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   Dynamic Stability 

Subjected to In-plane

of a Rectangular Plate

Dynamic Shearing Force

Kazuo TAKAHASHI*), Yoshihiro
and Hirotaka NISHIKAWA"**)

NATSUAKI**)

1 . Introduction

   It is well-known that out-of-plane vibrations of

plate structures are observed in a particular fre-

quency range under an in-plane sinusoidally time

varying load. This behavior is due to parametric

instability. Among investigations of this problem,

the dynamic stability of a thin rectangular plate has

been studied by many researchers. For examples,

the dynamic stability of rectangular plates under a

uniformly distributed in-plane periodic load has

been considered by Bolotin') and Yamaki and

Nagai2). The dynamic instability of the rectangular

plate subjected to an in-plane periodic moment or

an in-plane linearly distributed dynamic force has

been presented by the authors3' `}. However, the

dynamic stability of a rectangular plate subjected to

in-plane shearing force remains to be considered.

   In this paper, theoretical solutions are reported

for the dynamic stability of a rectangular plate

under an in-plane periodic shearing force applied

along the edges. The problem based upon the small

deflection theory is solved by using a Galerkin

method and the harmonic balance method. After

   Dynamic instability of a rectangular plate subjected to in-plane sinusoidally time-varying shearing
  '
force is analyzed. The small deflection theory of the thin plate is used. The problem is solved by using

                                                                                  'a Galerkin method and the harmonic balance method.

   After presenting the problem in the form of divided matrix equations, numerical results are pre-

sented first for natural frequencies of the loaded plate and second for dynamic unstable regions of the

rectangular plate with various boundary conditions.

                                                                           --presenting the problem in the form of divided matrix

equations, numerical results are presented first for

natural frequencies of the loaded plate and sedond

for dynamic unstable regions of the rectangular

plate with various boundary conditions.

2 . Basic Equations and Boundary Conditions

   Assume that a rectangular plate with length a,

width b and thickness d is subjected to in-plane

loads applied along the boundaries. A cartesian co

-ordinate system (x, y) is introduced as shown in

Fig. 1. The in-plane force N., due to static load

Nxyo and periodic dynamic load Nxyt cosflt is given

by

   y

  b
   ,

Nxy i

   ,

   o ."--

Fig. 1
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     Nxy

Geometry and co-ordinates.
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   My == Myo+Myt cos st t, (1)
in which Nxyo is the magnitude of the static load,

N.,t is the amplitudes of the dynamic load, st is the

radian frequency of excitation, and t is the time.

   It is assumed that the effect of longitudinal and

rotatory inertia forces and transverse shear can be

neglected. The basic equations for linear free vibra-

tions of a plate subjected to these forces then can be

wrltten as

   L(w)=pd 0a2tty +DSV4w-21V]ty aOioWy =O, (2)

where w denotes the plate deflection, p is the mass

density, D= Ed3/ {12(1-if)} is the elastic rigidity,

E is Young's modulus, v is Poisson's ratio, and sv`=

(02/ 0x2+ 02/ 0y 2)2.

   The following three boundary conditions are

considered in the present analysis:

case I,simply supported along all edges, i. e.,

    w= 0a2xW, =o(x=o,a)andw= Oo2ge =o(y==o,b),

                                        (3a)

case II, simply supported along two edges and

clamped along the other edges, i. e.,

        o2w                             Ow    w= o.2 =O(x-=O,a)andw= oy ==O(y==O,b),

                                        (3b)

case III, clamped along all edges, i. e.,

                            0w        0w    zv - o. -= O(x == O,a)and w- oy -O(y -O, b).

                                        (3c)

 3 . Method of Solution

    For these boundary conditions, one can assume

the solution of equation (2) to be of the forms

    W= :IIII :l] Tinn(t) VI7inn(x,y), (4)

where Tmn is an unknown function of the time vari-

ables and Wmn is an eigenfunction associated with

free vibrations satisfying the geometric boundary

conditions of the plate subjected to no in-plane

force, defined as

    case I, VVinn =sin Ma7ZV sin nbay, (5a)

    case II, lrp'inn=sin Mane Zj a"j{cos (7'-bl ay -

    (i+1)7iy

           }, (5b)cos       b
                      '
                              (i-1)z:x
     case III, Winn=2aMi{cos                                       - cos
                     ia
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                 (7' - 1) n),                               (7' + 1) 7ry(i+1)7cy
       }Za",･{ cos                                      }, (5c)                         - cos

where aMi and a"j are the modal coefficients, and m

and n are the half-wave numbers in the x and y

directions, respectively.

   With these expressions, applying the Galerkin

method, one has

   f.af.bL(w) VI7i-, dudy=O, (6)
where r and s=1,2, ･･････. Performing the indicated

integrations of equation (6) gives the following set

of ordinary differential equations:

    [A]{ T} + [B]{T} + (Ai]ryo + IV]tpt cos 2t)[C]{ T} ==

where [A], [B] and [C] are square matrices (see

the Appendix A) , and {T} is a column vector con-

sisting Qf the dePendent time valuables.

    The following non-dimensional qualities are

now introduced:

    A-r.,.-M.ys,,igr..,-M.'f,

    - S2 ,S2mn                      r== 9nt. (8)            Wmn=    to =                 S211 '        S?!1'

HereNcr=AcrD7z2/b2is the buckling load for each

boundary condition, Acr is the eigenvalue of buck-

ling, 9ii==leii2VD71p5hEif is the lowest natural radian

frequency of the plate subjected to no in-plane

force, and kii is the lowest eigenvalue of free vibra-

tions.

    Inverting the matrix [A] and premultiplying

both sides of equation(7) by the inverse matrix

lead to

    [I]{ T} + [F] { T} + ( A-r.. + .2sci.,t cos to' r) [G]{ T} -

where [F ]== [A ]"i× [B ]-= diag
(toii2toi22'''to2i2'''toNN2), [G ]= [A ]-'× [C]and [I ]is

the unit matrix.

    The solution of equation (9) in now sought in

the formi)･ 6):

    {T}= exp(At){-li-{bo}+ ]({ah} sin feto-T+{bh} cos

                                        '

ktoT)} . ' (10)where {b,}, {ak},and {bk} aresomevectorsthat

are independent of the time variable.

    Substituting equation (10) into equation (9)

and applying the harmonic balance method leads to

a set of homogeneous algebraic equations as

    ([Mo] - A[Mi] - A2[th]){x} - {O}, (11)
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inwhich [M,], [Mi] and [M2] arethecoefficient

matrices of the zeroth (constant), first and second

powers of 1, respectively, and {x} is the column

vector consisting of {bo}, {bk}, and {ak}.

   The eigenvalue A can be obtained by solving a

double sized matrix as an eigenvalue problem in the

form

   [ [M2i9i] [M,] -[M,]-IIiM,] ](l)=A(:]･ (12)

where {Y} =A {X}.

    As the matrix of equation <12) is a non-sym-

metric matrix with real elements, the eigenvalues

consist of pairs of complex numbers. If the

eigenvalues of equation (12) are distinct, then the

necessary and sufficient condition for stability is

that real parts of the complex roots should be nega-

tive or zero. In the present problem, however, the

unstable motions occur in the same frequency

range7). To distinguish the repeated unstable

regions, the division of matrix equations is intro-

duced in the following section.

4 . Division of Matrix Equations

   If we take a 16 degrees of freedom system in

which one considers m, n=1, 2, 3 and 4, the time

variables of equation (9) are given as follows:

    {T} = {T,, T,, T,, T,, T,, T,, T,, T,, T,,

   T32 T33 T34 T41 T42 T43 T4,}T.

   The coefficient matrix [G]

ametric instability has the following form

             [o] [G]l?, [o] [G]1?

             [G]??･ [O] [G]Z7･ [O]
    [G] =
             [o] [G]g? [o] [G]2}

             [G]l?･ [o] [G]g?･ [o]

in which

           O fml12 O fMli4

           fm2il O fm2i3 O
    [G] pe.jn.

           0 fM3i2 O frn3i4

           fM4il O fM4i3 O

and [O] is the 4×4 zero matrix.

   Thematrix [G]

equation (14). Three quarters of the

zero.

(13)

with respect to par-

(14)

             is a sparse matrix as shown in

                           elements are

The matrix [G] is transformed into the follow-
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  ing four non-zero submatrices by rearranging the

  order of the rows and columns as

                 [O] [O] [O] [G,,]

                 [O] [O] [G,,] [O].

       [G]= (15)                             [o]                                  [o]                 [O] [G,,]

                [G,,] [O] [O] [O]

  in which [Gi4], [G23], [G32] and [G4i] are4×4

  submatrices with non-zero elements.

      According to this transformation, the time vari-

ables {T} and the coefficient matrix [F] are re-

arranged as follows:

    {T} = {T,, T,, T,, T,, T,, T,, T,, T,, T,,

   T23 T4i T43 T22 T24 T42 T44}' (16a)
    [F] = diag ((h)n2 (h)i32 bl3i2 bl332 oi22 (h)i42 w322

   w342 bl212･..･,･bl222････t･w442). (16b)

   Considering the properties of these matrices,

the matrix equation of motion (9) is now divided

into the following two equations:

    Type 1, [Ii]{Tl}+[Fi]{Z}+(IVxyo+IVxytcos

ca-r)[ Gi]{ Tl} - {O}, (17a)
    Type 2, [h]{7>}+[Fb]{7>}+(Myo+Mytcos

w-r)[G2]{7>} -{O}. (17b)
Here {Ti} = {Tii Ti3 T3i T33 T22 T24 T42 T44}T,

 {'T,} = {T,, T,, T,, T,, T,, T,, T,, T,,}T,

[G] =[[59,1 [`iiSi ]and [G2] =[[5?,l [?63i ]

Unstable regious are independently obtained from

th'ese two equations.

   There are two different types of unstable

motions obtained from equation (9) or equations

(17a) and (17b) : that is, the simple parametric reso-

nance in the vicinity of bl- -- 2blrnn/s and the combina-

tion resonance in the vicinity of o-= (G2]mn±oke)/s,

in which .s= 1, 2 corresponds to the principal and sec-

ondary unstable regions, respectively. Here (h}mn is

the normalized natural frequency having the half

-wave numbers m and be in the x･and y directions,

respectively. The kind and width of the unstable

regions depend on the elements of the matrices [Gi]

and [G2]. The coupling elements of the matrices

 [Gi] and [G2] have the same sign. According to

Hsu's formulation'),,the sum type combination reso-

nances in the vicinity of Q-) = (aD..+wke)/s will be

obtained and the difference type one of bl-= ((it)mn-
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blke) /s will be not obtained for the present problem.

Since the' diagonal elements gp,i of [Gi] (i= 1, 2)

are zero as shown in equations (17a) and (17b), and

 [Fi] and [Ii] are diagonal matrices, parametric reso-

nances occur only through the coupling term g,,` (p

;Lq). Therefore, the simple parametric response

which occurs through the direct, term g,p` would not

be important for the present case.

   The combination resonance which occurs

through the non-zero coupling term is predominant.

As to the combination resonance blmn+(Dke of the

present problem, the following properties are found

from the coupling term of equations (17a) and

(17b):

   Type 1, m+ n =even and mtk, ntg, (18a)

   Type 2, m+n =odd and m*k, ntg. (18b)

Using this matrix partition, it is easy to distinguish

kinds of unstable regions and to save computational

time for the eigenvalue problem.

   Based upon the above theoretical analysis,

numerical solutions have been obtained for the rec-

tangular plate. First, the frequencies of the plate

under static loading are presented. Then, the unsta-

ble regions due to dynamic loading are determined.

5. Natural Frequency of the Square Plate under

   Static Loading

   Based on equation (B-3) shown in Appendix B,

the natural frequency for the square plate subjected

to the static shearing force Nxyo for each boundary

condition has been determined. Numerical results

for the lowest eigenvalue of free vibrations kii and

buckling eigenvalue Acr of square plates (the aspect

ratio pt =1.0) in each case are given in Table 1. The

shearing force N.yo vs. the natural frequency fi for

each case are shown in Figs. 2,3 and 4. In these

figures, the ordinate Nxyo shows the static shearing

force normalized to the buckling load, while the

abscissa fi=S emn/S)n denotes the natural frequency.

normalized to the relevant lowest natural radian fre-

Table 1 Constants kii and acr: pt ==1.0.

caseI caseII caseIII

kll 2.0 2.935 3.650

Acr 9.32 12.59 14.69

1.eo

Nryo

e.75

o.so

O.2S

o

'

,1]
2(1 f,2)

(2

4,2)

Cl,

fs) 6(2 l,3) sl(1,

4) C3,3)
le
(2,4) f

Fig. 2

1.00

Ilryo

O.7S

O.50

O.2S

o

  gcz,1) &(3,1) g(3,z) g(4,1) gc4,2)

Shearing force Nxyo vs. natural frequency

fi: case I and pt =1.0.

n)-uli)c,S2si)!z)(,((ilp4c,<(,3,l,?),lsgl6i)c,,fi,ilg!21(SN,,(,zgi,41(,s,I)3?,(fi,sOs5a,

'

"ns)

Fig. 3

1.00
Nkyo

O.7S

o.so

O.25

Shearing force Nxyo vs. natural frequency

fi: case II and#=1.0.

   O /1 12 /3 /4/s.--v' 6> k7 8." Lg -nX 10k u
 (m ,n)= (1 ,1) (1,2) C2 ,2) (1,3} C2,3) (1,4} c3,3) (2,4) C3,4) Cl,S) C2,5) (4 ,4)

        (2,1) (3,1)C3,2)(4,1) (4,2]C4,3)(S,1)(S,2)

Fig. 4 Shearing force Nx.o vs. natural frequency

       fi: case III and v==1.0.

quency. The notation (m, n) in these figures repre-

sents the number of half-waves in the x and y direc-

tions when Nxyo--O, respectively. As the mode of

vibration is neither symmetric nor antisymmetric

about x= a/2 or y= b/2 when Nx..tO, the notation

(m, n) is not valid. The following will be observed

from the figures. Natural frequencies change with

an increase in the static shearing force Nxyo. They

decrease or slightly increase. The effect of the

static shearing force is the most pronounced when･

the mode of vibration nearly coincides with the cor-

responding buckling wave form. In this particular

case, mode (1, 1), the frequency is zero when the

shearing force Nxyo is equal to unity.

   Considering the effect of the static shearing
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Fig. 5

(a) Nxyo=O (b) Nxyo=1
 Effect of shearing force Nxyo on the modes

of vibration: case I and pt= 1.0.

(1,1) (2,1) (1,2) C2,2) (3,1) (1,3)

-Nrio=O.O

ilxyo=1.0 o
Fig. 6 Nodal lines of the first six modes:

and pt =1.0.

case I

force on the modes of vibration for the mode (1, 1)

of case I, the change in the modal shape is illustrated

in Fig. 5. Compressive and tensile forces due to

bjected to ln-plane Dynamic Shearing Force 69

  shearing force Nx,, act along the edges of the plate.

  The modal shape is affected by these forces such

  that the amplitude of the side subjected to the com-

  pressive force becomes large, while that of the side

  of the tensile force becomes small. The mode of

  vibration at Nxyo = 1 corresponds to that of buckling.

  For the first six modes of case I, the changes in

  modal shape with shearing force are illustrated by

  nodal lines in Figure 6. The modes at N.,o= O are

  symmetric or antisymmetric about x=a/ 2 or y=b/

  2, while those at Nxyo40 are symmetric or anti-

  symmetric about diagonal lines of the plate.

6. Dynamic Unstable Regions Subjected to

   Shearing Force

6. 1. Property of Unstable Regions

   The results for the rectangular plates with three

different boundary conditions subjected to only the

periodic shearing force Nxyt (Nxyo=O) are shown in

Fig. 7 through Fig. 12. In these figures, the ordinate

Nxyt = Nxyt/Ncr denotes the amplitude of the periodic

 O.5

Nxyt
 O.4

 O.3

 O.2

 O.1

 O.5

Nxyt

 O.4

 O.3

 O.2

 O.1

tu22tu11+co22ut31+to22co2"tu13+ed22co33+co22co13+tu42

tu11+to42os31+co42 a

o 2

Fig. 7  Unstable regions of the rectangular plate:

case I,type 1, Nxyo :O.O and pt=1.5

  tu 12 +ee 21 co 32+ tu21 co 12+ tu41 co 12+ tu 23

12 IIi

co32+tu23

14

ed !2+ os43

a:(toz4+co21)12

b:(co32+co41)12

a b

'tu32+co"1

co1" 'tu2

o 2

Fig. 8  Unstable regions of the rectangular plate:

case I , type 2, N.,,=O.O and pt == 1.5.

ili 14



70 Kazuo TAKAHASHI, Yoshihiro NATSUAKI and Hirotaka NISHIKAWA

 o.s

Nxyt

 O.4

 O.3

 O.2

 O.1

tu3･1+co2g

al22 to11+tu22to31+W22to13+tu22tu33+tu22 to13+co42to3S+tutuss

a:tu11+tug2

b:,tu13+tu24

.

5l8cn22 ua11+as"2a b

o

 O.5

Nxyt ･

 O.4

 O.3

 O.2

 O.1

 o.

Nxyt

 o.

 o.

 o.

 o.

5

4

3

2

1

 o.
Nxyt

 o.

 o.

s

4

3

O.2

O.1

2

Fig, 4 6 8 10 129 Unstable regions of the square plate:

    case 'II, type 1, N.,,= e.O and pt=1.0.
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4
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asi2+al21

      6 8 10 12 tu
Unstable regions of the square plate:

case II, type 2, N.yo=O.O and #=1.0.

    to12+W"1 ul12+W23 W12+togs Wl-+tDz3
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Fig.
   4 6 8 10
11 Unstable regions of the rectangular

   case III, type 1, Nxyo=O.O and #=1,5
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.
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14
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tu2"+tu33
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Fig.

   4 6 8 10 12 th                                         w

12 Unstable regions of the rectangular plate:

   case III, type 2, N.,,=O.O and pt=1.5.

14
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            Table 2 Natural frequency (h)mn, costants kii and acr: Nxyo =O･O･

71

caseI(#=L5) caseII (#=1.0) caseIII (#=1.5)

m/n 1 4 1 2 3 4 1 2 3 4

i, 1.0000

1.9231

3.4615

5.6154

3.07696.5385

4.00007.4615

5.53859.0000

7.692311.1538

11.3846

12.3077

13.8462

16.0000

1.0000

1.8909

3.5305

5.8826

2.3966

3.2707-

4.8486

7)1474

4.4755

5.3686

6.9330

9.2015

7.2309

8.1433

9.7114

11.9666

1.0000

1.5460

2.4732

3.7514

2.4506

2.9613

3.8386

5.0711

4.6563

5.1587

6.0179

7.2222

7.5965

8.0974

8.9511

10.1410

kl, 1.4444 2 .9333 5. 2005

Acr 1.1503 12 .5892- 11. 4893

shearing force normalized to the corresponding

buckling shearing force, while the abscissa bl-=st/

stii is the exciting frequency mormalized to the low-

est natural frequency. Further, the hatched portions

represent the regions of various types of instability.

The narrow regions of instability with bl- less than O.

1 at Nxyt=O.5 are omitted in the figures. Norma-

lized natural frequency (h7mn, and the constants kii

and Acr for each are given in Table 2.

   Wide unstable regions of sum type combination

resonances in the vicinity of aDmn+oke are obtained

as shown in Fig. 7 through Fig. 12. Combination

resonances of types 1 and 2 for each boundary condi-

tion occur at the same frequency (h7rnn+ cit)ke (type 1)

= G}m'n'+(h)k,g (type 2) in which m+k=m'+K' and

n+ e =n'+1'. The present analysis using matrix

partition is very useful to distinguish the kinds of

unstable regions. As the diagonal elements of the

coefficient matrix [G] are zero in the present case,

the simple parametric resonance excited by the

direct term is not obtained. Although the secondary

unstable regions of the simple resonance such as (h}mn

occur through the coupling terms, the widths of

them are narrower than those of combination reso-

nances. Therefore, combination resonances are

important for the present problem. Unstable

regions of the combination resonance are wide when

wave numbers in the x and y directions are close, i.

e., adjacent numbers, k=m+1 and g=n+1 (m<k, n

<e) as can be seen in these figures. On the other

hand, when wave numbers are farther apart, widths
                                       '
of combination resonances are narrow.

6. 2. Effect of Static Stress

   Figs. 13 and 14 show the unstable regions of a

square plate considering a static shearing force

Nxyo=O.3 for case I . The non-dimensional natural

frequency (h)mn, and the constants kn and Acr are

summarized in Table 3. Simple parametric reso-

nances with 2aDmn occur in conjunction with Nxyo,

This result corresponds to the fact that the coupling

between the modes occurs through restoring force

terms in equation (9). The static shearing force has

an influence upon the unstable regions. The simple

t

 o.s

Nxyt

 O.4

 O.3

 O.2

 O.1

318(oon+co22) es3i tu22 tun+tu22 2to3i tu31+al22 es11+tug2 tu13+co22 co33+co22 tu13+co42

a:2/3(tui

'b:(tun+tu

c:2co22

+co22)

2)12

a b c W31+tu42 co2U

o 2

Fig.   4 6 8 10 1213 Unstable regiong of the rectangular plate:

   case I , type 1, Nxy, == O.3 and pt = 1.5.

ZIi' 14
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 O.5

Nxyt

 O.4

O,3

O.2

O.1

(al 32+ tu 21 ) /2 tu12+co21 2co12 co 32+ co21 to12+ allt1 tu!2+co23 2co41 oo 32+ co23 ut12+cog3

a:2!3tu41.
b:(to14+tu21)/2

C:coIU+to21 a2co21 b

2tu32 2coly1

c

213coiu

o 2

Fig. 14  Unstable regions of the rectangular plate:

case I, type 2, Nxyo=O.3 and #=1.5.

-al 14

Table 3 Natural frequency (h)mn, costants

kn and Zcr: Nxyo=O.3.

caseI(pt=1.5)

m/n 1 4

12'34 o135 .9641

.8459

.3403

.7754

3.09016.5401
4.05527.4746
5.30879.0322
7.572311.2069

11.

13.

13.

16.

3965

3103

8580

O176

kll 1.4444

Acr 7.1503

resonances of small width in absence of the static

shearing forces become of larger width.

6. 3. Effect of Damping

   The undamped (h=O.O) and damped (h=O.02)

regions of instability, in which the damping constant

h is constant for all modes, are shown in Fig. 15.

The effect of damping depends on the width of un-

stable regions. The narrower unstable region

becomes stable in the presence of damping.

7. Conclusions

   The sum type combination resonances are pre-

dominant for a'rectangular plate subjected o the

dynamic shearing force. The widths of unstable

regions are broad when half-wave numbers of the

modes of vibration in both x and y directions are

close together independently of boundary condi-

tions.

   The static shearing force infiuences the kinds of

unstable regions of a rectangular plate subjected to

the dynamic shearing force. The simple resonances

whose widths are narrow in the absence of the static

shearing force become broad in width.

   The effect of damping depends on the width of

unstable regions. The narrower unstable region

becomes stable in the presence of damping.

Appendix A : Coefficient Matrices

 O.5
Nxyt
 O.4

O.3

O.2

O.1

tu22 tu11+tu22 al24 co 31 + to 22 tu 13+ co 22 tu 33 + co 22 co 13+ tu U2

!i IVixf,i':ix,,,iit'1.tto11+tu42co31+tu42

o z     4

Fig. 15
      6 8 10 12
Effect of damping on unstable regions:

case I, type 1, Nxyo=O.O and pt=1.5.

di 14



        Dynamic Stability of a Rectangular Plate S

  [A]:a{7'+(i-1)N,n+(m-1)N}=Ii..ij (A-1)

  [B] : b{7'+(i'1)N,n+(m-1)N}=to2mnl'mniJ'

                                   (A-2)

  [C] : c{7'+(i-1)IV,n+(m-1)IV} == xl2mn,v (A'3)

W,,,h,,.e.'edy.i
l:"/r':.=-'-',t,,,m",fW.,/f,EJ',flxdy･i2mniJ･=ff0S.V,Vin,"

                                 '

Appendix B: Vibration Analysis

   The equation of motion describing free vibra-

tions of a plate subjected to static stress is given by

setting Nxyt=O in equation ( 9 ) as follows:

   [I]{ T}+[F]{T}+ A-ixyo[G]{T}={e} (B- 1 )

The solution of the vibration problem is assumed in

                                         '

the form '
   {T} == ei"T{ iTi} (B-2)
where fi in the non-dimensional natural frequency.

Equation (B- 1 ) can be rewritten as

   ([F]+-iVxyo[G]{ T-}=: iT2{ T'} (B-3)

The eigenvalue fi2 and the corresponding eigenvec-

tor {T} can be obtained by using the scientific sub-

routine library of a digital computer.

    If one puts n==O and Nxyo=1, the equation for

the buckling eigenvalue Acr is obtained.
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