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Dynamic Stability of a Rectangular Plate

Subjected to In-plane Dynamic Shearing Force

Kazuo TAKAHASHI®, Yoshihiro NATSUAKI**
and Hirotaka NISHIKAWA***®

Dynamic instability of a rectangular plate subjected to in-plane sinusoidally time-varying shearing

force is analyzed. The small deflection theory of the thin plate is used. The problem is solved by using

a Galerkin method and the harmonic balance method.

After presenting the problem in the form of divided matrix equations, numerical results are pre-

sented first for natural frequencies of the loaded plate and second for dynamic unstable regions of the

rectangular plate with various boundary conditions.

1. Introduction

It is well-known that out-of-plane vibrations of
plate structures are observed in a particular fre-
quency range under an in-plane sinusoidally time
varying load. This behavior is due to parametric
instability. Among investigations of this problem,
the dynamic stability of a thin rectangular plate has
been studied by many researchers. For examples,
the dynamic stability of rectangular plates under a
uniformly distributed in-plane periodic load has
been considered by Bolotin? and Yamaki and
Nagai®. The dynamic instability of the rectangular
plate subjected to an in-plane periodic moment or
an in-plane linearly distributed dynamic force has
been presented by the authors* ¥. However, the
dynamic stability of a rectangular plate subjected to
in-plane shearing force remains to be considered.

In this paper, theoretical solutions are reported
for the dynamic stability of a rectangular plate
under an in-plane periodic shearing force applied
along the edges. The problem based upon the small
deflection theory is solved by using a Galerkin

method and the harmonic balance method. After

Recieved September 30, 1992
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presenting the problem in the form of divided matrix
equations, numerical results are presented first for
natural frequencies of the loaded plate and second
for dynamic unstable regions of the rectangular

plate with various boundary conditions.

2. Basic Equations and Boundary Conditions

Assume that a rectangular plate With length a,
width & and thickness 4 is subjected to in-plane
loads applied along the boundaries. A cartesian co
-ordinate system (x, y) is introduced as shown in
Fig. 1. The in-plane force Ny, due to static load
N,yo and periodic dynamic load Ny cosQt is given
by

Fig. 1  Geometry and co-ordinates.
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Niy= Niyo+ Nae cos Qt, 1
in which Nyyo is the magnitude of the static load,
Nyt is the amplitudes of the dynamic lbad, Q is the
radian frequency of excitation, and ¢ is the time.

It is assumed that the effect of longitudinal and
rotatory inertia forces and transverse shear can be
neglected. The basic equations for linear free vibra-
tions of a plate subjected to these forces then can be

written as
L(w)= pd 8 W DV — 2nygzay =0, (2)

where w denotes the plate deflection, p is the mass
density, D=Ed3/ {12(1-+#)} is the elastic rigidity,
E is Young’s modulus, v is Poisson’s ratio, and V*=
(0% 3x2+ 3%/ v™)".

The following three boundary conditions are
considered in the present analysis:

case I, simply supported along all edges, i. e.,

w= 82 =0(x= Oa)andw—% =0(y=0,b),

(3a)
case II, simply supported along two edges and
clamped along the other edges, i. e.,

O w
ox®

=0(x=0,z)and w= 77'0“ =0(y=0,b),

w=

(3b)
case III, clamped along all edges, 1. e.,

w= 6‘x =((x= Oa)andw—a—w—O(y =0,b).
(3c)

3. Method of Solution
For these boundary conditions, one can assume
the solution of equation (2) to be of the forms
W= Tl ) Warl,3), @

where Tnn is an unknown function of the time vari-
ables and Wy, is an eigenfunction associated with
free vibrations satisfying the geometric boundary
conditions of the plate subjected to no in-plane
force, defined as

X sin nzy , (5a)

case I, Wpn = sin

case I, Wnn= sin % Za {cosLblm—

cos L—*L;m}, (5b)

(z'+;)7ry};anj{ cos (J'—g)ny ~ cos (j+;)7z‘y}y (5¢)

where a™; and a"; are the modal coefficients, and m
and # are the half-wave numbers in the x and y
directions, respectively.

With these expressions, applying the Galerkin
method, .one has

1o%f o® L{w) Wrsdrdy =0, (6)
where r and s=1,2, «+++- . Performing the indicated
integrations of equation (6 ) gives the following set
of ordinary differential equations:

(AN T} +[BHT}+(Nuo+ Nuw cos 2)CHT)=
{0}, (7
where [A], [B] and [C] are square matrices (see
the Appendix A),and {T} isa column vector con-
sisting of the dependent time valuables.

The following non-dimensional qualities are

now introduced:

Noom 22 o= 25
o= .Q!f Wmn= -ngn r=0ut. (8)

Here N = A D#?/b? is the buckling load for each
boundary condition, A, is the eigenvalue of buck-
ling, !21.1=/euz‘/mm)T is the lowest natural radian
frequency of the plate subjected to no in-plane
force, and k,; is the lowest eigenvalue of free vibra-
tions. .

Inverting the matrix [A] and premultiplying
both sides of equation(7) by the inverse matrix
lead to

[IHTY+[FHTY+(Nxo+ Nxy: cos ar)[GH{ T} =
{0}, 9)
where [F ]= [A 17 x [B ]=diag
(0’0 wan® - on®), [G 1= [A]T'X [C ]and [I ]is
the unit matrix.

The solution of equation (9) in now sought in

the form" ©:
(T}= exp(A)g{bo}+ S((as) sin kar+{ba} cos
kwr)} ) 10)

where {bo}, {a.},and {byx} are some vectorsthat
are independent of the time variable.

Substituting equation (10) into equation (9)
and applying the harmonic balance method leads to
a set of homogeneous algebraic equations as

(IMo] = AlM:] — 2[Me]){x} = {0}, a
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in which [M,], [M,] and [M,] are the coefficient
matrices of the zeroth (constant), first and second
powers of A, respectively, and {x} is the column
vector consisting of {bo}, {b.}, and {ay}.

The eigenvalue A can be obtained by solving a
double sized matrix as an eigenvalue problem in the

form

[0] (1]
[[le?l [M,] —[Mz]—‘I[Ml] }{i}:*{g} Y

where {Y} =1 {X}.

As the matrix of equation (12) is a non-sym-
metric matrix with real elements, the eigenvalues
consist of pairs of complex numbers. If the
eigenvalues of equation (12) are distinct, then the
necessary and sufficient condition for stability is
that real parts of the complex roots should be nega-
tive or zero. In the present problem, however, the
unstable motions occur in the same frequency
range”. To distinguish the repeated unstable
regions, the division of matrix equations is intro-

duced in the following section.

4 . Division of Matrix Equations

If we take a 16 degrees of freedom system in
which one considers m, n=1, 2, 3 and 4, the time
variables of equation (9) are given as follows:

{T} = {Tu Tz Tis Tiy To Toy Tys Ty Tay

Tsz Tss Tss Tay Taz Tas Toa}™ 13

The coefficient matrix [G] with respect to par-
ametric instability has the following form

[0y ey [0 (Gl
B [0l [GF [o]
S e o o Gl "
Gl [0l [Qy [0]
in which
0 fue O fuu
T fan O fms O

0 fre O fnsus
famr O fos O
and [O] is the 4X4 zero matrix.
The matrix [G] is a sparse matrix as shown in

equation (14). Three quarters of the elements are
zero. The matrix [G] is transformed into the follow-

ing four non-zero submatrices by rearranging the
order of the rows and columns as
(0 f[o] [0] [Gi]
(0] [0l [G.] [O]
01 [Ge] [0] [0]
Ga] [0} [0] [0]
in which [G..], [Gu], [Gs.] and [G,] are 4X4
submatrices with non-zero elements.

According to this transformation, the time vari-
ables {T} and the coefficient matrix [F)] are re-

arranged as follows:
{T} = {Tll TlS T31 T33 TlZ T14 T32 T34 TZI

Tas Ty Tus Tz Tas Taz Tusl” (16a)
[F] =diag (@® i’ @s® @i’ @12° w1’ ws
(ﬂ342 Cﬁ’212 ...... m222 ...... muz). (lﬁb)

Considering the properties of these matrices,
the matrix equation of motion (9) is now divided
into the following two equations:

Type 1, [LUT}+[F)NTY+(Nao+ Nu cos

aOlGI(T) =10}, ~ (17a)
Type 2, [LHTo}+[F){Ts+(Nxot+ Ney cos
a—)r)[cz}{ T =(0). (17b)

Here {T1} - {Tu Tis Tar Tas Toz Tos Tae T44}Ty
{'Tz} = {le This Tsa Ty Toy Tos Ty T43}T,

0] (6 T 101 (6]
o {[m (0 }‘“d - {[Gn] [0 }

Unstable regious are independently obtained from
these two equations.

There are two different types of unstable
motions obtained from equation (9) or equations
(17a) and (17b): that is, the simple parametric reso-
nance in the vicinity of @ =2wm./s and the combina-
tion resonance in the vicinity of @ = (@mnt@xs) /s,
in which s=1, 2 corresponds to the principal and sec-
ondary unstable regions, respectively. Here wpyy is
the normalized natural frequency having the half
-wave numbers m and § in the x and y directions,
respectively. The kind and width of the unstable
regions depend on the elements of the matrices [G,]
and [G,]. The coupling elements of the matrices

[G.] and [G,] have the same sign. According to
Hsu’s formulation?, the sum type combination reso-
nances in the vicinity of @ = (@mn+ @) /s will be

obtained and the difference type one of @ = (@mn—
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wye) /s will be not obtained for the present problem.
Since the diagonal elements g,,' of [G:] (i=1, 2)
are zero as shown in equations (17a) and (17b), and
[F,]and[],] are diagonal matrices, parametric reso-
nances occur only through the coupling term g,' (p
+q). Therefore, the simple parametric response
which occurs through the direct term g’ would not
be important for the present case.
The combination resonance which occurs

through the non-zero coupling term is predominant.

As to the combination resonance @mn+en: of the

present problem, the following properties are found
from the coupling term of equations (17a) and
(17b):

Type 1, m+ n =even and m*k, n¥¢, (18a)

Type 2, m+n =odd and m+*k, n# 4. (18b)
Using this matrix partition, it is easy to distinguish
kinds of unstable regions and to save computational
time for the eigenvalue problem.

Based upon the above theoretical analysis,
numerical solutions have been obtained for the rec-
tangular plate. First, the frequencies of the plate
under static loading are presented. Then, the unsta-

ble regions due to dynamic loading are determined.

5. Natural Frequency of the Square Plate under

Static Loading

Based on equation (B-3) shown in Appendix B,
the natural frequency for the square plate subjected
to the static shearing force N,y, for each boundary
condition has been determined. Numerical results
for the lowest eigenvalue of free vibrations k;; and
buckling eigenvalue A of square plates (the aspect
ratio ¢ =1.0) in each case are given in Table 1. The
shearing force N,y, vs. the natural frequency @ for
each case are shown in Figs. 2, 3 and 4. In these
figures, the ordinate Ny, shows the static shearing

force normalized to the buckling load, while the

abscissa i=Qm/Qy, denotes the natural frequency.

normalized to the relevant lowest natural radian fre-

Table 1 Constants k;; and A: x=1.0.

case I case II case III
ki, 2.0 2.935 3.650
Acr 9.32 12.59 14.69
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Fig. 2 Shearing force Ny, vs. natural frequency
fi: case I and x=1.0.
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Fig. 3 Shearmg force Nyyo vs. natural frequency
f: case II and x=1.0.
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Fig. 4  Shearing force N,y, vs. natural frequency
fi: case III and £ =1.0.

quency. The notation (s, #) in these figures repre-
sents the number of half-waves in the x and y direc-
tions when N,y,=0, respectively. As the mode of
vibration is neither symmetric nor antisymmetric
about x=a/2 or y=b/2 when N,,, %0, the notation
(m, ») is not valid. The following will be observed
from the figures. Natural frequencies change with
an increase in the static shearing force N,y,. They
The effect of the

static shearing force is the most pronounced when

decrease or slightly increase.

the mode of vibration nearly coincides with the cor-
responding buckling wave form. In this particular
case, mode (1, 1), the frequency is zero when the
shearing force N,y is equal to unity.

Considering the effect of the static shearing
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Fig. 5  Effect of shearing force Ny, on the modes
of vibration: case I and x=1.0.
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Fig. 6 Nodal lines of the first six modes: case I
and £=1.0.

force on the modes of vibration for the mode (1, 1)
of case I, the change in the modal shape is illustrated

in Fig. 5. Compressive and tensile forces due to

Wop WyytW22  Way

W3y +Woy

shearing force N,y, act along the edges of the plate.
The modal shape is affected by these forces such
that the amplitude of the side subjected to the com-
pressive force becomes large, while that of the side
of the tensile force becomes small. The mode of
vibration at Ny, =1 corresponds to that of buckling.
For the first six modes of case I, the changes in
modal shape with shearing force are illustrated by
nodal lines in Figure 6. The modes at Ny, =0 are
symmetric or antisymmetric about x=a/ 2 or y=b/
2, while those at Ny,+#0 are symmetric or anti-

symmetric about diagonal lines of the plate.

6. Dynamic Unstable Regions Subjected to
Shearing Force
6. 1. Property of Unstable Regions
The results for the rectangular plates with three
different boundary conditions subjected to only the
periodic shearing force N,y: (N4y,=0) are shown in
Fig. 7 through Fig. 12. In these figures, the ordinate
Nyt =Nyyi/N¢ denotes the amplitude of the periodic
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Fig. 7 Unstable regions of the rectangular plate:
case I, type 1, N,yo=0.0 and x=1.5
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Fig. 8 Unstable regions of the rectangular plate:
case I, type 2, Nygyo=0.0 and x=1.5.
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Fig. 9 Unstable regions of the square plate:
case 11, type 1, N,yo=0.0 and z=1.0.
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Fig. 10 Unstable regions of the square plate:
case II, type 2, Nyyo=0.0 and ¢ =1.0.
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Fig. 11 Unstable regions of the rectangular plate:
case I, type 1, N,yo=0.0 and x=1.5.
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Fig. 12 Unstable regions of the rectangular plate:
case I, type 2, Nyyo=0.0 and x=1.5.
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Table 2 Natural frequency wmn, costants k;; and Aer

Nyyo=0.0.

71

case I (g=1.5) case II (=10 case Ilf (x=1.5)
m/n 1 2 3 4 1 2 3 4 1 2 3 4
1 1.0000 3.0769 6.5385 11.3846{ 1.0000 2.3966 4.4755 7.2309] 1.0000 2.4506 4.6563 7.5965
2 1.9231 4.0000 7.4615 12.3077 | 1.8909 3.2707 5.3686 8.1433 | 1.5460 2.9613 5.1587 8.0974
3 3.4615 5.5385 9.0000 13.8462 | 3.5305 4.8486 6.9330 9.7114 | 2.4732 3.8386 6.0179 8.9511
4 5.6154 7.6923 11.1538 16.0000 | 5.8826 7:1474 9.2015 11.9666 | 3.7514 5.0711 7.2222 10.1410
kyy 1.4444 2.9333 5.2005
Acr 1.1503 12.5892 11.4893

shearing force normalized to the corresponding
buckling shearing force, while the abscissa @ =0/
Q4 is the exciting frequency mormalized to the low-
est natural frequency. Further, the hatched portions
represent the regions of various types of instability.
The narrow regions of instability with & less than 0.
1 at N,,=0.5 are omitted in the figures. Norma-
lized natural frequency wmn, and the constants k;;
and A for each are given in Table 2.

Wide unstable regions of sum type combination
resonances in the vicinity of wm,+ @, are obtained
as shown in Fig. 7 through Fig. 12. Combination
resonances of types 1 and 2 for each boundary condi-
tion occur at the same frequency wmn+ @y (type 1)
= @+ ewe (type 2) in which m+k=m’+K’ and
n+ ¢ =n"+1. The present analysis using matrix
partition is very useful to distinguish the kinds of
unstable regions. As the diagonal elements of the
coefficient matrix [G] are zero in the present case,
the simple parametric resonance excited by the
direct term is not obtained. Although the secondary

unstable regions of the simple resonance such as @mn

occur through the coupling terms, the widths of
them are narrower than those of combination reso-
Therefore, combination resonances are
Unstable

regions of the combination resonance are wide when

nances.

important for the present problem.

wave numbers in the x and y directions are close, i.
e., adjacent numbers, k=m+1 and /=n+1 (m<k, n
</{) as can be seen in these figures. On the other
hand, when wave numbers are farther apart, widths

of combination resonances are narrow.

6. 2
Figs. 13 and 14 show the unstable regions of a

. Effect of Static Stress

square plate considering a static shearing force
Nyo=0.3 for case I. The non-dimensional natural
frequency m,, and the constants k;; and A, are
summarized in Table 3. Simple parametric reso-
nances with 2emn occur in conjunction with Nyyo.
This result corresponds to the fact that the coupling
between the modes occurs through restoring force
terms in equation (9). The static shearing force has

an influence upon the unstable regions. The simple

0.5 3/8(wn+w2z) wa W2 Witwee 2W31 Wiltwr WintWsz Wizt Wz W33+tw22 Wizt ws
. T T T T T T T T T Im> T
Nyt
0.4 | (] -
0.3 + ~
a:2/3(wy+wy ) T
0.2 .. -
bi(wntwpe )/2
0.1 | 1A fa | hb | C Wyt Wuzfway -
1 ! ! ! ! ! ! 1 i ] ] )
0 2 4 6 8 10 12 @ 14

Fig. 13 Unstable regions of the rectangular plate:

case I, type 1, N,yo=0.3 and x=125.
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(W32t w21 ) /2 Wiat Wy 2wy, Waa+Way

Wizt Wy WiotWaz 2Wy; Wizt W2z Wi2+Wysz
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Nxyt :
0.4 |- H ~
0.3 | 8:2/3um . -
b (wy,+yy) /2
0.2 | Ciwp+Wa a b /5 -
0.1 - 20y 2/3wy, Zoni 20y =
) ! 1 1 1 1 1 ! I S l
0 2 4 6 8 10 12 w 14

»F ig. 14 Unstable regions of the rectangular plate:
case I, type 2, Nyyo=0.3 and x=125.

Table 3 Natural frequency wm, costants

ki; and Ae: Nyyo=0.3.

case I (¢u=15)
m/n 1 2 3 4
1 0.9641 3.0901 6.5401 11.3965
2 1.8459  4.0552 7.4746  13.3103
3.3403 5.3087 9.0322 13.8580
4 5.7754 7.5723 11.2069 16.0176
ki 1.4444
Aor _ 7.1503

resonances of small width in absence of the static

shearing forces become of larger width.

6. 3. Effect of Damping

The undamped (h=0.0) and damped (h=0.02)
regions of instability, in which the damping constant
h is constant for all modes, are shown in Fig. 15.
The effect of damping depends on the width of un-

stable regions. The narrower unstable region

becomes stable in the presence of damping.

1.

dominant for a rectangular plate subjected o the
dynamic shearing force. The widths of unstable
regions are broad when half-wave numbers of the
modes of vibration in both x and y directions are

close together independently of boundary condi-

Conclusions

The sum type combination resonances are pre-

tions.

unstable regions of a rectangular plate subjected to
the dynamic shearing force. The simple resonances
whose widths are narrow in the absence of the static

The static shearing force influences the kinds of

shearing force become broad in width.

unstable regions.

The effect of damping depends on the width of
The narrower unstable region

becomes stable in the presence of damping.

. Appendix A: Coefficient Matrices

Waz W11t W22 W2y W3 twWa Wizt w22 W3+ wer Wizt Wu2
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0.2 ¢ "\/’ N 4
0.1 h=0. 02 ]
1 1 1 1 il 1
8 10 14

0 2 4 6

Fig. 15 Effect of damping on unstable regions:
case I,type 1, Nyo=0.0 and x=1.5.
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[A]: aj+(G—1)N,n+(m—1)N}=1"m; (A—1)
[B]: b{j+(—1)N,n+(m—1)N}=0*nl nnis
(A—2)
[C]: eli+(E—DN,n+(m—1N}=x’nn; (A—3)
where  I'mwii =11 Won Wisdady, I mni;=1 | & W

2 dxady
Wi,-dxdy and x= _2_1_ /11:775 3
© ku

Appendix B: Vibration Analysis

The equation of motion describing free vibra-
tions of a plate subjected to static stress is given by
setting Ny,: =0 in equation (9) as follows:

UHT}+[FITH Nuol GI{T}={0}  (B—1)
The solution of the vibration problem is assumed in
the form

{TY=e™{T)} (B—2)
where fi in the non-dimensional natural frequency.
Equation (B— 1) can be rewritten as

([F1+ Nuwol X T}= #*{ T} (B—3)
The eigenvalue ii* and the corresponding eigenvec-
tor {T} can be obtained by using the scientific sub-
routine library of a digital computer.

If one puts n=0 and Ny, =1, the equation for

the buckling eigenvalue A is obtained.
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