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Abstract  

Cardiovascular functions, including blood pressure and vascular functions, exhibit diurnal 

oscillation. Circadian variations have been clearly shown in the occurrence of 

cardiovascular events such as acute myocardial infarction. Circadian rhythm strongly 

influences human biology and pathology. The identification and characterization of 

mammalian clock genes revealed that they are expressed almost everywhere throughout the 

body in a circadian fashion. In contrast to the central clock in the suprachiasmatic nucleus 

(SCN), the clock in each tissue or cell is designated as a peripheral clock. It is now 

accepted that peripheral clocks have their own roles specific to each peripheral organ by 

regulating the expression of clock-controlled genes, although the oscillation mechanisms of 

the peripheral clock are similar to that of the SCN. However, little was known about how 

the peripheral clock in the vasculature contributes to the process of cardiovascular disorders. 

The biological clock allows each organ or cell to anticipate and prepare for changes in 

external stimuli. Recent evidence obtained using genetically engineered mice with 

disrupted circadian rhythm showed a novel function of the internal clock in the 
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pathogenesis of endothelial dysfunction, hypertension and hemostasis. Loss of 

synchronization between the central and peripheral clock also contributes to the 

pathogenesis of cardiovascular diseases since restoration of clock homeostasis could 

prevent disease progression. Identification of clock-controlled genes in each organ, as well 

as discovery of tools to manipulate the phase of each biological clock, will be of great help 

in establishing a novel chronotherapeutic approach to the prevention and treatment of 

cardiovascular disorders. 
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Introduction 

It is well known that some cardiovascular physiological functions such as heart rate (HR) 

and blood pressure (BP) exhibit apparent circadian variation. In addition, many 

cardiovascular disorders occur in a circadian fashion. For example, acute myocardial 

infarction (AMI) and cerebral infarction most often occur in the early morning whereas 

subarachnoid hemorrhage and a subtype of atrial fibrillation are usually seen in the 

afternoon. The diurnal variation in cardiovascular events is believed to be the consequence 

of both external and internal biological clock rhythms. Most of these disorders, once they 

happen, can be fatal or induce severe damage; therefore, it is important to elucidate the 

precise mechanism of the onset of such diseases to establish a preventive strategy. In this 

article, we would like to review the role of the molecular clock in the pathogenesis of 

vascular diseases. 

 

Molecular clock in mammalian cells  

Accumulating evidence has elucidated the molecular mechanisms of the circadian clock 1-4. 
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Several positive and negative feedback loops exist in the biological clock at transcriptional 

and post-translational levels. Among them, the core negative feedback loop comprises 

positive limb (CLOCK, NPAS2, BMAL1 and CLIF/BMAL2) proteins and negative limb 

(three period, PER1, PER2, PER3 and two cryptochrome, CRY1, CRY2) proteins. Most are 

basic helix-loop-helix (bHLH)/per-arnt-sim (PAS) domains containing transcription factors. 

CLOCK or NPAS2 forms a heterodimer with BMAL1 or CLIF/BMAL2 and binds to the 

E-box element with CACGTG sequences upstream of the per or cry gene 2. They enhance 

the transcription of per and cry, and the PER protein forms a complex with the CRY protein 

and inhibits CLOCK/BMAL-mediated transcription of the per or cry gene itself, therefore 

resulting in a negative feedback loop (Figure 1). PER proteins are also phosphorylated with 

serine-threonine kinase casein kinase 1 epsilon (CK1ε) and degraded by the proteasomal 

pathway 5. Thus, post-translational mechanisms, including phosphorylation and 

ubiquitination, also control the timing of the circadian clock 6. In contrast to the ubiquitous 

expression of BMAL1, CLIF/BMAL2 is mainly expressed in vascular endothelial cells 7. 

However little is known about the redundancy or the dynamic function of BMALs in the 
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vasculature, although CLIF/BMAL2 was shown to have a higher affinity to PER2 than 

BMAL1 8.  

In addition to this core feedback loop, the nuclear receptor REV-ERBα is also 

transactivated by the CLOCK/BMAL1 heterodimer. The REV-ERBα protein represses 

bmal1 transcription, which is essential for circadian bmal1 expression. Another feedback 

loop includes the bHLH domain containing transcription factors, deleted in esophageal 

cancer (dec1, dec2). The heterodimer of CLOCK and BMAL1 binds to the E-box upstream 

of dec1 and dec2, and activates their transcription. DEC proteins in turn repress the 

transcriptional activity of CLOCK/BMAL1, thus forming another negative feedback loop. 

The CLOCK/BMAL1 heterodimer binds to the E-box upstream of not only the per or cry 

gene, but also to other target genes designated as clock-controlled genes (CCGs). The 

CCGs include arginine vasopressin (AVP), wee1 or other target genes, and mediate the 

rhythmicity of the biological clock and account for the circadian variation in humoral or 

metabolic functions. The CCGs also comprise three proline- and acid-rich (PAR) basic 

leucine zipper (bZip) transcription factors, D-element binding proteins (dbp), hepatic 
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leukemia factor (hlf), and thyrotrophic embryonic factor (tef) 4. In addition to 

CLOCK/BMAL1, PAR transcription factors also induce the circadian expression of CCGs 

and therefore act as mediators or amplifiers of CLOCK/BMAL-induced CCG expression. 

The induction of CCG expression is antagonized by another bHLH transcription factor, 

E4BP4 9, which is induced by REV-ERBα. The phase of the three PAR transcription factors 

are antiphase to that of E4BP4, resulting in the circadian expression of CCGs. 

The center of the biological clock, that is, the central clock, exists in the 

suprachiasmatic nucleus (SCN) in the hypothalamus 3. The central clock regulates 

physiological functions through the autonomic nervous system, humoral mediators or 

unknown factors. The phases of the internal clock can be entrained by external stimuli. 

Zeitgebers (timekeepers) are factors that could reset the rhythm. Clock genes express in a 

circadian fashion in SCN, and light is the main zeitgeber for the central clock and can reset 

the phase of its rhythm. In addition to the central clock, circadian expression of clock genes 

can be detected in each peripheral organ or cell, suggesting that each organ has its own 

internal clock. This clock system is called the peripheral clock in contrast to the central 
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clock in the SCN (Figure 2). The molecular mechanism of the peripheral clock is 

considered to be similar to that of the central clock 10,11. The central clock synchronizes each 

of the peripheral clocks within the body 1; however, little is known about how peripheral 

clocks are regulated by the central clock. In contrast to the central clock, the phase of the 

peripheral clock cannot be entrained with light; thus, the phases of each peripheral clock 

seem to be synchronized by neuronal or other unknown humoral factors derived from the 

SCN. Finding the appropriate zeitgeber for each organ will help not only in understanding 

the clock system, but also in establishing a novel type of therapeutic approach, named 

chronotherapy.  

 

Molecular/peripheral clock in vasculature  

The existence of a peripheral clock system in each organ or cell was demonstrated using in 

vitro cultured fibroblasts 10. Balsalobre et al. stimulated fibroblasts with 50% serum for a 

short time and observed the circadian oscillation of clock gene expression. A single cell in 

culture has its own oscillation rhythm, whereas cell populations in in vitro culture are 
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usually arrhythmic because of the asynchronous circadian rhythm among cells 12. However, 

once a phase-aligning stimulus such as 50% serum is applied, they start to show uniform 

circadian rhythm 13. 

Diurnal variation in clock genes was also reported in cardiac organs including the 

heart, aorta and kidney 14,15. A study based on microarray analysis revealed that about 

8-10% of genes show circadian expression in the heart and liver; however, most of these 

genes are organ specific 16. Therefore, in addition to the central clock in the SCN, a 

peripheral clock in each organ seems to regulate tissue-specific physiological functions, and 

identification of peripheral CCG will greatly help in understanding the role of the 

biological clock in cardiovascular organs 17.  

In order to prove the existence of an intrinsic clock system in cardiovascular 

tissues, we studied the clock gene expression of in vitro cultured vascular endothelial cells 

and confirmed the circadian clock gene expression 18. We also searched for CCGs in 

vascular endothelial cells and identified circadian expression of thrombomodulin, a 

membrane protein with anti-coagulant activity. Vascular smooth muscle cells also possess 
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an intrinsic biological clock. In addition to serum shock, angiotensin II (AngII) or retinoic 

acid also induced circadian clock gene expression, suggesting that AngII or retinoic acid 

can function as a zeitgeber 15,19. Chalmers et al. identified the tissue inhibitor of 

metalloproteinase 1 and 3, collagen 3a1, transgelin1 (sm22α) and calponin1 exhibit 

circadian expression in smooth muscle cell line (Movas-1) 20. Several vascular functions 

have been shown to exhibit circadian rhythm, including endothelium-dependent 

vasodilatory function 21,22. In human subjects, endothelial function measured by 

flow-mediated dilation was shown to have circadian oscillation with lower function in the 

morning 23.  

Recent evidence has illuminated the roles of the molecular clock in endothelial 

functions. Mice with the Per2 mutation produced lesser amounts of nitric oxide and 

vasodilatory prostaglandins and more cyclooxygenase-1 derived vasoconstrictors than the 

wild type, resulting in impaired endothelium-dependent relaxation in response to 

acetylcholine 24. Endothelial dysfunction was also seen in mice with Bmal1 Knockout (KO) 

and CLOCKmut 25. Akt signaling and nitric oxide production were reduced in Bmal1 KO 
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arteries, and those arteries became more susceptible to thrombosis formation. The release of 

hematopoietic stem cells or endothelial progenitor cells (EPCs) from bone marrow is 

regulated by circadian rhythm 26. In a diabetic state, a disrupted peripheral clock caused by 

bone marrow neuropathy impaired circadian release of EPCs from bone marrow and 

exacerbated diabetic retinopathy 27. Per2 mutant mice also had impaired EPC mobilization 

function 28. EPC mobilization in response to ischemia or VEGF stimulation was reduced in 

Per2 mutant mice compared with wild-type mice. EPCs from Per2 mutant mice exhibit 

greater senescence together with Akt activation and impaired angiogenesis in a hind-limb 

ischemia model. Transplantation of wild-type bone marrow into Per2 mutant mice 

prevented autoamputation in Per2 mutant mice. Both Bmal1 KO and Per2 mutant mice had 

endothelial dysfunction; however, the opposite effect was observed with respect to Akt 

activation. This may be related to the different roles of these clock genes in the core loop 

formation; that is, Bmal-1 is a positive limb protein whereas Per2 works as a negative limb 

protein. Senescence also affects the biological clock function. Kunieda et al. revealed that 

circadian expression of clock genes are attenuated in senescent human smooth muscle cells 
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(HSMCs) 29. Telomere shortening and impaired cAMP response element-binding protein 

(CREB) activation accounted for the loss of circadian rhythmicity in senescent cells, since 

the introduction of telomerase or restoration of CREB effected a complete recovery of the 

circadian rhythm. 

 

Blood pressure/hypertension and the molecular clock 

In the normal subjects, BP declines during nighttime, begins to rise in early hours of the 

morning and reaches near peak or peak values at mid-morning 30,31. A number of factors can 

influence the diurnal variation in BP, including the autonomic nervous system 32, vasoactive 

intestinal peptide 33, plasma renin activity 34, aldosterone 35 and plasma atrial natriuretic 

peptide (ANP) 36. It is well known that sympathetic activity as well as 

renin-angiotensin-aldosterone activity peaks in the morning 32,37. BP is also affected by 

external factors such as physical activity, emotional state, eating and the sleep/wake cycle. 

Results of a study in humans indicated that disharmony in the circadian rhythm can cause 

hypertension 38. Human subjects kept under a protocol of circadian misalignment with 
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behavioral cycle 28 hours instead of 24 hours, demonstrated mild but significant 

hypertension.  

A decade ago, Janssen et al. studied the role of the internal clock in the rhythm of 

BP. Lesioning of the rat SCN abolished the circadian rhythm of BP and HR without 

affecting the 24-hour cycle of locomoter activities 39. Recent evidence has provided much 

deeper insights into the role of the molecular clock in BP regulation. Global deletion of 

Bmal1 completely abolished the diurnal variation in BP 40. Bmal1 mutant mice also exhibits 

hypotension together with reduced production of catecholamines. Global Per2 mutant mice 

also exhibits lower BP 24. In contrast, the endothelial-specific deletion of Bmal1 did not 

affect the variation in BP, suggesting that the peripheral clock in endothelial cells does not 

solely induce diurnal BP rhythm 41. A genetic association study demonstrated that a single 

nucleotide polymorphism within the bmal1 promoter is associated with hypertension and 

type 2 diabetes 42, providing support that the molecular clock is involved in the 

pathogenesis of metabolic disorders. Recent evidence supported the contribution of PPARγ 

in the clock system. PPARγ binds to the promoter upstream of bmal1 and induces its 



 14 

transcription 43. The expression of PPARγ also exhibited circadian oscillation in the aorta, 

and an endothelial- or vascular smooth muscle cell-specific deletion of PPARγ attenuated 

the BP variation together with reduced catecholamine production. 

Plasma aldosterone concentration has a diurnal variation with the peak during 

night hours 35. One of the adrenal enzymes involved in aldosterone production, type VI 

3β-hydroxyl-steroid dehydrogenase (Hsd3b6), exhibits circadian expression in normal 

subjects. However, Cry1/2-null mice had a constitutive high expression of Hsd3b6 together 

with overproduction of aldosterone from adrenal glands, which resulted in salt-sensitive 

hypertension in Cry1/2-null mice 44. Aldosterone regulates the expression of the 

alpha-subunit of the epithelial sodium channel (αENaC) mRNA through the Per1-mediated 

pathway 45. αENaC is known to affect systemic BP; therefore these findings suggest a novel 

function of the molecular clock during the pathogenesis of hypertension.  

 

Acute myocardial infarction and the circadian clock 

Beginning a few decades ago, it became well known that AMI or thrombotic events such as 
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pulmonary embolism frequently occur in the early morning 46,47. Since these disorders can 

be fatal, elucidating the mechanisms of circadian onset of cardiovascular disorders will help 

not only for a better understanding of their pathogenesis but also for establishing preventive 

strategies 48. In this section, we would like to discuss how the biological clock contributes 

to the onset of thromboembolic events. 

Diurnal activation of the autonomic nervous system seems to contribute to the 

circadian onset of cardiovascular events. A morning increase in ischemic events was not 

observed in patients with autonomic nervous dysfunction induced by diabetes 49. In addition, 

patients receiving β-blockers did not demonstrate morning increase of ischemic heart 

attacks 50. Several cardiovascular and hematologic functions are related to the circadian 

onset of cardiovascular events, including BP, HR, coronary blood flow, platelet function, 

blood coagulability and fibrinolytic activity 48. In the early morning, BP and HR increase 

and enhance the demand for oxygen by the heart 51. In contrast, the vascular tone of 

coronary arteries increases and, therefore, coronary blood flow decreases in the morning 52, 

resulting in a mismatch of oxygen demand and supply during this period. Coronary 
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segments with endothelial dysfunction exhibit circadian vasomoter activity, whereas 

segments with normal endothelial function did not demonstrate circadian variations, 

suggesting a potential protective role of endothelial function in coronary events 53. 

Moreover, both platelet aggregation and blood coagulability increase 54 whereas fibrinolytic 

activity decreases in the morning. These hypercoagulability and hypofibrinolytic activities 

also elicit the morning onset of thromboembolic events.  

Not only platelet aggregation activity, but also the number of circulating platelets 

have circadian oscillation 55,56. Platelets are activated by catecholamines, which are secreted 

from the autonomic nervous system. However, it is not clear whether the peripheral clock 

directly affects platelet function, since no surface markers characteristic of platelet 

activation have been shown thus far to exhibit circadian expression 55.  

High concentration of coagulation factor VII is considered to be a risk factor for coronary 

artery diseases 57. Circadian oscillation has been shown not only in the factor VII level in 

blood, but also in levels of fibrinogen, prothrombin, factor VIII and tissue factor pathway 

inhibitor, a direct inhibitor of the FXa/TF/FVIIa complex 58,59. Microparticles from 
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endothelium induces coagulation through the tissue factor mediated pathway 60. A recent 

report by Madden et al. showed that the number of vascular cell adhesion molecule-1 

(VCAM-1) positive microparticles in human plasma had a significant diurnal variation with 

a peak at 9 a.m. 61. These findings support the presence of hypercoagulability in the 

morning hours.  

Fibrinolytic activity also was shown to have circadian variation with a peak in the 

afternoon and trough in the early morning, which is an antiphase to that of coagulation 

activity 62-64. The level of plasmin-plasmin inhibitor complex, a marker of intravascular 

plasmin generation, decreases in the morning. Because of the morning decrease in 

fibrinolytic activity, recovery of patency of occluded coronary vessels by 

tissue-plasminogen activator (tPA) therapy for AMI treatment is more difficult in the 

morning hours 65. The level of tissue plasminogen activator inhibitor-1 (PAI-1), which 

regulates the activity of t-PA, mainly determines fibrinolytic activity. High concentration of 

PAI-1 or t-PA can become a risk factor for the occurrence of a first AMI 66. There is 

circadian oscillation in the concentration and activity of PAI-1 with a morning peak, 
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resulting in reduced t-PA activity during that period 67,68. All these data support the notion 

that circadian oscillation of PAI-1 activity significantly contributes to the formation of a 

diurnal variation in fibrinolytic function. The homeostasis of the coagulation cascade is 

achieved by the balance between coagulation activity and fibrinolytic activity. Activation of 

coagulation is normally accompanied by an increase in fibrinolytic activity. Therefore, the 

mismatch of these two cascades also elicits the morning onset of cardiovascular events. 

The mechanisms of the diurnal variation in PAI-1 activity have been well studied. 

We and other groups analyzed the roles of the molecular clock in circadian PAI-1 activation 

7,69. PAI-1 mRNA and protein levels clearly reflect a circadian rhythm in the heart and aorta 

with a peak expression in the evening. The phase of circadian PAI-1 expression in mice is 

antiphase to that of the human, since humans are diurnal whereas rodents are nocturnal. 

Therefore, PAI-1 expression in rodents also accounts for the human circadian oscillation. 

We have shown that CLIF/BMAL2 forms a heterodimer with CLOCK and binds to the 

E-boxes upstream of the pai-1 gene and transactivates its expression 7. The heterodimer of 

CLOCK/BMAL1 also activates the PAI-1 promoter 70. Oishi et al. showed that a ketogenic 



 19 

diet induces the phase shift of peripheral clock gene expression including PAI-1, suggesting 

that PAI-1 expression is regulated by the peripheral clock 71. Westgate et al. studied the 

susceptibility to thrombotic events using a mouse photochemical injury model and 

observed a diurnal variation in thrombogenicity in this in vivo model 41. CLOCKmut mice 

have lost this dynamic variation. Surprisingly, the endothelial-specific deletion of the 

Bmal1 gene (Bmal1fx/fxCreTek) also abolished the circadian oscillation of thrombogenic 

events; however, diurnal variation in systemic PAI-1 activity was sustained in this mouse 

model. This finding suggests that the peripheral clock within endothelial cells contributes to 

prevention of thrombosis through mechanisms other than those affecting systemic PAI-1 

activity.  

Thrombomodulin has an opposite effect to that of PAI-1 in terms of the 

coagulation cascade; that is, thrombomodulin inhibits thrombin activation and also 

activates protein C 72-74. We revealed that thrombomodulin is expressed with a circadian 

oscillation in vascular endothelial cells 18. The phase of circadian thrombomodulin 

expression is similar to that of PAI-1 with a peak in the morning. Based on these findings, 
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we can raise the hypothesis that circadian expression of thrombomodulin may be beneficial 

in protecting endothelium from diurnal thrombogenic activation induced by PAI-1 

expression. Further studies are required to fully elucidate the role of circadian 

thrombomodulin expression in cardiovascular events. 

 

Roles of the peripheral clock in cardiovascular diseases.  

The central questions related to the molecular clock and cardiovascular diseases are 

whether the biological clock is affected in cardiovascular disorders, and, in turn, whether 

impairment of the molecular clock induces the progression of those diseases. The 

impairment of the peripheral clock in pathology already has been demonstrated in several 

disease models. Young et al. showed that the phase of circadian rhythm of core clock genes, 

such as bmal1, per2 and hlf, was advanced 3 hours in diabetic rats 75. Also, in rat heart with 

pressure-overload hypertrophy, the rhythmic expression of PAR transcription factors (dbp, 

hlf) and anp was markedly reduced 76. Myocardial ischemia/reperfusion (I/R) was also 

shown to affect the circadian clock system. Clock gene oscillations were rapidly diminished 
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in the I/R area of the heart whereas they were not affected in non-ischemic regions. E4BP4 

antagonizes the transcriptional activity of PAR family members, such as DBP, HLF and 

TEF. At the I/R site of the heart, E4BP4 expression was strongly induced, resulting in the 

suppression of circadian pdk4 and ucp3 expression 77. Moreover, aging and hypertension 

were also known to affect the internal circadian rhythm 78,79. 

Several studies have addressed the second question, which is whether an impaired 

circadian clock affects disease progression. Penev et al. repeated phase shifts of the 

Light/Dark (L/D) cycle in cardiomyopathic hamsters and found that disruption of 

rhythmicity strikingly enhanced disease progression and resulted in shortened longevity 80,81. 

Martino et al. also analyzed the effect of impaired rhythm in cardiac hypertrophy 82. They 

performed transverse aortic constriction (TAC) surgery as a murine model of pressure 

overload cardiac hypertrophy, and kept the mice in a rhythm-disruptive 20-hour (L/D 

10:10) or normal 24-hour (L/D 12:12) environment after TAC surgery. Rhythm-disturbed 

TAC animals exhibited decreased left ventricular systolic function together with increased 

perivascular and interstitial fibrosis. Decreased left ventricular function was recovered 
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when the mice were kept under conditions of a normal 24-hour rhythm.  

Martino et al. also performed an elegant study using hamsters with a point 

mutation in the circadian regulatory gene casein kinase-1ε as a heterozygote, termed the 

+/tau mutation. The +/tau heterozygous animals had a reduced circadian period of 22 hours 

with disrupted behavior rhythmicity, and they developed cardiomyopathy and extensive 

cardiac fibrosis, resulting in death at a young age.  However, when these mutant animals 

were maintained under conditions of their own rhythm period (22 hours), the progression of 

the cardiac disorders was reversed. Ablation of the SCN at a young age also rescued the  

cardiac phenotype. There exist two clock systems with different periods in +/tau 

heterozygotes, since their peripheral clock is controlled by the intrinsic 22-hour clock as 

well as the 24-hour cycle from the SCN. Under a 22-hour L/D cycle or an SCN lesioned 

condition, the discrepancy between the central and peripheral clock disappeared together 

with rescue of the cardiac pathology. These results raise the hypothesis that it is not 

disruption of the peripheral clock but disharmony between the external and internal clock 

or between the central and peripheral clock that elicited cardiovascular disorders. Therefore, 
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loss of synchronization between the central and peripheral clock could elicit progression of 

the disease.  

In healthy subjects, the peripheral clock seems to be beneficial for anticipation and 

preparation for external stimuli such as BP rise in the morning. It may help the organ to 

respond rapidly and easily to the environmental change at each time of the day. Mice had a 

diurnal variation in BP with a peak in the evening. In mouse cardiomyocytes, the 

expression of cardioprotective gene anp also results in a diurnal variation with a peak in 

dark phase, which is consistent with high BP periods 76.  

Discrepancy between the two clock systems could occur among peripheral tissues 

as well. In the aorta, the phase of circadian Per2 expression is distinct from the phase in 

SCN, suggesting that the timing of clock rhythm is determined by each peripheral organ 83. 

Davidson et al. reported that the time phases of circadian rhythm in arteries and veins varies 

significantly according to the anatomical location 84. The role of the peripheral clock in 

arteries may be different from that in veins.  

In the acute phase of myocardial infarction, the phase of the circadian clock in the 
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ischemic heart differs from that in the non-ischemic area 77. This discrepancy could elicit 

the incidence of myocardial arrhythmia. These losses of synchronization of circadian 

rhythms between each organ or tissue may occur more frequently than we have expected.  

Resynchronization of the peripheral circadian clock with the environment or within each 

peripheral organ can become a potential target for establishing a novel preventive strategy 

or treatment for cardiovascular diseases. Although angiotensin II, endothelin or 

prostaglandin E2 is known to modify the circadian rhythm 15,85,86, we must identify the 

appropriate zeitgebers (timekeepers) to reset or resynchronize the phase of each clock 

system without directly affecting tissue homeostasis. No direct evidence has been reported 

that catecholamine or nutrients (glucose or fatty acids) could affect the phase of circadian 

clock 87. A recent report revealed that PPARγ induces Bmal1 expression in cardiovascular 

organs 43, suggesting that thiazolidinediones, an agonist of PPARγ, may become a potential 

tool for manipulating the clock system.  
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Conclusion  

Each cardiovascular organ or cell has its own peripheral clock together with input from the 

SCN central clock. These peripheral clocks seem to play an important role in the prevention 

of cardiovascular disorders. Identification of CCGs in each organ will provide significant 

insights for an understanding of the precise roles of the peripheral clock. Synchronization 

of clock cycles between the central and peripheral clock, or among peripheral clocks in 

different organs, is also critical for normal health and homeostasis. Failure to harmonize the 

central and peripheral clock or internal and external rhythm could result in progression of 

cardiovascular disorders. Discovery of an appropriate zeitgeber or a small compound that 

could manipulate the phase of each peripheral clock is required to establish 

chronotherapeutic approaches. 
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Figure legends 

 

Figure 1. 

The heterodimer of CLOCK and BMAL1 bind to the E-box elements upstream of period 

(per), cryptochrome (cry), and nuclear receptor Rev-erbα promoters. PER protein 

accumulates in the cytoplasm and translocates into the nucleus forming a complex with 

CRY proteins, then inhibits CLOCK-BMAL1-dependent transcription. Rev-erbα protein 

accumulates quickly and inhibits BMAL1 transcription, resulting in the oscillation of bmal1 

gene expression. CLOCK/BMAL1 heterodimer also binds to the E-box of target genes, 

designated as clock-controlled genes (CCGs). The heterodimer also transactivates 

proline-and acid-rich basic leucine zipper transcription factors, dbp, hlf and tef. These 

transcription factors in turn induce the circadian expression of CCGs. 
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(SCN) in the hypothalamus. Each organ or cell, including the aorta, vascular endothelial 

cells and vascular smooth muscle cells (VSMC), also has circadian expression of clock 

genes and is designated as the peripheral clock. Circadian expression of clock-controlled 

genes (CCGs) are in part regulated directly by the central clock (direct pathway). In 

addition, peripheral clocks in cardiovascular tissues or cells are also stimulated and 

synchronized by the central clock and regulate diurnal expression of (CCGs). 

 

Figure 2.  

The center of the biological clock (central clock) is located in suprachiasmatic nucleus 
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