ケーブルの面外非線形自由振動

高橋和雄*•田川 賢**

Nonlinear Out-of-Plane Free Vibrations of Cables

by

Kazuo TAKAHASHI

(Department of Civil Engineering)

and

Masaru TAGAWA

(Graduate Student of Nagasaki University)

Abstract

Nonlinear free vibrations of cables in three dimensions are reported. This problem is analyzed by a Galerkin method and harmonic balance method.

Numerical results are presented for out-of-plane free vibrations of cables with various sag-tospan ratios and inclined angles. Corresponding inplane vibrations which are excited through nonlinear coupling terms are significant for the particular sag-to-span ratio.

1. まえがき

ケーブルの運動方程式には,幾何学的非線形項を介 してすべての変位成分(面内水平変位,面内鉛直変位, 面外変位)が連成項として含まれるために,ケーブル の運動は一般に面内・面外振動が連成する三次元振動 となることが知られている。面外加振によって特定の サグ比のケーブルでは,有意な面内応答が生ずる面 内・面外連成応答は山口ら¹⁰によって解析されている。 また,著者らは面内加振によって面外応答が特定の振 動数領域で分岐する面外非線形分岐応答と面外線形係 数励振振動解析の2つの立場から取り扱うことができ ることを示した²⁰.

しかし、これらの研究はいずれも動的外力が作用す

昭和57年5月6日受理 *土木工学科 **長崎大学大学院学生 る場合の三次元応答特性を明らかにしたものであるた めに、ケーブルの三次元非線形固有振動特性を十分に 把握するには至っていない。そこで、本研究は調和バ ランス法を用いてケーブルの面外非線形自由振動と付 随する面内振動を各種のサグ比をパラメーターに解析 するものである。これにより、ケーブルの面外非線形 自由振動特性を明らかにしたものである。

2. ケーブルの運動方程式³⁾

Fig.1に示す座標系を導入すれば,完全可撓性,伸 長性を仮定したケーブルの三次元非線形運動方程式は, 次式で与えられる.

Fig. 1 Geometry of a cable.

$$L_{1}(u, v, w) = \frac{\partial^{2} u}{\partial t^{2}} - \frac{\partial}{\partial S_{e}} \left\{ \left(c_{0}^{2} \frac{1}{x_{e}} + c_{1}^{2} x_{e}^{2} \right) \frac{\partial u}{\partial S_{e}} \right. \\ \left. + c_{1}^{2} x_{e}^{'} y_{e}^{'} \frac{\partial v}{\partial S_{e}} \right\} - c_{1}^{2} \frac{\partial}{\partial S_{e}} \left[\left(x_{e}^{'} \frac{\partial u}{\partial S_{e}} \right) \frac{\partial u}{\partial S_{e}} + \frac{1}{2} \left(\left(\frac{\partial u}{\partial S_{e}} \right)^{2} + \left(\frac{\partial v}{\partial S_{e}} \right)^{2} \right) \right. \\ \left. + \left(\frac{\partial w}{\partial S_{e}} \right)^{2} \right\} \left(x_{e}^{'} + \frac{\partial u}{\partial S_{e}} \right) \right] - \frac{p_{x} \cos \Omega t}{\rho_{0}} \\ \left. = 0 \qquad (1)$$

$$L_{2}(u, v, w) = \frac{\partial^{2} v}{\partial t^{2}} - \frac{\partial}{\partial S_{e}} \left\{ \left(c_{0}^{2} \frac{1}{x_{e}} + c_{1}^{2} y_{e}^{'} \right) \frac{\partial v}{\partial S_{e}} \right. \\ \left. + c_{1}^{2} x_{e}^{'} y_{e}^{'} \frac{\partial u}{\partial S_{e}} \right\} - c_{1}^{2} \frac{\partial}{\partial S_{e}} \left[\left(x_{e}^{'} \frac{\partial u}{\partial S_{e}} \right) \right] \right]$$

$$+ y_{e} \frac{\partial v}{\partial s_{e}} \frac{\partial v}{\partial s_{e}} + \frac{\partial v}{2} \left\{ \left(\frac{\partial w}{\partial s_{e}} \right)^{2} + \left(\frac{\partial v}{\partial s_{e}} \right)^{2} + \left(\frac{\partial w}{\partial s_{e}} \right)^{2} \right\} \left(y_{e}^{'} + \frac{\partial v}{\partial s_{e}} \right) \right] \\ - \frac{p_{y} \cos Qt}{\rho_{0}} = 0$$
(2)

$$L_{3}(u, v, w) = \frac{\partial^{2} w}{\partial t^{2}} - \frac{\partial}{\partial s_{e}} \left(c_{0}^{2} \frac{1}{x'_{e}} \frac{\partial w}{\partial s_{e}} \right)$$
$$- c_{1}^{2} \frac{\partial}{\partial s_{e}} \left[\left(x'_{e} \frac{\partial u}{\partial s_{e}} + y'_{e} \frac{\partial v}{\partial s_{e}} \right) \frac{\partial w}{\partial s_{e}} + \frac{1}{2} \left\{ \left(\frac{\partial u}{\partial s_{e}} \right)^{2} + \left(\frac{\partial v}{\partial s_{e}} \right)^{2} + \left(\frac{\partial w}{\partial s_{e}} \right)^{2} \right\}$$
$$- \frac{\partial w}{\partial s_{e}} \left] - \frac{p_{e} \cos Q_{t}}{\rho_{0}} = 0 \qquad (3)$$

ここで, $u, v: f - \mathcal{I} n O$ 面内水平および鉛直変位, $w: f - \mathcal{I} n O$ 面外変位, t:時間, $s_e: f - \mathcal{I} n O$ 初 期形状に沿う曲線座標, $c_0 = \sqrt{H_e/\rho_0}: f - \mathcal{I} n O$ 横波 伝播速度, $H_e: f - \mathcal{I} n O$ 初期水平張力, $\rho_0: f - \mathcal{I}$ n O 単位長さ当りの質量, $c_1 = \sqrt{EA/\rho_0}: f - \mathcal{I} n O$ 縦波伝播速度, $E: f - \mathcal{I} n O$ 縦波伝播速度, $E: f - \mathcal{I} n O$ 縦波伝播速度, Q:荷重の円振動数, $x'_e, y'_e:$ 初期形状の s_e による常微分を示すものとする.また, Fig. 1 におい て, $\theta:$ 支点間傾斜角, $f: f - \mathcal{I} n + \mathcal{I} o$ $t = tan \theta$)max), $\ell:$ 支点間水平距離とする.

3.解法

 Galerkin 法による時間に関する非線形連立常 微分方程式の誘導

式(1),(2)および(3)の解を直接求めることは不可能で あるから,Galerkin法を用いて基準座標に関する多自 由度系の運動方程式に変換する解法を採用する。

$$u = \ell \sum_{i=1}^{\infty} P_i(t) U_i(s_e)$$

$$v = \ell \sum_{i=1}^{\infty} P_i(t) V_i(s_e) \qquad (4)$$

$$w = \ell \sum_{i=1}^{\infty} Q_i(t) W_i(s_e)$$

$$z \ge i, \quad P_i, \quad Q_i : \pm \mathfrak{M} \mathcal{O} \oplus \mathbb{I} \oplus \mathbb{I} \oplus \mathfrak{M}$$

$$U_{i}(s_{e}) = \sum_{m=1}^{\infty} P_{x_{i}}^{m} \sin \frac{m\pi s_{e}}{\ell^{*}}$$

or $V_{i}(s_{e}) = \sum_{m=1}^{\infty} P_{y_{i}}^{m} \sin \frac{m\pi s_{e}}{\ell^{*}}$

 $W_{i}(s_{e}) = \sum_{m=1}^{\infty} P_{z_{i}}^{m} \sin \frac{m\pi s_{e}}{\ell^{*}}$

 ℓ^{*} :初期ケーブル長

面内線形振動の

第 *i* 次固有振動形

第 *i* 次固有振動形

式(4)を式(1), (2)および(3)に代入して, Gralerkin 法を 適用すると基準座標 *P*_i, *Q*_i に関する連立非線形常微 分方程式群が得られる.

$$\begin{split} m_{n}^{l} \ddot{P}_{n} + k_{n}^{l} P_{n} + k^{2} \sum_{j=1}^{\infty} \sum_{\ell=1}^{\infty} k_{j\ell}^{ln} P_{j} P_{l} + \frac{1}{2} k^{2} \sum_{q=1}^{\infty} \sum_{\rho=1}^{\infty} k_{q\rho}^{ln} Q_{q} Q_{\rho} \\ + \frac{1}{2} k^{2} \sum_{j=1}^{\infty} \sum_{\ell=1}^{\infty} \sum_{m=1}^{\infty} k_{jm}^{lm} P_{j} P_{\ell} P_{m} + \frac{1}{2} k^{2} \sum_{j=1}^{\infty} \sum_{q=1}^{\infty} \sum_{r=1}^{\infty} k_{jqr}^{ln} P_{j} Q_{q} Q_{r} \\ = 8 \gamma^{\bullet} f_{n}^{l} \cos \omega \tau \\ m_{n}^{o} \ddot{Q}_{n} + k_{n}^{o} Q_{n} + k^{2} \sum_{p=1}^{\infty} \sum_{\ell=1}^{\infty} k_{p\ell}^{pn} Q_{p} P_{\ell} + \frac{1}{2} k^{2} \sum_{p=1}^{\infty} \sum_{\ell=1}^{\infty} \sum_{m=1}^{\infty} k_{p\ell m}^{om} Q_{p} P_{\ell} P_{m} \\ + \frac{1}{2} k^{2} \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} \sum_{r=1}^{\infty} k_{pqr}^{on} Q_{p} Q_{q} Q_{r} = 8 \gamma^{\bullet} f_{n}^{o} \cos \omega \tau \end{split}$$

ここに, $n=1, 2, \dots, k=c_1/c_0$: ケーブルの縦波ー 横波伝播速度比, $\gamma^* = \rho_0 g \ell / 8 H_e$: ケーブルの初期形状 を放物線で近似した場合のサグ比, g:重力の加速度, $m_n, k_n, k_n^n, \dots, m_n^n \dots f_n^n$: Galerkin 法による積分項で, 初期形状と面内・面外の固有振動形からなる定数, suffix I は面内を, suffix O は面外を表わす. 上式に おいて,時間関数 P_n, Q_n についてはケーブルのサグ 比 $\gamma = f/\ell$ と同様に, ケーブルの支点間水平距離 ℓ で 無次元化されている. また,時間については対応する 弦 (サグ比 $\gamma=0$ の場合) の1 次の固有円振動数 ω_1 の 逆数 $\ell/(\pi c_0 \sqrt{\cos \theta})$ で無次元化されている. 無次元固 有円振動数 ω は加振円振動数 $Q \in \omega_1$ で無次元化し たものである.

なお,ケーブルの非線形振動を支配するパラメータ は、形状パラメータとしてのサグ比γと傾斜角θ,お よび材料パラメータとしての縦波-横波伝播速度比k の3個である¹ン.

(2) 調和バランス法による連立非線形常微分方程式の解法

連立非線形常微分方程式を解くにあたり,非線形項 が大きくなっても有効性を失わず,かつ収束性の良い 調和バランス法を適用する.式(5)の非線形項に2次お よび3次の非線形項が同時に含まれるために, P_n, Q_n の解を次式で仮定する.

$$P_n = \sum_{e=0, 1}^{\infty} a_e^n \cos e\omega\tau$$

$$Q_n = \sum_{e=0, 1}^{\infty} b_e^n \cos e\omega\tau \qquad (6)$$

ここに, aⁿ, bⁿ: 未定定数.

式(6)を式(5)に代入して調和バランス法を適用すれば, a², b² を求めるための連立非線形代数方程式が得られ る.

$$(k_{n}^{l} - m_{n}^{l}e^{2}\omega^{2})a_{e}^{n} + k_{j}^{2}\sum_{j=1}^{\infty}\sum_{l=1}^{\infty}k_{jl}^{ln}f_{jl}^{e} + \frac{1}{2}k^{2}\sum_{q=1}^{\infty}\sum_{p=1}^{\infty}k_{qp}^{ln}f_{qp}^{e} + \frac{1}{2}k^{2}\sum_{j=1}^{\infty}\sum_{l=1}^{\infty}\sum_{m=1}^{\infty}k_{jl}^{ln}mf_{jlm}^{e} + \frac{1}{2}k^{2}\sum_{j=1}^{\infty}\sum_{q=1}^{\infty}\sum_{r=1}^{\infty}k_{jqr}^{ln}f_{jqr}^{e} = 8\gamma^{*}f_{n}^{l}\delta_{e1}$$
(7)
$$(k_{n}^{o} - m_{n}^{o}e^{2}\omega^{2})b_{e}^{n} + k^{2}\sum_{p=1}^{\infty}\sum_{l=1}^{\infty}k_{pl}^{on}f_{pl}^{e} + \frac{1}{2}k^{2}\sum_{p=1}^{\infty}\sum_{l=1}^{\infty}\sum_{m=1}^{\infty}k_{plm}^{on}f_{plm}^{e} + \frac{1}{2}k^{2}\sum_{p=1}^{\infty}\sum_{q=1}^{\infty}\sum_{r=1}^{\infty}k_{pqr}^{on}f_{pqr}^{e} = 8\gamma^{*}f_{n}^{o}\delta_{e1} \Sigma \subset i\mathcal{Z}, e = 0, 1, 2, \dots, \delta_{e1} \begin{cases} 1(e=1) \\ 0(e=1)^{*} f_{jl}^{e}, f_{qp}^{e}, f_{jlm}^{e}, \end{cases}$$

 $f_{jar}^{e}, f_{pl}^{e}, f_{plm}^{e}, f_{par}^{e}: a_{e}^{l}, a_{e}^{l} などの関数 (Appendix A)$

本研究の解の決定方程式(7)は,連立非線形偏微分方 程式(1),(2)および(3)の定常解を空間には基準関数(式 (4)),時間にはFourier 級数(式(6))を用いてFourier の展開係数に関する連立非線形代数方程式として得ら れたものである。これを適当な初期値のもとで Newton-Raphson法の繰り返し計算を用いて数値解 析を行えば,必要な解が得られる。

なお、面外非線形自由振動曲線は、まず面外方向に のみ加振 ($p_x = p_y = 0, p_z \neq 0$) して面外応答を求め、 徐々に荷重強度をおとすことによって求められた。

3. 面外非線形自由振動特性

ケーブルの面外方向の運動方程式には、面外変位*w* に関して3次の非線形項が含まれるが、2次の非線形 項は含まれない。そのため、ケーブルの面外振動は初 期形状の面をはさんで対称に生じている。すなわち、 主共振(bi)と3倍の高調波共振(bi)が生じる.一 方,面内方向の運動方程式中には面外変位wに関して 2次の非線形項が単独に含まれている。そのため,面 外振動によって面内方向には,静的付加荷重と面外振 動の2倍の振動数をもつ動的付加荷重による応答(ai, ai)が引き起される。いわゆる面内・面外非線形連成 応答が生じる。

以上より,面外方向の主共振と面内方向に生ずる面 外振動の2倍の振動数をもつ応答の生ずる振動数が接 近するサグ比をもつケーブルでは,面内振動と面外振 動が共振を起こすと考えられる¹⁾.

(1) 水平ケーブル

水平ケーブルにおいては、その振動形は対称振動と 逆対称振動に区別される.しかし、面外対称振動によっ て面内方向の振動は、面内対称振動形のみが加振され 面内逆対称振動は加振されない。本研究では、最低次 の面外・面内の対称振動形に着目し、伝播速度比k=30、傾斜角 $\theta=0^\circ$ の水平ケーブルについて、その非線形 自由振動特性を明らかにしている。

Fig. 2(a)は、サグ比 γ に対する面外固有振動数 ω^{o} と面内固有振動数の半分 $\omega'/2$ の関係を、サグ比 γ を 横軸に、面内・面外の無次元固有振動数比 ω を縦軸に とり、示したものである。図中の実線は面外固有振動 数 ω^{o} を、破線は面内固有振動数の光の振動数 $\omega'/2$ を 表わしている。図よりわかるように水平ケーブルにお いては、 ω^{o} と $\omega'/2$ の関係は、 γ =0.026 で一致し、これ を境にその大小関係は逆転している。つまり、 γ =0.026 近傍のサグ比を有するケーブルでは面内振動と面外振 動間に共振が生ずると考えられる。

Fig. 2 Relations between inplane vibration and out-of-plane vibration.

次に、Fig.3は γ =0.026 と γ =0.0265 のサグ比を有 する水平ケーブルの中央点のリサージュ図を示したも のである。図よりわかるように、ケーブルの振動は常 に平衡点より上で生じている。これは面外振動によっ て生じる静的付加荷重による応答が鉛直上方つまり初 期形状を打ち消す方向に働くためである。水平ケーブ ルでは、リサージュの形状は γ =0.026 を境に大きく変 化し、 γ <0.026 のケーブルでは常に上に凸の形状を示 し、 γ >0.026 のケーブルでは常に下に凸の形状を示し ている。これは、面外振動によって γ <0.026、すなわ ち $\omega^{o} > \omega'/2$ の場合には同位相の面内振動が、 γ > 0.026、すなわち $\omega^{o} < \omega'/2$ の場合には逆位相の面内振 動が引き起こされるからである。

Fig. 4,5 は水平ケーブルの面外非線形自由振動曲線 を示したものである。Fig. 4 は面内振動の影響を受け

Fig. 3 Lissajous figure of nonlinear free vibration of cable.

Fig. 4 Out-of-plane nonlinear free vibrations of cables with k=30 and $\theta=0^{\circ}$.

ない領域のサグ比を有するケーブルについて, Fig. 5 は γ =0.026 付近つまり面内振動の影響領域のサグ比 (γ =0.02~0.04)を有するケーブルについて, 横軸に 対称 1 次振動の面外非線形自由振動の振動数比 ω を, 縦軸に面外振動の振幅比 A_{ω} をとり, サグ比 γ をパラ メーターにプロットしたものである。Fig. 6 は面外振 動に付随する面内応答曲線を示し, 横軸に振動数比 ω を, 縦軸に面内振動の振幅比 A_{ν} をとり, サグ比 γ を パラメーターにプロットしたものである。Fig. 4, 6 か

Fig. 5 Out-of-plane nonlinear free vibrations of cables with k=30 and $\theta = 0^{\circ}$ near $\gamma = 0.026$.

under out-of-plane free vibrations of cables with k = 30 and $\theta = 0^{\circ}$.

らわかるように、影響領域外では水平ケーブルの面外 非線形自由振動における振動数比と振幅比の関係は、 3次の非線形項が支配的な硬化バネ特性を示し、それ に付随する面内非線形応答は, 面外振動に比べて小さ く, γ=0.001のような弦や, γ=0.3, 0.5のようにサグ 比の大きなケーブルでは面内変位は殆んど生じていな い。また、ケーブルの非線形性は、弦に近いほど強く、 逆にサグ比が増大するにつれて弱くなっている。Fig. 5,6からわかるように、共振点近傍のサグ比の領域で は、面外振動と面内振動が共振をおこし強い連成応答 が生じるため、面外変位と同程度の面内変位が生じて いる。この付随する面内非線形応答の影響により、共 振点である γ=0.026 を境に曲線はその傾きを大きく 変え,γ=0.02~0.026 のサグ比を有するケーブルでは 振動数比と振幅比の関係は硬化バネ特性を示し,γ= 0.0265~0.04 のサグ比を有するケーブルでは軟化バネ 特性を示している. つまり, γ=0.02~0.026の場合は, 面外振動によって引き起こされた同位相の面内振動の 影響によりケーブルの剛性が増し、面外非線形自由振 動の振動数比と振幅比の関係は硬化バネ特性を示す。

そして、その非線形性は、同位相の面内振動が最も大 きく加振される γ =0.026 の場合に最も強くなってい る、一方、 γ =0.0265~0.04 の場合には、逆位相の面内 応答により、ケーブルの剛性は減少し、振動数比と振 幅比の関係は軟化バネ特性を示している。そして、逆 位相の面内振動が最も大きく加振される γ =0.0265 の 場合に、非線形性は最も強くなっている。 γ =0.03 付近 では、非線形項の影響が弱くなっているのがわかる。

(2) 傾斜ケーブル

傾斜ケーブルについては,その振動形は対称振動と 逆対称振動の分離ができないため,最低次の振動形に着 目し非線形振動特性を調べた.

Fig. 2 (b)は, 伝播速度比 k = 30, 傾斜角 $\theta = 30^{\circ}$ の傾 斜ケーブルについて, Fig. 2 (a)と同様に, サグ比 γ に 対する面外固有振動数 ω^{o} と面内固有振動数の半分 $\omega'/2$ の関係を示したものである. 図からわかるよう に, ω^{o} と $\omega'/2$ の値は, $\gamma = 0.03 \sim 0.1$ 付近で接近しては いるが, 常に $\omega^{o} > \omega'/2$ となり $\omega'/2$ が ω^{o} を越えるこ とはない. 従って, 傾斜ケーブルは, 共振点は存在せ ず, 面外振動に付随して生じる面内非線形応答は常に 同位相である.

Fig. 7 は、傾斜ケーブルについて、横軸に1次振動 の非線形自由振動の振動数比 ω を、縦軸に面外振動の 振幅比 A_w をとり、サグ比 γ をパラメーターにプロッ トしたもので、面外非線形自由振動曲線を表わしてい

Fig. 7 Out-of-plane nonlinear free vibrations of cables with k = 30 and $\theta = 30^{\circ}$.

Fig. 8 Corresponding inplane vibrations under out-of-plane free vibrations of cables with k=30 and $\theta=30^{\circ}$.

る. Fig. 8 は、同じ傾斜ケーブルについて、面外振動 に付随する面内非線形応答を示すもので、横軸に振動 数比 ω、縦軸に面内振動の振幅比 A_V をとりサグ比 γ をバラメーターにプロットしたものである。図からわ かるように、傾斜ケーブルにおいては、面外非線形振 動の振動数比と振幅比の関係は、常に硬化バネ特性を 示し、その非線形性は、一般に弦に近いほど強くサグ 比の増大に伴なって弱くなっている。また、面外振動 に付随する面内応答は、面外振動に比べ小さい、 γ = 0.03~0.1 付近では ω^o と $\omega'/2$ の値が接近するため、 比較的強い同位相の面内連成応答が生じている。

4. 結 語

本論文は、ケーブルの三次元非線形運動方程式を、 Galerkin 法により基準座標に関する多自由度系の運動方程式に変換し、これに調和バランス法を適用して 面外非線形自由振動特性を明らかにしたものである。

解析により得られた結果を要約すると

(1) 水平ケーブルの面外非線形自由振動の振動数と振幅の関係は、一般に硬化バネ特性を示し、付随する面内非線形応答は小さい。また、ケーブルの非線形性は、サグ比の増大に伴ない弱くなる。しかし、共振点近傍のあるサグ比の領域では、強い面内連成応答が生じ、面外非線形自由振動は面内振動の影響により、軟化バネ特性を示す。

(2) 傾斜ケーブルの面外非線形自由振動の振動数と振幅の関係は、常に硬化バネ特性を示し、その非線形性はサグ比の増大とともに弱くなる。

最後に、本研究の数値計算には長崎大学情報処理センター計算機 (FACOM M-180 II AD) を使用したことを付記する.

Appendix A

- $f_{jl}^0 = 2a_0^j a_0^l + a_1^j a_1^l + a_2^j a_2^l + a_3^j a_3^l$
- $f_{jl}^{1} = \{2(a_{0}^{i}a_{1}^{l} + a_{1}^{i}a_{0}^{l}) + a_{1}^{i}a_{2}^{l} + a_{2}^{i}a_{1}^{l} + a_{2}^{i}a_{3}^{l} + a_{3}^{i}a_{2}^{l}\}/2$
- $f_{jl}^{2} = \{a_{1}^{i}a_{1}^{l} + 2(a_{0}^{j}a_{2}^{l} + a_{2}^{j}a_{0}^{l}) + a_{1}^{i}a_{3}^{l} + a_{3}^{j}a_{1}^{l}\}/2$

 $f_{jl}^3 = \{2(a_0^j a_3^l + a_3^j a_0^l) + a_1^i a_2^l + a_2^j a_1^l\}/2$

- $f^{0}_{jlm} = \{4a^{i}_{a}a^{j}_{b}a^{m}_{b} + 2(a^{i}_{1}a^{m}_{0} + a^{i}_{1}a^{i}_{0}a^{m}_{1} + a^{i}_{b}a^{i}_{1}a^{m}_{1}) + 2(a^{i}_{2}a^{j}_{2}a^{m}_{0} + a^{i}_{2}a^{i}_{0}a^{m}_{2} + a^{i}_{b}a^{i}_{2}a^{m}_{2} + a^{i}_{b}a^{i}_{2} + a^{i$
 - $+ a_{3}^{i} a_{2}^{l} a_{1}^{m} \} / 4$

 $f_{jlm}^{1} = \{4(a_{0}^{j}a_{0}^{l}a_{1}^{m} + a_{1}^{j}a_{0}^{l}a_{0}^{m} + a_{0}^{j}a_{1}^{l}a_{0}^{m}) + 3a_{1}^{j}a_{1}^{l}a_{1}^{m}\}$

- $+ a_{1}^{i}a_{1}^{i}a_{3}^{m} + a_{1}^{j}a_{3}^{i}a_{1}^{m} + a_{3}^{j}a_{1}^{i}a_{1}^{m} + 2(a_{1}^{i}a_{2}^{i}a_{2}^{m} + a_{2}^{j}a_{1}^{i}a_{2}^{m} + a_{2}^{j}a_{2}^{i}a_{1}^{m})$
- +2($a_{0}^{i}a_{1}^{i}a_{2}^{m}+a_{0}^{i}a_{2}^{i}a_{1}^{m}+a_{1}^{i}a_{0}^{i}a_{2}^{m}+a_{1}^{i}a_{2}^{i}a_{0}^{m}+a_{2}^{i}a_{0}^{i}a_{1}^{m}+a_{2}^{i}a_{1}^{i}a_{0}^{m}$)
- $+2(a_{0}^{i}a_{2}^{i}a_{3}^{m}+a_{0}^{i}a_{2}^{i}a_{2}^{m}+a_{0}^{i}a_{0}^{i}a_{3}^{m}+a_{0}^{i}a_{3}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{2}^{m}+a_{0}^{i}a_{0}^{i}a_{2}^{m}+a_{0}^{i}a_{0}^{i}a_{2}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{i}a_{0}^{i}a_{0}^{m}+a_{0}^{$
- $+2(a_1^i a_1^i a_3^m + a_1^j a_3^i a_1^m + a_3^j a_1^i a_1^m) + a_2^j a_2^j a_3^m + a_2^j a_3^j a_2^m + a_3^j a_2^j a_2^m)/4$

$$\begin{split} f_{jlm}^2 &= \{4(a_0^l a_0^l a_2^m + a_0^l a_2^l a_0^m + a_2^l a_0^l a_0^m) + 3a_2^l a_2^l a_2^m + 2(a_0^l a_0^l a_1^m + a_0^l a_0^m + a_0^l a_1^m) \\ &+ 2(a_1^l a_1^m + a_1^l a_2^l a_1^m + a_2^l a_1^m) + 2(a_2^l a_3^l a_3^m + a_3^l a_2^l a_3^m + a_0^l a_2^l a_3^m + a_0^l a_2^l a_3^m + a_0^l a_2^l a_3^m + a_0^l a_0^m + a_0^l a_0^l a_3^m + a_0$$

- ((i] =)
- $$\begin{split} f_{jlm}^3 &= \{4(a_0^i a_0^i a_3^m + a_0^j a_0^i a_0^m + a_0^i a_0^i a_0^m) + a_1^i a_1^i a_1^m + 3a_0^i a_0^i a_3^m \\ &+ 2(a_1^i a_3^l a_3^m + a_1^i a_2^i a_1^m + a_3^i a_1^i a_1^m) + a_1^i a_2^i a_2^m + a_2^i a_1^i a_2^m + a_2^i a_2^i a_1^m \\ &+ 2(a_2^i a_2^i a_3^m + a_2^i a_2^i a_2^m + a_3^i a_2^i a_2^m) \end{split}$$
 - $+2(a_0^{j}a_1^{l}a_2^{m}+a_0^{j}a_2^{l}a_1^{m}+a_1^{j}a_0^{l}a_2^{m}+a_1^{j}a_2^{l}a_0^{m}+a_2^{j}a_0^{l}a_1^{m}+a_2^{j}a_1^{l}a_0^{m})\}/4$

参考文献

- 山口・宮田・伊藤:正弦波外力を受けるケーブルの時間応答解析,土木学会論文報告集,第308号, 1981, pp. 37~45.
- 高橋・村中・永田:ケーブルの三次元非線形振動, 長崎大学工学部研究報告集,第16号,昭和56年7月, pp. 49~56.
- 3)山口・伊藤:単一ケーブルの三次元線形自由振動, 土木学会論文報告集,第286号,1979,pp.29~36.