘束条件の違いによるものと 考えられる.

一般に,線状加熱による鋼板の変形は角変形量とし て表される.その角変形量は,Fig.5(a)に示すように, 変位量を計測した箇所と加熱線中心とを結んでできる

Fig. 3 Transient displacement and surface temperatures by line-heating

Fig. 4 Initiation of angular distortion

角度によって算出されている。ところが、今回の実験 結果では、Fig. 5(b)に示すように、加熱された箇所は 緩やかな弧を描き、加熱箇所の外側で変形しているこ とが観察され、従来の角変形算出モデルのように加熱 中心から変形するわけではないことがわかった。

したがって、線状加熱による角変形量の算出には、 Fig. 5(c)に示すように、加熱された領域での変形量は わずかであるため無視し、加熱幅を除いた部分が変形 するものとして角変形量を算出することにした.

3.2 変位量におよぼす加熱条件の影響

今回試験した全結果を Table 3 に示す. なお, この 表における角変形量は, 冷却後治具から取り外した試 験片の加熱線中央での変形量を用いて Fig. 5 (c)に示 した方法で算出した. また, 総加熱量とは, 酸素-ア セチレンの化学反応によって発生する単位長さ当たり の熱量すべてを表し、鋼板への入熱量を示すものでは ない.総加熱熱量は、鋼板には吸収されないものと、 鋼板に吸収されるものがあり、また、鋼板に吸収され た熱量のすべてが鋼板の曲げに寄与するわけではなく、 鋼板内に拡散して鋼板全体の温度を上昇されるものが あることが考えられる.現在、これらの熱量を区別す ることは困難であるため、今回の実験では、(1)式で表 される酸素--アセチレンガスの化学反応により発生す る単位長さ当たりの全熱量(加熱量)によって、加熱 条件を区別することにした.

アセチレン1 mol 当たりの酸素--アセチレン炎の 総熱量¹¹は,

 $C_2H_2+2 \div O_2=2CO_2+H_2O+301.4Kcal$ したがって、アセチレン1ℓ当たり13.45kcal 発熱する

(c) Proposed definition in this study

ことになり,アセチレン流量A(ℓ/min)でt秒間加 熱すると,総加熱量Q_Fは,

 $Q_F = 13450 \times A \times t/60 = 224 \cdot A \cdot t$ (cal)

よって、加熱長さがℓ(cm)の場合の単位長さ当たりの 加熱量は、次式で与えられることになる.

$$Q = 224 \cdot A \cdot t / \ell \qquad (cal/cm) \tag{1}$$

角変形量と加熱量の関係を Fig. 6 に示す. その図か ら、板厚の相違によって角変形量一加熱量関係の傾き が大きく異なっており、同じ加熱量に対して板厚の薄 い鋼板群のほうが角変形量が大きくなっていることが わかる.ところが、実験結果によると表裏面の温度差 は板厚の厚い鋼板のほうが大きくなる傾向があり、角 変形量には単に表裏面の温度差だけではなく、鋼板の 剛性も大きく影響することが考えられる.また、同 じ板厚でも、加熱線が長いほうが加熱量に対する角変 形量が大きくなっている.これは、ある箇所への加熱 量が同じでも、ガスバーナがそこに到達する前に熱が 鋼板内を伝導して予熱されているため、ガスバーナが 到達して加熱された場合、加熱線が短い場合に比べて 温度が高くなり、角変形が容易になることが原因では ないかと考えられる.また、加熱量が最も少ない場合

	Table 3	Experimental	results o	f plate-	bending	test b	y line-heating
--	---------	--------------	-----------	----------	---------	--------	----------------

Thickness (mm)	Length of Heating (mm)	Heating Condition (Table 2)	Heat Quantity (kcal/cm)	Peak Temperature of Heating Sarface (°C)	Final Angular Distortion (×10 ⁻³ rad)
		1	4.7	600	-2.1
	125	2	7.0	716	8.0
		3	8.1	890	12.8
	• *	4	4.7	522	-1.3
	250	5	6.9	785	25.3
6		6	8.5	875	30.4
U		7	4.0	745	-27.4
		1	4.6	507	-34.7
	500	0	6.9	835	59.2
12	500	0	7.0	663	45.0
		9	8.1	810	59.2
			8.3	779	59.2
		10	7.0	400	2.5
	125	11	10.5	790	6.6
		12	14.0	1150	10.9
		13	7.1	600	7.4
	250	14	10.5	705	6.8
		15	14.1	990	12.6
		16	7.1	623	5.8
			7.2	567	4.7
	500	17	10.3	775	11.2
	500	17	10.5	628	14.5
		10	14.3	1070	19.3
		18	14.2	697	25.6

Fig. 6 Relation between angular distortion and heat quantity

に、板厚6mmの試験片が加熱反対側に曲がることが あった.これは、加熱領域と周囲の強度に大きな差が 生じなかったために Fig.4(b)の現象が起こる前に(a)

(×10⁻ 70 60 0 (rad) 50 0 40 Θ Final Angular Distortion 30 20 10 0 A -10 Thickness (mm) 6 12 125 Ō Length of -20 Heating 250 ≙ 0 (mm) 500 0 -30 0 -40 200 250 0 50 100 150 Parameter of Heat Input Q/h^2 (cal/cm³)

Fig. 7 Relation between angular distortion and parameter of heat input

の段階で,表裏面の温度差が小さく表裏の収縮がほぼ 同量であったために加熱反対側に曲がったまま変形が 終了したものと考えられる.

溶接による角変形は、自由変形量 δ と入熱量Q、板 厚hの間に(2)式の関係があることが報告²⁾されている.

 $\delta = \mathbf{f} \cdot \mathbf{Q} / \mathbf{h}^2 \tag{2}$

ここに, f:比例定数

この溶接入熱量と角変形量の関係をもとに,(2)式に おける入熱バラメータ($\lambda = Q/h^2$)を用いて加熱量と角 変形量との関係を整理すると,Fig.7のようになる. この図から、 λ で角変形量を整理すると,加熱線長さ によって λ と角変形量の関係が異なることがわかる. この原因は,先に述べたように,加熱線が長くなるほ ど鋼板内の伝熱量が多くなり,より高温に予熱されて 角変形が容易になるためであると考えられる.

一般に, Fig. 4 のような線状加熱による変形挙動の 仮定から,加熱側と加熱反対側の温度差が大きいほど 変形も大きくなると考えられる.そこで,表裏面の温 度差と角変形量の関係を調査した.その結果を, Fig. 8 に示す.この図によると,表裏面の温度差と角変形 量の関係は上述の予想された関係が明確でない.この 原因は,今回の表面温度計測方法に問題があったもの と考えられ,今後改善する必要がある.

Fig. 8 Relation between angular distortion and difference of peak temperatures at heating surface and back surface

3.3 繰り返し加熱の影響

実際の線状加熱による曲げ加工においては,前節の 実験のように1回の線状加熱だけの加工ではなく,連 続して数回の線状加熱が行われる.そこで,繰り返し 加熱による角変形量への影響を調査するために試験を 行った.

試験に使用した試験片は,加熱条件No17で1回線状 加熱した長さ500mm,板厚12mmの鋼板を再使用した.な お,繰り返し加熱条件は最初の加熱条件と同等とし, 加熱方向は最初の線状加熱と同じ方向とした.また, 連続往復加熱による線状加熱についても試験を行った. この試験片は,連続加熱によって加熱表面が溶融する 可能性があるため,繰り返し加熱よりも加熱量が少な い加熱条件No16で1回線状加熱した長さ500mm,板厚12 mmの鋼板を再使用した.なお,往復加熱条件は最初の 加熱条件と同等とした.

繰り返し加熱した場合の加熱線中央での表裏面の温 度と加熱線中央での幅端部の変位の時間経過を Fig. 9に示す.また,各加熱ごとの変位とそれぞれの加熱 開始温度を Table 4 に示す.これらの試験結果から, 室温程度に冷却された鋼板を同じ条件で加熱した場合

(1回目と2回目の加熱)の角変形量はほぼ同等であ り、加熱開始温度が110~150°Cの場合(3~5回目の 加熱)には、同じ条件でも室温から加熱した場合に比

Table 4 Displacement at the edge in the case of repeating line-heating

Number of Repeating Times	Heating Condition (Table 2)	Temperature of Heating Start (°C)	Displacement (mm)
1	18	18	5.2
2	18	18	5.2
3	18	110	8.4
4	18	140	8.2
5	18	150	8.9

べて角変形量は約60%程度大きくなることがわかる. この原因も、予熱されて角変形が容易になるためであ ると考えられる.ただし、加熱開始温度が110~150℃ 程度である場合、加熱回数にかかわらず角変形量はほ ぼ同等であることがわかる.

往復加熱した場合の表裏面の温度と鋼板幅端部の変 位の時間経過を Fig. 10に示す.この図は、同じ加熱量 で1回加熱の場合、往復加熱1回の場合、往復加熱2 回の場合に分けて示してある.また、1経路ごとの変 位量と室温まで冷却して計測した変位量を Table 5 に 示す.この表において、1経路加熱ごとの変位量の合 計が最終変位量よりも小さいのは、最終経路後の冷却 中にも変形が起こるためであり、その間の変形量はよ

Fig. 9 Transient displacement and surface temperatures by repeating line-heating

(c) Two times line-heating by going and returning path

Fig. 10 Trasient displacement and surface temperatures by continual line-heating

り多く加熱した場合のほうが多くなっていた.これら の試験結果から,往復加熱の場合,往路1回の加熱で は1方向の線状加熱に比べて変位量が少ないが,往復 加熱によって1方向加熱を2回行った場合よりも大き く変位することがわかる.なお,往路1回の加熱での 変位量が少ない理由は明確ではないが,往復加熱に よって変位量が増大する原因は,予熱されて角変形が 容易になるためであると考えられる.

Table 5Displacement at the edge in the case of
continual line-heating

Heating Path	Heating Condition	Displacement of Every One Path (mm)	Final Displacement (mm)
One Way	16	2.2	2.6
One Time	16	1.4	
Going and Returning		5.4	8.0
		-0.1	
Two Times	16	5.1	
Returning	10	5.4	
		5.5	21.9

3.4 加熱後冷却の影響

実際の線状加熱による曲げ加工においては、加熱中, または加熱終了直後に水をかけて急冷する作業が行わ れている.現場ではいくつかの異なる効果を期待して おり,明確な効果が明らかにされていない.そこで, 加熱終了直後に水冷することにより,その効果を試験 で確かめることにした.

試験に使用した試験片は,板厚6mmと12mmの加熱線 長さ500mmの鋼板それぞれ2枚使用した.また,加熱条 件は板厚6mmはNo.8で,板厚12mmはNo.17とした.

加熱直後に水冷した場合の加熱量,最終変位量およ び加熱開始から最終変位に至るまでの時間を Table 6 に示す.なお,この表には,同じ条件で加熱して空冷 した場合の試験結果も併記してある.これらの結果か ら,最終角変形量は水冷しても空冷した場合とほとん ど差異はないことがわかる.ただし,最終角変形量に 至るまでの時間は非常に少なくなっており,水冷した 場合には最終角変形量を早く得ることができることが 最大の利点であると考えられる.

4. 線状加熱による曲げ加工で考慮すべき因子

今回の試験による調査の結果、線状加熱による鋼板

	TT +	Heat Input (kcal/cm)	Ai	r Cooling	Water Cooling		
(nm)	Condition (Table 2)		Final Angular Distortion (×10 ⁻³ rad)	Time Required until Displacement Ends (min)	Final Angular Distortion (×10 ⁻³ rad)	Time Required until Displacement Ends (min)	
6	0	10.5	45.0	25	55.2	15	
	0 0	10.1	59.2	25	55.2	13	
12	17	7.0	14.5	20	10.7	5	
		7.1	11.2	20	9.4	5	

Table 6 Final angular distortions in the case of line-heating with water cooling

の曲げ加工においては、従来から述べられている加熱 量、鋼板表裏面の温度差、鋼板の板厚だけでなく、加 熱量については、酸素-アセチレン炎の発熱量の他に 鋼板への入熱量(これに関しては入熱量と発熱量の比 で熱効率を述べた報告³⁾がある)の影響や、角変形を起 こすための熱量と鋼板内部の伝熱量に分けて考える必 要があることが推察された.さらに、鋼板表裏面の温 度差については、その温度差がどの温度域にあるかと いうことも大きな影響があり、鋼板内部の熱伝導によ る予熱の影響も大きいことが明らかとなった.

実際の現場で行われている水冷の効果については角 変形にはほとんど影響がないことが明らかになり、そ の効果は、最終変形量を得るまでの時間の短縮と、作 業中の輻射熱による熱気を避けることができることで あると考えられる.

従来の線状加熱による角変形の研究は,酸素-アセ チレン炎の発熱量,または入熱量に対する角変形の考 察がほとんどであるが,熱効率のばらつきは非常に大 きく(45~75%³⁰),鋼板への入熱量を正確に把握する ことは困難であること,角変形に関与する鋼板の材料 定数(熱伝導率,弾性係数,降伏応力など)は温度を 変数とする関数になることを考慮すると,最終的には 熱の問題を取り扱う必要はあるものの,線状加熱によ る鋼板の曲げ加工の自動化・効率化を進める上で直接 的には温度によって角変形を取り扱うことが実用的で あろうと推察される.加熱域の温度で角変形量を推察 すると,入熱量による変形の推定では加工する鋼板の 大きさによって加熱の効果が異なることなどを解決で きる可能性がある.

最適な加熱経路や加熱間隔を求める場合,鋼板の板 厚だけでなく,ある時点における鋼板の形状を適宜把 握して鋼板の剛性を考慮する必要もあることが推察さ れた.

5.おわりに

今回の報告では,線状加熱による鋼板の曲げ加工の 自動化・効率化を進める上で重要な線状加熱による角 変形量への影響について予備的な実験を行い,その影 響について,従来の経験から得られている線状加熱の 影響因子と比較して考察を行った.

その結果,以下のことが明らかになった.

- 線状加熱による角変形の算出には、加熱幅を考慮 する必要がある。
- 2)線状加熱による角変形量は、鋼板表裏面の温度差 だけではなく、その温度域も大きく影響する。
- 3)線状加熱による角変形量には、鋼板内部の伝熱に

よる予熱の影響も大きい。

4)線状加熱による角変形量の整理には、入熱量では なく、直接的には加熱温度を用いるほうが実用的 である。

参考文献

- 渡辺正紀,佐藤邦彦:溶接力学とその応用,朝倉 書店(1965)
- 2)佐藤邦彦,寺崎俊夫:構造用材量の溶接変形にお よぼす溶接諸条件の影響,溶接学会誌 第45巻 第4号(1976)
- 3)辻 勇,奥村耕之:鋼材の線状加熱板曲げ加工 に関する研究,西部造船会々報 第76号(1988)