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Abstract  

The monogonont rotifer Brachionus plicatilis produces resting eggs through sexual reproduction 

(mixis), which is affected by external and internal factors.  We collected resting eggs from rotifers 

cultured at 15 and 25ºC and hatched them with and without 14-day dormancy in the dark.  Stem 

females hatched from both conditions were further cultured at 15, 20 and 25ºC.  We obtained two 

phenotypes, one with high mixis (more than 50%), which was hatched from resting eggs formed at 

15ºC without dormancy, and another in which sexual reproduction occurred at 25ºC and resting 

eggs were formed at 15ºC with a 14-day dormancy.  In the latter phenotype, mictic females 

appeared at 15ºC, but not at 25ºC. Using subtractive hybridization, we isolated one gene from the 

latter phenotype of females that had no significant similarity to known genes in BLAST searches.  

We propose that this gene is unique to rotifer mictic reproduction.  Ongoing characterization of 

this gene attempts understand its role in mixis. 
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Introduction 

The life cycle of monogonont rotifers includes both sexual and asexual reproduction, and is 

regulated by external and internal factors.  Many studies have been conducted with the goal of 

inducing rotifer sexual reproduction, termed mixis, and summaries of these works have been 

published (Gilbert, 1974; Pourriot & Snell, 1983; Hagiwara et al., 1994; Denekamp et al., 2009).  

It is well documented that sexual reproduction resulting in formation of ephippia in cladoceran 

species is induced when the environment turns worse (D’Abramo, 1980).  Cysts of Artemia also 

appear under poor environmental conditions (D'Agostino & Provasoli, 1968; Versichele & 

Sorgeloos, 1980).  In contrast, sexual reproduction of monogonont rotifers occurs under moderate 

conditions (Hino & Hirano, 1984; Lubzens et al., 1985; Snell, 1986; Hagiwara et al., 1988).  The 

optimal condition for inducing mixis coincides with that for asexual reproduction.  New insight 

was brought by our recent finding through the treatment of stem females hatched from resting eggs.  

When stem females experienced starvation after hatching, this induced a higher percentage of mixis 

in their offspring (Hagiwara et al., 2005).  An important next step is to understand the genetic basis 

of resting egg formation.  Various studies on single gene function have been published in recent 

years (Wheelock et al., 1999; Kaneko et al., 2002, 2005), and increasing molecular information has 

been available on bdelloid rotifers (Mark Welch & Meselson, 2001; Mark Welch & Mark Welch 

2005; Pouchkina-Stantcheva et al., 2007) and monogonont brachionid rotifers (Suga et al., 2007a, 

2007b, 2008); however, there is almost no information on gene regulation in the brachionid rotifer 

life cycle.  

In order to isolate mixis-related genes from brachionid rotifers, our strategy was to establish a 

phenotypically altered rotifer clone whose mixis induction could be fully manipulated by regulation 

of culture condition.  For this purpose, we applied several former findings regarding rotifers, 

indicating that some sexual reproductive features are inherited by offspring through the maternal 

cytoplasm.  Hino & Hirano (1985, 1988) reported that temperature and salinity during resting egg 

formation affect mixis induction in the derived clone hatched from the resting eggs.  Hagiwara & 

Hino (1989) found that rotifer clones with active mixis appear when they are hatched from resting 

eggs without dormancy.  By obtaining a phenotypically altered rotifer clone in which mixis is 

induced only under restricted conditions, we conducted cloning of sex-related genes using the 

subtraction hybridization method.   
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Materials and methods 

Selection of phenotypically altered rotifer clone for sex-related gene study 

The euryhaline rotifer Brachionus plicatilis Clone NH1L (Hagiwara et al., 1989, 1994, 2005) 

was used for the present study.  In order to obtain a rotifer clone with higher mixis induction, we 

regulated the life history of ancestral individuals.  First, the phenotypically altered NH1L strain 

was established from stem females starved for 12 hours after hatching and fed thereafter, based on 

the finding that a strain from starved stem females showed higher mixis induction (Hagiwara et al., 

2005).  The rotifer clone was kept cultured at 25ºC, 11 ppt salinity, 0L:24D and by feeding with 

Nannochloropsis oculata.  Rotifers were then cultured at two different temperatures (15 and 25ºC) 

and the obtained resting eggs were incubated under two different light conditions for each 

temperature: Condition 1, irradiation with 20W fluorescent bulbs after preservation in darkness for 

14 days; Condition 2, irradiation immediately after formation.  These treatments were based on the 

findings of Hagiwara & Hino (1989), who reported that higher mixis induction is observed with 

rotifer clones from resting eggs that were not put in a dormant stage.  Hatched clones were 

cultured at three temperature levels (15, 20 and 25ºC) for 14 days, and the mixis rate of each clone 

was calculated: (No. of unfertilized and fertilized mictic females) / (total egg carrying females).  

Clones in which mixis was not induced during the above treatment were cultured at 15, 20, 25 

and 30ºC to monitor the population growth and mixis induction. 

 

Isolation of total RNA 

Brachionus plicatilis clone, which was phenotypically altered clone derived from clone NH1L, 

was cultured at 25ºC in 11 ppt, and fed Nannochloropsis oculata.  The rotifer culture was divided 

into 2 cultures when the rotifer density reached 12.5 individual per ml.  One rotifer was cultured at 

the same condition for 6 days; another was cultured at 15ºC for 7 days.  Each rotifer was harvested 

by filtration onto a plankton net (45 micron mesh) that was washed with 11 ppt seawater.  Each 

rotifer was resuspended in 700 ml 11 ppt seawater that was exchanged every 3 h to allow the 

rotifers to consume any remaining Nannochloropsis and excrete their gut contents.  The washed 

and starved rotifers were collected by plankton net and suspended in Isogen (Nippon Gene, Japan).  

The rotifers were homogenized with 0.8 mm glass beads using a vortex mixer, and total RNA was 

isolated from the homogenate according to the manufacturer’s instructions of Isogen. 
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Construction of subtractive cDNA library 

Approximately 1.0 g of total RNA from each cultured clone (NH17L at 15 and 25ºC) was used 

to construct a subtractive cDNA library using a PCR-select cDNA subtraction kit (Clontech, USA) 

according to the manufacturer’s instructions.  PCR amplification was conducted using a GeneAmp 

PCR System 9700 (Applied Biosystems, USA).  The optimal number of cycles for the 1st and 2nd 

PCR was 28 and 13, respectively.  An aliquot of the subtractive cDNAs was ligated into pGEM-T 

Easy vector (Promega, USA) and then transformed into Escherichia coli strain DH.  The 

transformed DH5 strains were infected on the LB agar plates with ampicillin (final concentration 

was 100 g/ml), and then cultured at 37ºC.  Randomly picked up about 800 colonies were cultured 

in LB broth media containing ampicillin (final consecration was 100 g/ml) at 37ºC.  The plasmid 

DNAs were isolated using R.E.A.L. Prep 96 Plasmid Kit (Qiagen, Germany).  To detect specific 

expressed cDNA clones, dot blot hybridization analysis using Hybond-N+ nylon membranes (GE 

Healthcare, UK) was performed with the DIG-labeled subtractive cDNAs as the probe, according to 

the manufacturer’s instructions of the PCR-select cDNA subtraction kit and the DIG DNA Labeling 

and Detection Kit (Roche, Switzerland). 

 

Sequence analysis and BLAST search 

The isolated plasmid DNAs were sequenced with ABI BigDye v1.1 chemistry using M13 

forward and reverse primers. Fragments were electrophoresed on an ABI PRISM 310 Genetic 

Analyzers (Applied Biosystems).  These sequence data were compared to the EMBL/GenBank 

database using BLSTIN and BLSTX (Altschul et al., 1997). 

 

Statistical Analysis 

Chi-square contingency test was conducted to observe the different hatching rates of resting 

eggs.  The average mixis rates of the hatched clones cultured at different temperatures on the same 

culture day were compared by the Tukey-Kramer post-hoc test followed by one-way ANOVA 

(p<0.05). 
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Results  

Selection of phenotypically altered rotifer clone 

The percent hatching of resting eggs was the highest (63.8%) when resting eggs were produced 

at a higher temperature (25ºC) and incubated after dormancy (Table 1).  

When rotifers were cultured at three temperature levels (15, 20 and 25ºC) for 14 days, the 

highest mixis was observed at 20ºC (Fig. 1).  Two out of 6 rotifer clones at 20ºC showed the 

highest mixis, at more than 50%; these originated from resting eggs at 15ºC with immediate 

irradiation.  Among them, one clone showed the highest mixis, at 65 %, 3 times higher than the 

parental clone NH1L.  Clones from resting eggs formed at 15ºC and irradiated after preservation at 

darkness for 14 days and cultured afterwards at 25ºC did not engage in sexual reproduction at 25ºC.  

There were 28 clones in total in which mixis was not induced at 25ºC.  

Among the 28 clones in which mixis was not induced at 25ºC, we selected one clone 

(designated as NH17L) that originated from a resting egg produced at 15ºC and hatched without a 

dormant stage.  This clone grew well at 2030ºC (Fig.2).  However, mixis was not induced at 

higher temperature (25 and 30ºC) and the highest mixis rate was observed at 15ºC (Tukey-Kramer 

post-hoc test, p<0.05, one-way ANOVA, df=3, F=5.023-136.962, p<0.04; Fig .3).  The phenotype, 

controlled mixis induction against culture temperature, was constantly maintained for 2 years (data 

not shown). 

 

Subtractive cDNA clones 

From the subtractive cDNA library 768 clones were randomly selected using dot blot 

hybridization analysis, and 6 colonies (designated Subt2C4, Subt2F5, Subt2F7, Subt3C3, Subt3G, 

and Subt3H1) were picked up as the specifically expressed cDNAs in NH17L cultured at 15ºC.  

These clones were sequenced and submitted to the NCBI database using BLSTIN and BLSTX 

(Table 2).  The Subt3H1 clone had a sequence homologous to that of retinoblastoma-binding 

protein 4, whereas the other 5 clones had no significant similarity to genes in the GenBank 

database. 
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Discussion 

From our past findings in B. plicatilis, some sexual reproductive features appear to be inherited 

by offspring through the maternal cytoplasm. (Hino & Hirano, 1985, 1988; Hagiwara & Hino 1989; 

Hagiwara et al., 2005).  When we encountered a B. plicatilis Yashima clone in which mixis was 

induced only at 10ºC when the temperature was changed between 10 and 30ºC, we hypothesized 

that culture history during resting egg production and diapause may have effects (Hagiwara et al., 

1989).  Based on these previous findings, we systematically varied the conditions for resting egg 

formation, diapause and hatching in this study, and obtained variable mixis induction in F1 progeny 

(Fig. 1).  One clone appeared with a very high mixis rate (65%), 3 times higher than that of the 

parental NH1L clone, and may be applicable for large-scale resting egg production for long-term 

preservation.  From the report of Hino & Hirano (1985) and Hagiwara et al. (1989), we anticipated 

that rotifer clones that did not show mixis at 25ºC may undergo mixis at higher temperatures when 

these clones were hatched from resting eggs without dormancy and produced under low 

temperature (15ºC). Indeed, the clone in which mixis was not induced at temperatures greater than 

20ºC showed mixis only at 15ºC.  

To isolate mixis-related genes, we used NH17L derived from NH1L resting eggs, the conditions 

of which were regulated for formation, diapause and hatching.  We compared the expressed genes 

of the clone NH17L cultured at 15 and 25ºC using subtractive hybridization.  It has been shown 

that the Y-box protein (YP) family is characterized by an evolutionarily highly conserved nucleic 

acid-binding domain, called a cold-shock domain, from bacteria to humans (Zend-Ajusch et al., 

2002).  In this study, we did not isolate the YP gene, although subtractive cDNAs were constructed 

from rotifers cultured at 10ºC.  It was suggested that the culture temperature at 15ºC was not cold 

for this clone or that the rotifer acclimated to this temperature over 7 days.  

Among the 6 isolated clones, Subt3H1 showed high similarity to Retinoblastoma-binding 

protein (RBBP) from Tribolium castaneum. RBBP P55 in Drosophila is homologous to the WD40 

repeat protein Multicopy Suppressor of IRA1 (MSI1) from Arabidopsis (Guitton & Berger, 2005). 

Guitton & Berger (2005) reported that single mutations in the gene MSI1 were able to initiate 

parthenogenetic development of the embryo in A. thaliana from eggs cells produced by meiosis.  

In several animal species, female gametes are able to initiate embryogenesis in the absence of 

fertilization, a process referred to as parthenogenesis (Mittwoch, 1978).  In sexual reproduction of 
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Brachionus, mictic females produce haploid oocytes through meiosis, which develop either into 

haploid males or, if fertilized, into resting eggs.  Several authors reported that mictic females did 

not produce resting eggs unless they were mated with haploid male until 9 h after birth (Snell & 

Childress, 1987; Hagiwara et al., 1988; Gomez & Serra, 1996).  These findings suggested that the 

embryogenesis into a haploid male from a haploid oocyte in a young mictic female was inhibited 

during the possible mating period.  It could be suggested that Subt3H1 inhibits the development of 

haploid oocytes into haploid males in young mictic females during the possible mating period, so 

that Subt3H1 was estimated to have the same function as the MSI1 gene. 

The other 5 clones have no significant similarity to GenBank database entries by BLAST search.  

Because there is little genomic data for Gnathifera, the transcripts that we found with no known 

function may represent genes that are species-, class- or phylum-specific.  Further study of these 

clones will no doubt greatly expand our understanding of the mixis and biology of rotifers.  
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Labels of Figures: 

 

Fig. 1. Mixis induction of F1 progenies, obtained by different treatments of culture conditions. 
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Fig. 2. Population growth of a phenotypically altered clone at 4 culture temperatures. Each plot and 

bar indicates average and standard deviations of 3 replicates, respectively. 
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Fig. 3. Daily change of mixis rate of a phenotypically altered clone at 4 culture temperatures. Each 

plot and bar indicates the average and standard deviations of 3 replicates, respectively. Plots with 

different alphabets indicate significant differences among the same culture day (a>b>c, 

Tukey-Kramer post-hoc test, p<0.05). 
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Table 1 Cumulative hatching rate of resting eggs prepared at 4 conditions. 

 a>b>c>d, χ2 test, p<0.05 

 

 

 

Table 2 Highly expressed genes in Brachionus plicatilis NH17L strain cultured at 15ºC and their putative function. 

Clone   Accession   Clone size     Gene product name or            Score   E-value 

name   number    (bp)            probable function 

Subt2C4 AB521114 574 Transcription factor BTF3 37.4 0.79 

Subt2F5 AB521118 950 Conserved Plasmodium protein (unknown function) 42.4 0.069 

Subt2F7 AB521115 683 Nitrilase 1 59.7 2e-07 

Subt3C3 AB521116 388 beta-glucosidase 55.5 2e-06 

Subt3G3 AB521117 661 Response regulator receiver domain protein  36.6 1.9 

Subt3H1 AB521113 1875 Retinoblastoma-binding protein 4 725 0.0 

Water temperature of 
resting eggs formation (ºC) 

Timing of irradiation n 
Number of hatched 

neonates 
Hatching rate（%）

25 14th day after formation  600 383 63.8a 

25 Immediate after formation  298 127 43.3b 

15 14th day after formation  360 114 31.7c 

15 Immediate after formation 1200 142 11.8d 


