磁束オブザーバに基づく制御電流源駆動誘導電動機

ベクトル制御系の解析

辻		峰	男*	•	李	漢	強**
小	淵	太	樹***	•	泉	勝	弘*
山	田	英	*				

Analysis of a Flux Observer Based Vector Control System of an Induction Motor Driven by Controlled Current Source

by

Mineo TSUJI*, Hanqiang LI**, Taiki KOBUCHI***, Katsuhiro IZUMI* and Eiji YAMADA*

In order to improve the robustness against the parameter change, a flux observer based vector control system has been proposed in the literature. However, the relation between the conventional vector control and the observer based one is not evident, because the former is composed of the induction motor model in rotating reference frame and the stationary one is used in the latter. In this paper, a vector control system using the stationary reference frame model and an observer based vector control system using the rotating one are proposed and the relation between them are made clearly. Furthermore, the flux observer based vector control system is analyzed taking account of a PI speed controller. The trajectories of the poles and zeros of the speed transfer function are computed by a linear model and the transient characteristics are discussed.

1. まえがき

誘導電動機のベクトル制御は、トルクの瞬時制御を 可能とし、実用化が進展している。しかし、制御に用 いる二次抵抗の値が実際値と異なると、特性が劣化す る問題点がある。これを改善するため磁束オブザーバ に基づくベクトル制御系が提案されている¹⁾。ところ がこれまで、オブザーバとベクトル制御の関係につい て、あまり明確ではなかった。これは、オブザーバが 主として静止座標系によって構成されているのに対し て、ベクトル制御は回転座標系(滑り周波数制御形) として構成されているためである。そこで本論文では、 静止座標系での誘導機のモデルを用いたベクトル制御 や回転座標系で表現したオブザーバに基づくベクトル 制御系を示して、これらの関係を明確にする。ところ で、筆者らは先に磁束オブザーバに基づくベクトル制 御系の定常及び安定解析を行ったが、回転速度の変動 は無視していた²⁾.本論文では、PI速度制御器を考慮し た磁束オブザーバに基づくベクトル制御系の定常及び 安定解析についても述べる.

2. 磁束オブザーバとベクトル制御の関係

本論文においては、固定子電流を瞬時に制御できる

平成6年4月28日受理

^{*} 電気情報工学科(Department of Electrical Engineering and Computer Science)

^{**} 大学院海洋生産科学研究科(Graduate School of Marine Science and Engineering)

^{***} 電気情報工学専攻 (Graduate Student, Department of Electrical Engineering and Computer Science)

入力と考えて以下の理論を展開する. Fig. 1 に静止座 標系の電流モデルを用いた誘導電動機ベクトル制御系 を示す. ここで,電流モデルは次式で表される.

$$p\begin{bmatrix} \psi_{ra}^{\prime*} \\ \psi_{r\beta}^{\prime*} \end{bmatrix} = \begin{bmatrix} -\sigma_{r}^{*} & -\omega_{r} \\ \omega_{r} & -\sigma_{r}^{*} \end{bmatrix} \begin{bmatrix} \psi_{ra}^{\prime*} \\ \psi_{r\beta}^{\prime*} \end{bmatrix} + \sigma_{r}^{*}M^{\prime*}\begin{bmatrix} i_{sa}^{*} \\ i_{\delta\beta}^{*} \end{bmatrix}$$
(1)
$$\theta^{*} = \tan^{-1}(\psi_{r\beta}^{\prime*}/\psi_{ra}^{\prime*})$$
(2)

(1)式を θ^* に同期して回転する d-q 座標系に変換すると、 $\psi_{a}^{\prime*}=0$ とおけ、次式が得られる.

$$p\psi'_{rd}^* = -\sigma_r^* \psi'_{rd}^* + \sigma_r^* M'^* i \underset{sd}{*}$$

$$\tag{3}$$

$$\omega^* = \omega_r + \sigma_r^* M'^* i \, {}^*_{sq} / \psi'^*_{rd} \tag{4}$$

ただし、
$$\omega^* = p\theta^*$$
.

上式より, Fig. 2 の良く知られたすべり周波数制御形 ベクトル制御系が得られる. Fig. 1 と Fig. 2 は等価で ある. Fig. 1 や Fig. 2 のベクトル制御系では,磁束の

Fig. 1 Vector control system (stationary reference frame).

Fig. 2 Vector control system (rotating reference frame).

演算は誘導電動機の式をそのまま用いたいわゆる磁束 シミュレータによって行われる.一方,制御理論では 状態量を推定するものとして,状態オブザーバが広く 知られている.この状態オブザーバには,出力とモデ ル間の誤差修正項が加えられ,オブザーバの極を自由 に設定できるように工夫されている.この場合,状態 量は磁束であるから磁束オブザーバと呼ばれている. 磁束オブザーバの構成を以下に述べる^{2),3)}.まず,静止 座標系における誘導機の電圧モデルを次式に示す.

$$\begin{bmatrix} e_{sa}^* \\ e_{s\beta}^* \end{bmatrix} = (r_s^* + \sigma^* L_s^* p) \begin{bmatrix} i_{sa}^* \\ i_{s\beta}^* \end{bmatrix} + \frac{M^{\prime*}}{L_r^{\prime*}} p \begin{bmatrix} \psi_{ra}^{\prime*} \\ \psi_{r\beta}^{\prime*} \end{bmatrix}$$
(5)

(1)式を(5)式に代入すると次式が得られる。

$$\begin{bmatrix} e_{sa}^{*} \\ e_{s\beta}^{*} \end{bmatrix} = (r_{s}^{*} + \frac{\sigma_{\tau}^{*}M'^{*2}}{L'_{\tau}^{*}} + \sigma^{*}L_{s}^{*}p) \begin{bmatrix} i_{sa}^{*} \\ i_{s\beta}^{*} \end{bmatrix} + \frac{M'^{*}}{L'_{\tau}^{*}} \begin{bmatrix} -\sigma_{\tau}^{*} & -\omega_{\tau} \\ \omega_{\tau} & -\sigma_{\tau}^{*} \end{bmatrix} \begin{bmatrix} \psi'_{ra}^{*} \\ \psi'_{r\beta}^{*} \end{bmatrix}$$
(6)

(6)式を出力方程式と考え、(1)式で磁束オブザーバを 構成すると次式が得られる。

$$p\begin{bmatrix} \psi_{ra}^{\prime*} \\ \psi_{r\beta}^{\prime*} \end{bmatrix} = \begin{bmatrix} -\sigma_{r}^{*} & -\omega_{r} \\ \omega_{r} & -\sigma_{r}^{*} \end{bmatrix} \begin{bmatrix} \psi_{ra}^{\prime*} \\ \psi_{r\beta}^{\prime*} \end{bmatrix} + \sigma_{r}^{*} M^{\prime*} \begin{bmatrix} i_{sa}^{*} \\ i_{s\beta}^{*} \end{bmatrix} + K \begin{bmatrix} e_{sa}^{*} - e_{sa} \\ e_{s\beta}^{*} - e_{s\beta} \end{bmatrix}$$
(7)

ただし,

$$\boldsymbol{K} = \begin{bmatrix} K_1 & -K_2 \\ K_2 & K_1 \end{bmatrix}$$

esa, essは実際の電動機の電圧である. Fig. 3 に, (7) 式の磁束オブザーバの構成を示す. Fig. 1 では電流モ デルにより磁束が演算されるが, Fig. 3 では実際の出

Fig. 3 Rotor flux observer (stationary reference frame).

力電圧と電圧モデルによる演算値との誤差修正項を加 えて磁束が演算される点が異なっている. Fig. 3 の磁 束オブザーバを用いてベクトル制御系を構成するには, 演算した磁束の方向に基づいて d-q 軸電流 i_{sq}^{s} , i_{sq}^{s} を流せばよい. このときのベクトル制御系を Fig. 4 に 示す. Fig. 1 の制御系に誤差修正項を加えたものが Fig. 4 である. Fig. 4 で, θ^* に同期して回転する d-q軸を考えると, $\psi'_{rq}^*=0$ とおけ, (6)式は以下のようにな る.

$$\begin{bmatrix} e_{sd}^{*} \\ e_{sq}^{*} \end{bmatrix} = \begin{bmatrix} r_{s}^{*} + \sigma_{r}^{*} M'^{*2} / L_{r}^{*} + \sigma^{*} L_{s}^{*} p \\ \omega^{*} \sigma^{*} L_{s}^{*} \end{bmatrix} \\ + \frac{-\omega^{*} \sigma^{*} L_{s}^{*}}{r_{s}^{*} + \sigma_{r}^{*} M'^{*2} / L_{r}^{*} + \sigma^{*} L_{s}^{*} p} \begin{bmatrix} i_{sd}^{*} \\ i_{sq}^{*} \end{bmatrix} \\ + \frac{M'^{*}}{L_{r}^{'*}} \begin{bmatrix} -\sigma_{r}^{*} \\ \omega_{r} \end{bmatrix} \psi_{rd}^{*}$$
(8)

また、(7)式は、次式のように変換される。

$$p\begin{bmatrix} \psi_{ra}^{*}\\ \psi_{rq}^{**} \end{bmatrix} = \begin{bmatrix} -\sigma_{r}^{*} & \omega^{*} - \omega_{r}\\ \omega_{r} - \omega^{*} & -\sigma_{r}^{*} \end{bmatrix} \begin{bmatrix} \psi_{ra}^{*}\\ \psi_{rq}^{**} \end{bmatrix} + \sigma_{r}^{*} M^{*} \begin{bmatrix} i_{sd}^{*}\\ i_{sq}^{*} \end{bmatrix} + K \begin{bmatrix} e_{sd}^{*} - e_{sd}\\ e_{sq}^{*} - e_{sq} \end{bmatrix}$$
(9)

.(9)式で、 ψ^{**}_{ra}=0とおいて以下の式が得られる.

$$p\psi'_{rd}^{*} = -\sigma_{r}^{*}\psi'_{rd}^{*} + \sigma_{r}^{*}M'^{*}i_{sd}^{*} + K_{1}(e_{sd}^{*} - e_{sd}) - K_{2}(e_{sq}^{*} - e_{sq})$$
(10)
$$\omega^{*} = \omega_{r} + \sigma_{r}^{*}M'^{*}i_{sq}^{*}/\psi'_{rd}^{*}$$

$$+K_{2}(e_{sd}^{*}-e_{sd})/\psi_{rd}^{*}+K_{1}(e_{sq}^{*}-e_{sq})/\psi_{rd}^{*} \quad (11)$$

(8), (10), (11)式によるベクトル制御系を Fig. 5 に示
す. Fig. 4 と Fig. 5 は,静止座標系で構成するか回転

Fig. 4 Observer based vector control system (stationary reference frame).

座標系で構成するかの違いだけで、両者は等価である。 Fig. 5 に、PI 速度制御器を付加すると Fig. 6 が得られ る、本論文では、Fig. 6 の解析を行う。

3. パラメータ変動を考慮した解析

Fig. 6 のベクトル制御系について,一次抵抗や二次 抵抗のパラメータ変化を考慮した解析法を提案する.

3.1 系の記述

解析に際し以下の仮定を設ける。

- (i) 電流制御は理想的で,瞬時に制御できる.
- (ii) 一次抵抗 rs, 二次抵抗 r',の変化のみ考慮し, 他 のパラメータはノミナル値とする.

PE : Prediction Error

Fig. 6 Observer based vector control system with a speed controller.

PI 速度制御器について以下の式が得られる.

$$i_{sq}^* = K_P(\omega_r^* - \omega_r) + K_I e_s \tag{12}$$

$$pe_s = \omega_r^* - \omega_r \tag{13}$$

θ*に同期して回転する座標系において,誘導機の式は 次式で与えられる。

$$p\begin{bmatrix} \psi'_{rd} \\ \psi'_{rq} \end{bmatrix} = \begin{bmatrix} -\sigma_r & \omega^* - \omega_r \\ \omega_r - \omega^* & -\sigma_r \end{bmatrix} \begin{bmatrix} \psi'_{rd} \\ \psi'_{rq} \end{bmatrix} + \sigma_r M' \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix}$$
(14)

$$\begin{bmatrix} e_{sd} \\ e_{sg} \end{bmatrix} = \begin{bmatrix} r_s + \sigma_r M'^2 / L'_r + \sigma L_s p \\ w^* \sigma L_s \end{bmatrix} \\ * \frac{-w^* \sigma L_s}{r_s + \sigma_r M'^2 / L'_r + \sigma L_s p} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} \\ + \frac{M'}{L'r} \begin{bmatrix} -\sigma_r & -\omega_r \\ \omega_r & -\sigma_r \end{bmatrix} \begin{bmatrix} \psi' r_d \\ \psi' r_q \end{bmatrix}$$
(15)

(8), (15)式より, 仮定(i), (ii)を考慮して次式が得られる.

$$e_{sd}^* - e_{sd} = bi_{sd}^* - a(\sigma_r^* \psi_{rd}^{\prime*} - \sigma_r \psi_{rd}^{\prime} - \omega_r \psi_{rq}^{\prime}) \qquad (16)$$

$$e_{sq}^* - e_{sq} = bi_{sq}^* + a(\omega_r \psi_{rd}^{\prime*} - \omega_r \psi_{rd}^{\prime} + \sigma_r \psi_{rq}^{\prime}) \qquad (17)$$

ただし,

$$a = \frac{M'}{L'_r}$$

$$b = r_s^* - r_s + (\sigma_r^* - \sigma_r) \frac{M'^2}{L'_r}$$

また、機械系の運動方程式は、次式で与えられる。

$$p\omega_{r} = \frac{P^{2}M'}{4JL'_{r}} (i_{sq}^{*}\psi'_{rd} - i_{sd}^{*}\psi'_{rq})$$
$$-\frac{R_{w}}{J}\omega_{r} - \frac{P}{2J}T_{L}$$
(18)

(10), (11), (12), (13), (14), (16), (17), (18)式により系が記述できたことになる。

3.2 非線形応答の計算

 i_{a}^{*} は一定と仮定し、負荷トルク T_{c} や速度指令 ω^{*} の変化に対する過渡応答を Runge-Kutta 法により求める。状態変数xとして

$$\boldsymbol{x} = [\psi'_{rd}^*, \ \psi'_{rd}, \ \psi'_{rq}, \ \omega_r, \ e_s]^T$$
(19)

を選ぶ. Runge-Kutta 法を用いる場合には, pxが順序 よく計算できればよく,以下の手順で求まる.

1. (12)式より i^{*}_{sq}を計算する.

- る.
- 3. (10)より *p*ψ浩を計算する.
- 4. (14)式より *pψ'ra*, *pψ'ra*を計算する.
- 5. (18)式より pwrを計算する.
- 6. (13)式より pesを計算する.

3.3 定常解析

定常状態では(10), (14)式で *p*=0とおいて, 次式が 得られる.

$$\begin{bmatrix} \sigma_{r}^{*} + a(K_{1}\sigma_{r}^{*} + K_{2}\omega_{r}) & -a(K_{1}\sigma_{r} + K_{2}\omega_{r}) \\ 0 & \sigma_{r} & * \\ 0 & \omega^{*} - \omega_{r} \\ \omega^{*} - \omega_{r} + a(K_{2}\sigma_{r}^{*} - K_{1}\omega_{r}) & a(K_{1}\omega_{r} - K_{2}\sigma_{r}) \\ a(-K_{1}\omega_{r} + K_{2}\sigma_{r}) & K_{2}b \\ & \omega_{r} - \omega^{*} & 0 \\ * & \sigma_{r} & -\sigma_{r}M' \\ a(-K_{2}\omega_{r} - K_{1}\sigma_{r}) & -\sigma_{r}^{*}M' - K_{1}b \end{bmatrix} \begin{bmatrix} \psi'_{ra}^{*} \\ \psi'_{ra} \\ \psi'_{ra} \\ \vdots_{sq}^{*} \end{bmatrix} \\ = \begin{bmatrix} \sigma_{r}^{*}M' + K_{1}b \\ \sigma_{r}M' \\ 0 \\ K_{2}b \end{bmatrix} i_{sd}^{*}$$
(20)

上式をクラウト法で解いて定常解を得る.

3.4 線形モデル

i‱の変化はないものとして,状態量の微小変動を考 えることにより線形モデルを導出する.(10),(14), (18)式より次式を得る.

$$p\Delta \boldsymbol{x}_1 = \boldsymbol{A}_1 \Delta \boldsymbol{x}_1 + \boldsymbol{B}_1 \Delta \boldsymbol{u}_1 + \boldsymbol{B}_2 \Delta \boldsymbol{u}_2 + \boldsymbol{B}_3 \Delta \boldsymbol{u}_3 \qquad (21)$$

$$\Delta \boldsymbol{x}_{1} = [\Delta \psi_{rd}^{**}, \Delta \psi_{rd}, \Delta \psi_{rq}, \Delta \omega_{r}]^{T}$$

$$\Delta \boldsymbol{u}_{1} = \Delta \boldsymbol{i}_{sq}^{*}$$

$$\Delta \boldsymbol{u}_{2} = [\Delta \omega^{*}, \Delta e_{sd}^{*} - \Delta e_{sd}, \Delta e_{sq}^{*} - \Delta e_{sq}]^{T}$$

$$\Delta \boldsymbol{u}_{3} = \Delta T_{L}$$

$$B_{1} = \begin{bmatrix} 0 \\ 0 \\ \sigma_{r}M' \\ P^{2}M'\psi'_{rd}/(4JL'_{r}) \end{bmatrix}, B_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -P/(2J) \end{bmatrix}$$
$$B_{2} = \begin{bmatrix} 0 & K_{1} & -K_{2} \\ \psi'_{rq} & 0 & 0 \\ -\psi'_{rd} & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Delta \boldsymbol{u}_2 = \boldsymbol{U}_x \Delta \boldsymbol{x}_1 + \boldsymbol{U}_u \Delta \boldsymbol{u}_1 \tag{22}$$

ここで,

$$U_{x} = \begin{bmatrix} c & a(K_{2}\sigma_{r} - K_{1}\omega_{r})/\psi_{rd}^{**} \\ -a\sigma_{r}^{*} & a\sigma_{r} & * \\ a\omega_{r} & -a\omega_{r} \end{bmatrix}$$
$$a(K_{2}\omega_{r} + K_{1}\sigma_{r})/\psi_{rd}^{**} \quad d$$
$$* & a\omega_{r} & a\psi_{rq}^{*} \\ a\sigma_{r} & a(\psi_{rd}^{**} - \psi_{rd}^{*}) \end{bmatrix}$$
$$U_{u} = \begin{bmatrix} (\sigma_{r}^{*}M' + K_{1}b)/\psi_{rd}^{**} \\ 0 \\ b \end{bmatrix}$$
$$c = \frac{\omega_{r} - \omega^{*} - K_{2}a\sigma_{r}^{*} + K_{1}a\omega_{r}}{\psi_{rd}^{**}} \\ d = 1 + \frac{K_{2}a\psi_{rq}^{*} + K_{1}a(\psi_{rd}^{**} - \psi_{rd}^{*})}{\psi_{rd}^{**}}$$

(22)式を(21)式に代入すると、次式を得る。

$$p\Delta \boldsymbol{x}_{1} = (\boldsymbol{A}_{1} + \boldsymbol{B}_{2}\boldsymbol{U}_{x})\Delta \boldsymbol{x}_{1} + (\boldsymbol{B}_{1} + \boldsymbol{B}_{2}\boldsymbol{U}_{u})\Delta \boldsymbol{u}_{1}$$
$$+ \boldsymbol{B}_{3}\Delta \boldsymbol{u}_{3}$$
(23)

これは、トルク電流指令を入力と考えた系の線形モデ ルである。PI 速度制御器に関する(12),(13)式で,状 態量の微小変動を考えることにより次の線形モデルが 得られる。

$\Delta \boldsymbol{u}_1 = \boldsymbol{c}_1 \Delta \boldsymbol{x}_1 + K_P \Delta \boldsymbol{r} + K_I \Delta \boldsymbol{e}_s$	(24)
$p\Delta e_s = c_2 \Delta x_1 + \Delta r$	(25)
$c_1 = [0 \ 0 \ 0 \ -K_P]$	

$$c_2 = [0 \ 0 \ 0 \ -1]$$

 $\Delta r = \Delta \omega_r^*$

(23), (24), (25)式より, 次式が得られる。

ここで,

$$p\Delta \boldsymbol{x} = \boldsymbol{A} \Delta \boldsymbol{x} + \boldsymbol{B} \Delta \boldsymbol{r} + \boldsymbol{B}_L \Delta \boldsymbol{u}_3 \tag{26}$$

 $\Delta \boldsymbol{x} = [\Delta \psi_{rd}^{\prime *}, \Delta \psi_{rd}^{\prime}, \Delta \psi_{rq}^{\prime}, \Delta \omega_{r}, \Delta \boldsymbol{e}_{s}]^{T}$ $\boldsymbol{A} = \begin{bmatrix} \boldsymbol{A}_{1} + \boldsymbol{B}_{2} \boldsymbol{U}_{x} + (\boldsymbol{B}_{1} + \boldsymbol{B}_{2} \boldsymbol{U}_{u}) \boldsymbol{c}_{1} \\ \boldsymbol{c}_{2} \\ \ast \\ \boldsymbol{w} \\ \boldsymbol{0} \end{bmatrix}$ $\boldsymbol{B} = \begin{bmatrix} K_{P}(\boldsymbol{B}_{1} + \boldsymbol{B}_{2} \boldsymbol{U}_{u}) \\ 1 \end{bmatrix}, \quad \boldsymbol{B}_{L} = \begin{bmatrix} \boldsymbol{B}_{3} \\ \boldsymbol{0} \end{bmatrix}$

また,出力方程式は次式で与えられる.

$$\Delta y = C \Delta x$$

ただし,

$$\Delta \boldsymbol{y} = \Delta \boldsymbol{\omega}_r, \quad \boldsymbol{C} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

(26),(27)式より速度伝達関数 Δω_r(s)/Δω^{*}(s)の極や 零点が計算できる。

4. 解析結果

解析に用いた誘導機のノミナル値は、2.2kW, r_s = 0.662 Ω , r'_{τ} =0.645 Ω , L_s = L'_{τ} =0.086H, M'=0.082H, J=0.0617kg·m² (含直流機) である。Fig. 7~Fig. 10 は、(26)式より求めた速度伝達関数 $\Delta \omega_{\tau}(s)/\Delta \omega^{*}(s)$ の 極や零点の軌跡で、一次および二次抵抗値をパラメー タとして変化させている。

Fig. 7 はオブザーバゲイン $K_1 = K_2 = 0$ の従来形に相当し, Fig. 8~Fig. 10 がオブザーバを用いた場合である。いずれの場合においても、パラメータ変化のない, $r_s = r_s^*$, $r_r' = r_r'^*$ の場合, 極 p_1 , p_2 と零点 z_1 , z_2 は完全

Fig. 7 Trajectories of poles and zeros.

(27)

に消去し、トルク伝達関数は定数となる.また、この 場合の複素共役極 かは次式で与えられる²⁾.

$$\lambda = -(\sigma_r + K_1 \frac{\sigma_r M'}{L_r} + K_2 \frac{\omega_r M'}{L_r'})$$

$$\pm j(\omega^* - \omega_r + K_2 \frac{\sigma_r M'}{L_r'} - K_1 \frac{\omega_r M'}{L_r'})$$
(28)

これらの極と零点は誘導電動機のベクトル制御に関す るものである。一方,極 かと零点 ふは,機械系の運動 方程式と PI 速度制御器に大きく関係している。従来 のベクトル制御の場合,極かと零点 をは互いに消去さ れているので、極か、かと零点 ス, スによって過渡特性 が決まることになる、この場合、かは二次時定数とすべ り周波数によってその値が決まるため、パラメータ変 動時の動特性を変えることは不可能である. オブザー バを用いると, Fig.8 に示すように,極かを自由に設 定することができる、かの実部を小さくすることで、多 少パラメータが変動しても,この根が過渡特性に及ぼ す影響は無視できるようになる。これは、理想的なト ルク制御が行われることを意味する。この結果、機械 系の運動方程式と PI 速度制御器だけで応答が決まる ことになり、大変に都合が良い. 極 p3は、Fig.7では 大きく変化するが、Fig.8ではほとんど変化せずパラ メータ変動の影響をあまり受けない。

Fig. 9 は,慣性モーメントがノミナル値の 1/2 の場 合である。Fig. 8 と比べると極 p_3 が大きく変化するだ けで,ほかの極や零点はあまり変化していないことが わかる。Fig. 10 は,回転速度 N=100rpm の場合であ る。 K_1 , K_2 を N=1000rpm の場合と同じ値にしている ため、 p_1 、aが虚軸に近づいている。しかし、 p_1 、aは

(28)式の極を中心に動くので,適当な位置に移動する ことが可能である.以上の結果,オブザーバの極は(28) 式で設計できることが判明した.オブザーバゲインの 選定に関しては,上記の他に定常トルク誤差や観測ノ イズが安定性に及ぼす影響を考慮しなくてはならない.

Fig. 11, Fig. 12 は,速度指令 N*を50rpm ステップ 変化させた場合の応答で、それぞれ線形モデルの応答 波形、非線形モデルの応答波形である。応答波形を比 較すると、良く一致していることから、非線形モデル から線形モデルの導出が正しく行われたことが確認さ れる。

Fig. 11 Transient responses for the step change of speed command (liner model).

Fig. 12 Transient responses for the step change of speed command (nonliner model).

Fig. 13, Fig. 14 は, 非線形モデルにおいて負荷トル クを5.0N・m ステップ変化させた場合の応答である。 Fig. 13, Fig. 14 はそれぞれ $r_s/r_s^* = r'_r/r_r^*$ が0.8及び 1.2の場合で,一次及び二次抵抗がともに正しく推定さ

Fig. 13 Transient responses for the step change of load torque.

Fig. 14 Transient responses for the step change of load torque.

れていない場合の結果である. 従来のベクトル制御 ($K_1 = K_2 = 0.0$)においては,磁束の変動が大きく,回 転数の応答が定常状態に早く整定したり,遅くまで整 定しなかったりして,抵抗変化の影響を大きく受ける ことがわかる.一方,オブザーバ方式においては,電 流,磁束,回転数の応答は Fig. 13 と Fig. 14 でほとん ど一致し,抵抗の変化に対しロバストである.

5. あとがき

本論文をまとめると以下のようになる.

(1) 静止座標系でのベクトル制御系の構成を新たに 示し、磁東オブザーバに基づくベクトル制御系と従来 のベクトル制御との関係をより明確にすることができ た.

(2) 速度制御器を含めた磁束オブザーバに基づくベ クトル制御系の線形モデルを提案した

(3) 解析の結果,誘導機のベクトル制御に起因する 極はオブザーバによって自由に移動でき,機械系の極 を考慮して速度制御器が設計できることが判明した.

(4) オブザーバに基づくベクトル制御系では、一次 及び二次抵抗が変化しても、設計した速度の応答が得 られることが明らかになった。

最後に本研究の図面作成に協力いただいた本学研究 生の川藤善彦君に感謝する。また、本研究の一部は文 部省科学研究費(一般研究 C)によったことを記し、謝 意を表す。

参考文献

- 1) 掘・V. Cotter・茅:「誘導電動機の磁束オブザー バに関する制御理論的考察」,電学論 B, 106, 11 (昭 61) pp. 1001-1008.
- 2) 辻・山田・泉・小山:「磁束オブザーバに基づく 制御電流源駆動誘導機のペクトル制御」,電学論
 D, 113, 10(平 5) pp. 1145-1153.
- G. C Verghese and S. R. Sanders: "Observers for Faster Flux Estimation in Induction Machines", IEEE PESC'85 Rec. (1985) pp. 751 -760.

$$C_{1} = \sqrt{\frac{2}{3}} \begin{bmatrix} 0 & -\sqrt{3}/2 & \sqrt{3}/2 \\ 1 & -1/2 & -1/2 \end{bmatrix}$$

$$C_{2} = \begin{bmatrix} \cos\theta^{*} & \sin\theta^{*} \\ -\sin\theta^{*} & \cos\theta^{*} \end{bmatrix}$$

$$C_{3} = \sqrt{\frac{2}{3}} \begin{bmatrix} \sin\theta^{*} & \sin(\theta^{*} - 2\pi/3) & \sin(\theta^{*} - 4\pi/3) \\ \cos\theta^{*} & \cos(\theta^{*} - 2\pi/3) & \cos(\theta^{*} - 4\pi/3) \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

rs, r'_r:一次,二次抵抗 Ls, L'_r:一次,二次自己インダクタンス M':相互インダクタンス $\sigma = 1 - M'^2 / (L_s L'_r): 漏れ係数 (0.0909)$ $\sigma_r = r'_r / L'_r: 二次時定数の逆数 (7.5)$ P: 極数(4) $e_{sa}, e_{sg}: \alpha 軸, \beta 軸の一次電圧 (静止)$ $i_{sa}, i_{sg}: \alpha 軸, \beta 軸の一次電流$ $\psi'_{ra}, \psi'_{rg}: \alpha 軸, \beta 軸の一次電流$ $\psi'_{ra}, \psi'_{rg}: \alpha 軸, g 軸の一次電流$ $e_{sd}, e_{sq}: d 軸, q 軸の一次電流$ $\psi'_{rd}, \psi'_{rq}: d 軸, q 軸の一次電流$ $\psi'_{rd}, \psi'_{rq}: d 軸, q 軸の一次電流$ $\omega_r: 回転角速度 (電気角)$ $T_e: 発生トルク$ p: 微分演算子 (= d/dt)

Δ:微小変動量

j:虚数単位