レーザー誘起蛍光法による反応性スパッタリング中の 中性インジウム原子密度計測

娀	戸	拓	也*	・阿	野	`	巳*
白	方		浩*	・松	田	良	信**

Measurement of Indium Density in the Reactive Sputtering Using the Laser Induced Fluorescence

by.

Takuya KIDO*, Kazumi ANO* Kazuhiro SHIRAKATA* and Yoshinobu MATSUDA**

We have investigated the reactive sputtering of Indium-Tin-Oxide (ITO) in a dc glow discharge. Spatial distributions of absolute density of sputtered indium atoms were measured by the laser induced fluorescence spectroscopy. The maximum value of the indium density was 10^{11} cm⁻³ for the case of pure argon dc discharge at the pressure of 0.2 Torr and the discharge voltage of 800 V.

第1章 まえがき

透明導電性薄膜は、現在では、デジタル時計や電卓 の液晶表示装置の電極、および太陽電池の電極などに 広く応用されている。より低抵抗、高透明度の薄膜の 再現良い膜形成を目指して、作製プロセスに関する数 多くの研究が行われてきた。その結果、最近では、化 合物セラミックスであるインジウムスズ酸化物(ITO) をターゲットとし、酸素・アルゴン(Ar)混合ガスを 動作気体とした、DC および RF のマグネトロン反応 性スパッタリングによる作製法が一般的に使用される ようになってきた^{1,2})。

ところが、これまでの反応性スパッタリング過程の 研究では、入力に相当する成膜条件と出力に相当する 得られた膜質とを直接比較してプロセスの優劣比較を 行うという経験論的な研究が主で、膜形成に最も本質 的な役割を果たしている反応性スパッタリングプロセ ス自体は、完全に理解されているわけではない。反応 性スパッタリングの解明を目指す試みとして、反応性 ガスの圧力や入力パワーなどが薄膜の特性に及ぼす影 響を調べることなどが行われつつあるが、定量的な粒 子計測を通じての粒子キネティクスの議論には、至っ ていない³。

他方,半導体薄膜の作製に広く用いられる化学的気 相成長(CVD)プロセスにおいては,そのプロセス自 体の解明の重要性が早くから認識され,レーザーを用 いたプロセシングプラズマ中の粒子計測およびグロー 放電のシミュレーションを通して,CVDプロセスの 粒子キネティクスが明らかにされつつある^{4,5,6)}。反 応性スパッタリング過程をはじめとする物理的気相成 長(PVD)プロセスにおいても,このような立場から のアプローチは,非常に重要である。そこで本研究で は,ITOの反応性スパッタリング過程をプラズマ中 の粒子キネティクスの観点から理解するために,DC グロー放電中のスパッタインジウム(In)原子密度の定

平成5年9月30日受理

^{*}電気情報工学専攻(Graduate Student, Department of Electrical Engineering and Computer Scince) **電気情報工学科(Department of Electrical Engineering and Computer Science)

量計測を行った。

本論文では、レーザー誘起蛍光(LIF)法による中性 In 原子計測, Ar ガスを用いたレーリー散乱による In 密度の絶対値較正について述べた後,酸素分圧が スパッタ In 原子密度,放電電流,プラズマ発光に及 ぼす影響に関する実験結果を示し,それらを通じて ITO の反応性スパッタリング過程について議論する。

第2章 レーリー散乱による LIF 信号強度の絶対密度 較正

ここでは, LIF 法による In 原子の検出とレーリー 散乱による光学系の較正法について述べる。

2.1 LIF 法による In 原子の検出

ITO 薄膜を形成するプラズマ中には、ITO ターゲ ットからスパッタされた In や Sn(スズ) などの原子 や分子が存在する。今回は、比較的検出が容易な In 原子を計測した。In 原子は InAs や InP などの化合物 半導体の材料として広く用いられ、InP のエッチング や In 蒸気などで LIF 法による In 原子計測が行われて いる^{7.8}。

図1に In 原子のエネルギー準位図と LIF に用いた 励起と蛍光の遷移を示す。基底状態の In 原子密度を 計測するため、 $5^2 P_{1/2}^o \rightarrow 6^2 S_{1/2}$ (410.29nm)の遷 移をレーザー励起し、 $6^2 S_{1/2} \rightarrow 5^2 P_{3/2}^o$ (451.27nm) 遷移の蛍光を検出した。この遷移は、Gottscho等が 用いた遷移と同じ遷移である。In 原子の LIF 信号強 度は,式(1)で与えられる。

$$S_{\rm LIF} = N_{\rm In} \gamma \, V \, \frac{A_{23}}{\Sigma A_{2i} - A_{21}} \, \frac{d\Omega}{4 \, \pi} (TQ)_{451.27} \frac{eG}{C} \tag{1}$$

ただし、 N_{in} :In 原子密度、 η :汲み上げ効率、V:散乱 体積、A:アインシュタインの A 係数、 $d\Omega$:観測立体 角、T:光学系の透過率、Q:光電子増倍管の量子効率、 e:素電荷、G:光電子増倍管の電流増倍率、C:光電子 増倍管の負荷容量である。

なお, 蛍光の偏光性⁴⁾を考慮した結果, In 原子の 場合には無視できることがわかったので, 式(1)には, 偏光因子は含まれていない。

2.2 レーリー散乱による光学系の較正

LIF 信号の絶対密度較正を行うため,準大気圧にお ける Ar ガスのレーリー散乱を用いた。この方法は, レーリー散乱断面積が1/A⁴に比例するため近紫外光 などの短い波長を用いて原子検出を行う場合に非常に 有効な方法であり,比較的容易に較正ができる⁹⁾。 Ar 原子によるレーリー散乱信号強度は,式(2)で表さ れる。

$$S_{\text{Ray}} = \frac{3}{2} \frac{I_L}{hc/\lambda} V N_{\text{Ar}} \frac{d\Omega}{4\pi} \sigma_{\text{Ar}} T_L(TQ)_{410.29} \frac{eG}{C}$$
(2)

ここで、 I_L : レーザーパワー密度、h: プランク定数、 c: 光速、 λ : 励起波長、 N_{Ar} : 原子密度、 σ_{Ar} : レーリー 散乱断面積、 T_L : レーザーパルス幅である。

同じ観測システムにおいて LIF 信号とレーリー散 乱を計測することにより, In 原子密度は,式(1)と式 (2)を用いて式(3)から計算できる。

$$N_{\rm In} = \frac{3}{2} I_L T_L \sigma_{\rm Ar} N_{\rm Ar}$$

$$\frac{\lambda}{hc} \frac{1}{\eta} \frac{\Sigma A_{2i} - A_{21}}{A_{23}} \frac{(TQ)_{451.27}}{(TQ)_{410.29}} \frac{S_{\rm LIF}}{S_{\rm Ray}}$$
(3)

ここで,式(3)に次の値を代入することにより式(4)が得 られ,In原子密度は,式(4)にレーリー散乱の測定結 果を代入することにより得ることができる。

$$\begin{split} &I_L T_L = 11.9 (\text{J/m}^2), \ \eta = 0.64 \\ &\sigma_{\text{Ar}(410.29)} = 1.28 \times 10^{-30} (\text{m}^2)^{10)} \\ &\frac{A_{23}}{\Sigma A_{2i} - A_{21}} = 1, \ \frac{(TQ)_{410.29}}{(TQ)_{451.27}} = \frac{5}{7} \\ &N_{\text{In}} (\text{cm}^{-3}) = 5.6 \times 10^{-11} \frac{N_{\text{Ar}} (\text{cm}^{-3})}{S_{\text{Ray}} (\text{mV})} \ S_{\text{LIF}} (\text{mV}) \end{split}$$

52

3.1 実験装置

図2に実験装置の全体図を示す。実験装置は、プラ ズマ発生装置、レーザー、信号検出部からなる。

Fig. 2 Experimental setup.

今回の実験では、直径50mm、電極間隔25mmの平行平 板電極を用い、直流放電によりプラズマを発生させ た。使用した電極は、カソード側に ITO(\ln_2O_3 -10 %wt.SnO₂)ターゲット電極を用い、負の高電圧を 印加する。アノード側の電極には、ステンレス電極 (SUS 304)を用い、アノードとチャンバーはグラン ドとした。また、各粒子の空間分布を測定するため、 直線導入端子を用いて電極全体を放電軸方向にスキャ ンする構造になっている。

スパッタリングガスには高純度 Ar ガス (5N) を 用い,また,反応性ガスとして高純度酸素ガス (4 N)を使用した。圧力のモニターには,電離真空計 (ANELVA MIG-831)とキャパシタンスマノメー ター (MKS)を用いた。

基底状態の In 原子を励起するため、5 Hz で動作させた YAG レーザー (Spectra-Physics, GCR-130) の第3高調波励起色素レーザーを使用した。色素レー ザーの色素溶液には、DPS を p-dioxane に溶かした 溶液(1×10⁻³ mol/1)を用いた。レーザービームは、 レンズとアパーチャーにより直径2 mmのビームとして 入射した。In 原子の励起波長 λ_e =410.29nm における 出力パワー、スペクトル幅は、それぞれ約10kw、20 pmである。また、レーザーパワーは、フォトピンダ イオード(浜松ホトニクス)を用いてモニターし、ジ ュールメーター(gentec, ED-100A, エネルギー感度 104V/J, 受光部直径3.3mm)により感度較正を行った。

発光分光計測は,Ar 原子,酸素原子・分子,そして In 原子の各励起種に対して行った。Ar 原子の発光

は,陰極降下領域内で非常に強く発光する772.42nm(2 $p_2 \rightarrow 1 s_3$) とほとんど発光しない750.38nm(2 $p_1 \rightarrow 1 s_2$)の光を観測した(Arの表記法は,パッシェン 表記である)。酸素の発光では, $6 s^2 S_{1/2} \rightarrow 5 p^2$ $P_{1/2}$ 遷移(777.54nm)の原子と second negative system の A² II_u→X² II_g 遷移(312.31nm)の酸素分 子イオンの発光を計測した。また, In 原子の発光は, $6 {}^2S_{1/2} \rightarrow 5 {}^2P_{1/2}^{\circ}$ 遷移(410.29nm)を観測した。

信号の検出には、分光器(日本分光 CT-25C, 逆分 散 2 nm/mm)と光電子増倍管(Hamamatsu, R 1509) を用いた。分光器は、レーザービームと垂直になるよ うに配置し、集光レンズ(f=100mm)により電極中 心部の信号を分光器のスリット上(200 μ m×20nm)に 集光した。集光レンズには、空間分解能を向上するた めにアパーチャー(15nm×50nm)を設け、放電空間に おける放電軸方向の空間分解能は、0.3nm、観測立体 角は、6.4×10⁻³ sr である。分光器により検出した信 号は、デジタルストレージオシロスコープ(フィリッ プス、500MHz)により平均化処理し計測した。また、 同システムにおいて各励起種の発光分光計測も行っ た。

3.2 実験方法

ロータリーボンプとターボ分子ボンプによりチャン バーをベース圧力(1.5×10⁻⁸ Torr)まで真空排気 した後,微量流量計により任意の酸素分圧(0~0.02 Torr)に設定し、全圧力が0.10または、0.20 Torr となるようにマスフローコントローラーによりArガ スの流量を設定した。圧力設定後,任意の放電電圧 (400~800V)に設定し、予備放電を30分程度行い、 放電が定常状態になった後、計測を行った。また、実 験の間,酸素分圧をモニターすることができないため、 それぞれの実験が終った後に、酸素分圧が設定値であ ることを確認した。

第4章 反応性スパッタリング中の In 原子密度の空 間分布

4.1 In 原子の LIF 信号と絶対密度較正

4.1.1 In 原子密度の検出下限

In 原子の LIF 遷移には,3準位系を用いている。 そのため,ITO スパッタリング中の In 原子は,比較 的簡単に検出することができた。また,プラズマの背 景光は,LIF 信号強度と比べ非常に小さく,SN 比は, 非常に良かった。しかし,高い空間分解能を得るため に観測立体角を小さくしたため、In 原子密度の検出 限界は、 $5 \times 10^7 (cm^{-3})$ であった。

4.1.2 LIF 信号の飽和特性

図 3 に In 原子の LIF 信号の飽和特性を示す。LIF 信号の飽和特性は, 偏光フィルターと ND フィルター を用いてレーザーパワーを減衰させ,信号を計測した。 実際のレーザーエネルギー E=36.5 μ J において, 今 回の実験は, 飽和パラメータ S=600, 汲み上げ効率 η =0.64であり, LIF 信号の飽和条件と広帯域励起条 件を満足していることがわかる。

Fig. 3 Saturation characteristics of the LIF signals.

4.1.3 レーリー散乱による絶対密度較正

In 原子の絶対密度較正を行うため、LIF 信号強度 を Ar ガスによるレーリー散乱強度と比較することに より光学系の絶対較正を行った。

レーリー散乱の測定は、ロータリーポンプにより 10⁻³ Torr 程度まで真空引きした後、Ar ガスの圧力 を 240~720 Torr に設定し、In 原子の励起波長 λ_e = 410.29 nm における Ar ガスの散乱信号を検出した。

図4に Ar ガスのレーリー散乱信号強度の圧力依存 性を示す。散乱信号強度は,圧力に対して線形依存性 を示し,散乱信号が Ar 原子によるレーリー散乱であ ることがわかる。この値を用いて式(4)を計算した結果, 次式の関係が得られた。

$$N_{\rm In}(\rm cm^{-3}) = 5.0 \times 10^7 \ S_{\rm LIF}(\rm mV)$$
(5)

今回の実験では,ビューイングダンプを設置しなか ったため,迷光の影響が大きく,準大気圧の Ar でし かレーリー散乱信号を検出できなかった。それでも,

Fig. 4 Pressure dependence of Rayleigh scattering signals.

光学系の感度較正のためには,十分な結果が得られた。

4.1.4 In 原子密度の経時変化

図 5 に酸素の供給を ON, OFF したときの In 原子密 度と放電電流の経時変化を示す。

酸素を供給した状態で予備放電を30分程度行った後 を測定開始点としており、その時点での In 原子密度 と放電電流の経時変化は、ほぼ一定である。これは、 スパッタ率がほぼ一定で、また、LIF 信号が完全に飽 和していることを示す。

酸素の供給を OFF にすると, In 原子密度と放電電 流は,徐々に増加し15~20分程度で定常状態に落ちつ く。ここで再び,酸素供給を ON にすると,2,3分 で定常状態に達する。この相違は,ON→OFF の状態

Fig. 5 Temporal variations of density and discharge current.

では、ターゲット表面だけではなく、チャンバー全体 に吸着している酸素がゆっくり排気されるために、 ITO ターゲットが酸素でおおわれていない定常状態 に達する時間が長くなり、OFF→ON 状態では、ター ゲットおよびチャンバー全体に瞬間的に酸素が吸着す るためと考えられる。

4.2 反応性スパッタリング中の In 原子密度と空間分 布

4.2.1 In 原子密度の入力パワー依存性

Fig. 6 Discharge power dependence of indium density.

図 6 は、入力パワーと最大 In 原子密度の関係を表 すため、入力パワーを放電電圧と放電電流の積 (V_d I_d) と定義し、純粋な Ar ガスにおける各放電条件に 対する最大 In 原子密度の値をプロットしたものであ る。

In 原子密度は、放電入力パワーを大きくするとと もに増加し、P=0.20 Torr、 $V_d I_d = 12W$ の放電条件に おいて、最大 In 原子密度は、 $1.7 \times 10^{11} cm^{-3}$ である。

この結果から最大 In 原子密度は放電入力パワーと 比例関係にあること,今回の In 原子の LIF 計測では, 励起準位の衝突によるクエンチングや放射トラッピン グなどの影響が無視できることがわかった。

4.2.2 In 原子密度の空間分布

図7に圧力0.20Torr, 放電電圧800Vにおいて,酸素分圧を変化させたときの In 原子密度の空間分布を示す。

In 原子密度の空間分布は,ターゲット表面から任 意の距離だけ離れた地点にピークをもち,その後,ア ノード側に徐々に減少する分布を示す。これは,ター ゲットからスパッタされた高エネルギースパッタ粒子 が雰囲気ガス原子との衝突緩和により熱化されピーク をつくり,その後,拡散によりアノード側に輸送され るためと考えられる。また酸素を付加したとき,In 原子密度とその空間分布に次のような変化がみられ る。

- (1) 酸素を付加することにより、In 原子密度は、
 急激に減少し、P₀₂=10⁻³Torr のとき、最小値
 を示す。さらに、酸素分圧を大きくしたとき、In
 原子密度は、増加する。
- (2) In 原子密度の空間分布において,密度がピークとなる位置が9mm(P₀₂≤4×10⁻⁵Torr)から 15mm(P₀₂≥2×10⁻⁴Torr)に変化し,アノード 側に移動する。

次に,酸素付加の影響をもっとわかりやすくするため,圧力0.20 Torr,放電電圧800V における最大 In 原子密度,Ar*の発光,そして放電電流の酸素分圧依 存性を図8に示す。

 $P_{0_2}=10^{-4}$ Torr 付近において, In 原子密度,発光, 放電電流がともに減少する臨界分圧が存在する。また, In 原子密度の変化は,放電入力パワーの減少よりも

Fig. 8 Oxygen partial pressure dependence of discharge current, emission and indium density.

大きい減少を示し、酸素を付加する前の密度の5%ま で減少する。しかし、発光と放電電流の変化は小さく、 50%程度の変化しか示していない。プラズマ密度の変 化も同様に50%程度である。

4.3 各発光種の空間分布

図 9 (a)~(d)に酸素分圧を変化させたときの各発光種 の空間分布を示す。

図 9 (a), (b)は,それぞれ陰極降下領域内で強発光を 示す 2 $p_2 \rightarrow 1 s_3$ 遷移と,強発光を示さない 2 $p_1 \rightarrow 1$ s_2 遷移の Ar 原子の空間分布である。

負グロー中(9 mm~25mm)の空間分布は,両遷移と も同じ分布を示し,陰極から10mmのところで極大を示 すが,(a)の発光は,陰極前面で非常に強く発光する。 酸素付加による空間分布の変化は,ほとんど見られな いが,発光強度は,放電電流の減少により,小さくな る。しかし,放電電流が4.9 mA から6.0 mA に増加 したとき,発光強度の増加は見られない。また,図9 (a)において,陰極降下領域内の強発光強度と負グロー における発光最大強度の比は,変化していない。

図 9 (c)~(d)は,それぞれ酸素分子イオンと酸素原子 の発光の空間分布である。

酸素分子イオンの発光は,純粋なArの状態でも ターゲットからスパッタされる酸素が存在するため観 測することができた。しかし,酸素分圧の増加ととも に小さくなる傾向を示す。これは,酸素の付加により プラズマの内部状態が変化し,他の励起準位への励起 などが生じているためではないかと考えられる。また, 酸素分子イオンの空間分布は,負グローの中心付近 (15mm) で最大となり, Ar 原子の分布とは異なる。また, 陰極降下領域内の発光は, 弱い。

酸素原子の発光は,酸素分圧が2×10-3 Torr から 観測することができ,また,その強度は,酸素分圧に 比例して大きくなる。発光の空間分布は,シースのエ ッジ付近(9 mm)から陰極に向って発光が増加し,陰 極前面において非常に強く発光する。

Ar 原子と酸素原子の発光において観測される陰極 降下領域内の発光の増加の原因は、次に挙げる陰極降 下領域内における重粒子衝突が考えられる。

- (1) イオン衝突解離励起
- $O_2(Ar) + Ar_{fast}^+ \rightarrow O^*(Ar^*) + Ar_{slow}^+$
- (2) 高速中性粒子衝突解離励起
- $Ar_{slow} + Ar_{fast}^+ \rightarrow Ar_{fast} + Ar_{slow}^+$
- $O_2(Ar) + Ar_{fast} \rightarrow O^*(Ar^*) + Ar_{slow}$

4.4 酸素付加によるターゲットへの影響

In 原子密度の減少と放電電流の減少は、ターゲット表面への酸素の吸着によるターゲット表面の酸化により、ターゲット表面の状態が変化することにより説明することができる。

4.4.1 In 原子密度への影響

今,酸素分圧を2つの領域に分けて考える。

(1) $P_{O_2} < 10^{-4}$ Torr

ターゲットに向かうイオンフラックスの方が酸素 フラックスよりも大きいため、ターゲット表面に酸 素吸着は生じない。

 (2) P₀₂≥10⁻⁴ Torr イオンフラックスよりも酸素フラックスの方が大 きくなるため、ターゲット表面で酸素の吸着が生じ、 ターゲット表面の酸化が生じている。

(1)の領域では、酸素付加の影響は、ほとんど無く、 純Arによるスパッタリングと同じ状態と考えられ る。しかし、(2)の領域では、ターゲット表面の酸化に より、ターゲット表面層の結合エネルギーが大きくな るため、スパッタ率は、減少し、そのため、In原子 密度は、急激に減少する¹¹⁾。また、結合エネルギーの 増加により、スパッタ粒子の運動エネルギーは増加し、 ピークの位置は、ターゲットからより遠くに移動する と考えられる。

金属酸化物のイオンビームスパッタにおける研究に おいて,酸化した金属ターゲットのスパッタでは,ス パッタ率の減少,スパッタ粒子の平均エネルギーの増 加,励起状態のスパッタ粒子の発生などの現象が報告

されている¹²⁾。ITO セラミックターゲットの場合にお いても,ITO が導電性ターゲットであるため同様な メカニズムが可能と考えられる。

4.4.2 放電電流への影響

放電電流の変化においても,ターゲット表面の酸化 により次のことが考えられる。 一般に、1)酸化物の2次電子放出係数 r は、金属ター ゲットよりも大きく¹³, ITO ターゲットの酸化の進展 にともない、r 係数が増加する。次に ITO の主なキ ャリアは、酸素の空格子点(vacancy)と Sn⁴⁺である。 そのため、酸素の吸着により、酸素の空格子点は、減 少し、ITO の表面に抵抗性の層が形成される。した がって、2)この抵抗性の層の形成により陰極降下電 圧が減少し、r 係数は、減少する。これらの2つの効 果は、お互いに相反するものであるが、1)の効果は、 ITO ターゲットがもともと酸化物であることから、 小さいと考えられ、2)の効果によるr係数の減少の 方が大きいと思われる。結局、1)と2)の効果が相 殺するため、放電電流の変化は、小さく、プラズマ密 度は、酸素分圧にあまり依存しないと考えられる。

第5章 結 論

透明導電性薄膜(ITO)を形成する反応性スパッタリ ング中の In 原子密度および各発光種の空間分布,酸 素分圧依存性などを調べた結果,次のことがわかった。

- (1) 反応性スパッタリング中において In 原子の検 出と絶対密度較正に成功した。
- (2) 純 Ar を用いたスパッタリングにおける In 原 子密度は、全圧力0.2 Torr、放電電圧800 V,放 電電流15 mA のとき約10¹¹cm⁻³ であった。
- (3) In 原子密度とその空間分布は、酸素分圧に対して非常に大きな影響を受け、ある臨界分圧以上の酸素を加えることにより、In 原子密度は、1 桁以上の減少を示す。

終わりに,本実験に協力いただいた卒業生の AHMAD ZAIN LOKIMAN 氏に感謝いたします。

参考文献

- V Tvarožek, I Novotný, R Harman and J Kováč, Vacuum, vol.36, No. 7 - 9 (1986) 479.
- S. Ishibashi, Y. Higuchi, Y. Ota and K. Nakamura, J. Vac. Sci. Technol, A 8 (3) (1990) 1403.
- M. Buchanan, J. B. Webb, and D. F. Williams, Appl. Phys. Lett., vol. 37, No. 2 (1980) 213.
- Y. Takubo, Y. Takasugi, and M. Yamamoto, J. Appl. Phys., vol. 64, No. 3 (1988) 1050.
- K. Tachibana, T. Mukai and H. Harima, Jpn. J. Appl. Phys., vol. 30, No. 7 A (1991) 1208.
- A. Kono, N. Koike, K. Okuda and T. Goto, Jpn. J. Appl. Phys., vol. 32, Part 2, No. 4 A(1993)543.
- R. A. Gottscho, G. Smolinsky and R. H, Burton, J. Appl. Phys., vol. 53, No. 8 (1982) 5908.
- P. Bicchi, A. Kopystynska and M. Meucci, Phys. Rev. A, vol. 41, No. 9 (1990) 5257.
- 9) M. Hamamoto, M. Maeda, K. Muraoka and M. Akazaki, Jpn. J. Appl. Phys., vol. 20, No. 9 (1981) 1709.
- A. W. DeSilva and G. C. Goldenbaum; Methods of Experimental Physics, Vol. 9 of Plasma Physics, (Academic, New York, 1970) 107.
- B.R. NATARAJAN, A. H. ELTOUKHY AND J.
 E. GREENE, Thin Solid Films, vol. 69 (1980) 217.
- 12) E. Dullni, Appl. Phys. A, vol. 38 (1985) 131.
- 13) G. Mohan Rao and S. Mohan, J. Appl. Phys., vol. 69, No. 9 (1991) 6652.