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Abstract 21 

Nontuberculous mycobacteria (NTM) can carry two or more 16S rRNA gene copies 22 

that are, in some instances, non-identical. In this study, we used a combined cloning and 23 

sequencing approach to analyze 16S rRNA gene sequences of six NTM species, 24 

Mycobacterium cosmeticum, M. pallens, M. hodleri, M. crocinum, M. flavescens, and M. 25 

xenopi. Our approach facilitated the identification of two distinct gene copies in each species. 26 

The two M. cosmeticum genes had a single nucleotide difference, whereas two nucleotide 27 

polymorphisms were identified in M. hodleri, M. flavescens, and M. xenopi. M. pallens had a 28 

difference in four nucleotides and M. crocinum — in 23 nucleotides. Thus, we showed that 29 

the six NTM species possess at least two non-identical 16S rRNA gene copies. The full-30 

length sequences of the intraspecies 16S rRNA variants will facilitate NTM identification and 31 

sequence analysis of specimens or other samples. 32 

 33 
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 38 

1. Introduction 39 

Nontuberculous mycobacteria (NTM) comprise over 190 species of the genus 40 

Mycobacterium (Euzéby, 1997). NTM species are classified based on sequence comparisons 41 

of select housekeeping genes, such as 16S rRNA, rpoB, and hsp65, as well as the 16S–23S 42 

rRNA internal transcribed spacer region (Domenech et al., 1994; Kim et al., 2015; Kirschner 43 

et al., 1993; Lee et al., 2000; Rogall et al., 1990; Stahl and Urbance, 1990; Tagliazucchi et al., 44 

2017; Telenti et al., 1993; Tortoli, 2012; Tortoli et al., 2000). Several commercial tests are 45 

available that use these genomic sequences for species identification (Bergmann and Woods, 46 

1996; Helb et al., 2010; Huh et al., 2015; Lee et al., 2009; Tanaka et al., 2010). However, 47 

some NTM species cannot be identified using these tests because of insufficient genome 48 

sequence information. 49 

Specifically, Chikamatsu et al. (2018) reported failed attempts to identify several 50 

NTM species using the PyroMark Q24 test kit (Qiagen, Tokyo, Japan), which is based on 51 

pyrosequencing. Ambiguous bases were found within the 16S rRNA gene in six NTM 52 

species, Mycobacterium cosmeticum, M. pallens, M. hodleri, M. crocinum, M. flavescens, and 53 

M. xenopi (Chikamatsu et al., 2018). Direct sequencing using the Sanger method suggested 54 

that these species carry two non-identical 16S rRNA gene copies. In general, rapid-growing 55 

mycobacteria carry two copies of the 16S rRNA gene (Domenech et al., 1994), whereas, with 56 
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a few exceptions, slow-growing mycobacteria possess only one copy (Ji et al., 1994). For 57 

example, it has been reported that isolates of the slow-growing M. terrae complex (Ninet et 58 

al., 1996) and M. celatum (Reischl et al., 1998) harbor two non-identical copies of the 16S 59 

rRNA gene. Here, we applied a combined cloning and sequencing approach to unequivocally 60 

determine the copy numbers and complete sequences of all 16S rRNA genes of the six NTM 61 

species investigated earlier (Chikamatsu et al., 2018): M. cosmeticum, M. pallens, M. hodleri, 62 

M. crocinum, M. flavescens, and M. xenopi. 63 

 64 

2. Materials and Methods 65 

2.1. Bacterial strains 66 

M. cosmeticum JCM14739, M. pallens JCM16370, M. hodleri JCM12141, and M. 67 

crocinum JCM16369 were obtained from the Japan Collection of Microorganisms (JCM, 68 

Ibaraki, Japan). M. flavescens ATCC14474 and M. xenopi ATCC19250 were acquired from 69 

the American Type Culture Collection (ATCC, Manassas, VA). All strains were initially 70 

grown on 7H10 agar and then cloned from single colonies. The isolates were sub-cultured in 71 

2% Ogawa medium at 37 °C. 72 

 73 

2.2. DNA extraction 74 

Bacterial DNA was extracted using the Isoplant Kit (Nippon Gene Co., Ltd, Toyama, 75 
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Japan). Briefly, one inoculation loop (approximately 10 μL) of fresh colonies grown on 76 

Ogawa medium were suspended in 300 μL of extraction buffer and again suspended in 150 77 

μL of lysis buffer for 15-min incubation at 50 °C. Genomic DNA was extracted with sodium 78 

acetate (pH 5.2) on ice for 15 min. After centrifugation (12,000 × g, 15 min at 4 °C), the 79 

upper phase was transferred to a new tube, and the genomic DNA was precipitated with 70% 80 

ethanol. The DNA pellet was dissolved in 50 μL of TE buffer (10 mM Tris-HCl, 1 mM 81 

EDTA). 82 

 83 

2.3. Cloning 84 

The target 16S rRNA genes from each bacterial DNA preparation were amplified with 85 

primers 285 (5´ GAG AGT TTG ATC CTG GCT CAG 3´) and rp2 (5´ ACG GCT ACC TTG 86 

TTA CGA CTT 3´) yielding the almost complete 16S rRNA gene (Adekambi and Drancourt, 87 

2004; Domenech et al., 1994). In brief, 25 μL of a mixture containing ExTaq HS (TaKaRa 88 

Bio Inc., Shiga, Japan), 2.5 mM dNTP mixture, 10 μM of each primer, and 5 μL template 89 

DNA was used for PCR. Amplification was performed in a GeneAmp PCR System 9700 90 

(Applied Biosystems, Foster City, CA) using 30 cycles of 30 s at 94 °C, 30 s at 60 °C, and 90 91 

s at 72 °C. Then, the PCR products were purified and cloned using a TOPO TA Cloning Kit 92 

(Invitrogen, USA). In brief, the PCR products, salt solution, water, and TOPO® vector using 93 

vaccinia topoisomerase I were mixed at room temperature (22–23 °C) and incubated for 30 94 
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min. The recombinant TA cloning mixes were incubated with E. coli competent cells (DH5 95 

alpha) for 30 min on ice to perform the transformation. The process was stopped by 96 

incubating the samples at 42 °C for 60 s (heat shock), immediately followed by incubation on 97 

ice. Super optimal broth with catabolite repression was added to the samples and incubated at 98 

37 °C for 1 h. 99 

The competent cells were cultured on Luria-Bertani (LB) agar supplemented with 2 100 

mg of X-gal. Ten white colonies of each transformation were picked from the LB agar and 101 

individually cultured in LB broth. Plasmid DNA was isolated and purified using the a 102 

minipreparation Flexiprep Kit (Amersham Biosciences, Little Chalfont, Buckinghamshire, 103 

UK) and a column method with a FastGene Gel/PCR Extraction Kit (Nippon Genetics Co., 104 

Ltd, Tokyo, Japan). 105 

 106 

2.4. Sequence analysis 107 

Sequencing of each 16S rRNA clone was performed using the primers M13 Forward 108 

(5´ GTA AAA CGA CGG CCA GT 3´), M13 Reverse (5´ CAG GAA ACA GCT ATG AC 109 

3´) and 264 (5´ TGC ACA CAG GCC ACA AGG GA 3´) with a BigDye Terminator Cycle 110 

sequencing kit ver. 3.1 (Applied Biosystems) in an ABI 3500 Genetic Analyzer (Applied 111 

Biosystems). Finally, the sequences (approximately 1,500 bp each) of the 10 clones of each 112 

species (approximately 1,500 bp each) were aligned and further analyzed using Molecular 113 
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Evolutionary Genetics Analysis software package ver. 7 (Kumar et al., 2016). 114 

 115 

3. Results 116 

The sequence alignments led to the identification of two non-identical 16S rRNA 117 

copies for each of the six NTM species. The results have been deposited with GenBank under 118 

accession numbers as follows: M. cosmeticum (MH169224 and MH169226), M. pallens 119 

(MH169208 and MH169209), M. hodleri (MH169216 and MH169217), M. crocinum 120 

(MH169218 and MH169219), M. flavescens (MH169220 and MH169222), and M. xenopi 121 

(MH169221 and MH169241). Nucleotide polymorphisms are shown in Fig. 1. M. 122 

cosmeticum had a single nucleotide difference between the two sequences. Two-nucleotide 123 

differences were found in M. hodleri, M. flavescens, and M. xenopi. M. pallens had a 124 

difference in four nucleotides and M. crocinum — in 23 nucleotides. 125 

 126 

4. Discussion 127 

It is well documented that some species of the genus Mycobacterium harbor multiple 128 

16S rRNA gene copies with distinct sequences (Chikamatsu et al., 2018; Cilia et al., 1996; 129 

Conville et al., 2005; Menendex et al., 2002; Ninet et al., 1996; Reischl et al., 1998; Viezens 130 

and Arvand, 2008). In this study, the cloning experiments targeting 16S rRNA genes 131 

facilitated the identification of two distinct copies in six NTM species: M. cosmeticum, M. 132 
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pallens, M. hodleri, M. crocinum, M. flavescens, and M. xenopi. Each strain was re-isolated 133 

from a single colony, and each of the two 16S rRNA gene copies was reproducibly obtained 134 

from multiple clones derived from these isolates. In addition, nucleotide polymorphisms 135 

observed for the species-specific gene copies were supported by earlier findings obtained by 136 

direct sequencing, e.g., the nucleotide position 185 of the 16S rRNA copies in M. cosmeticum 137 

was A or G by our cloning-sequencing experiment (Fig. 1), but a mixture of A and G at this 138 

position had been indicated earlier by direct Sanger sequencing (Chikamatsu et al., 2018). 139 

Our new data were confirmed by multiple clones per strain to minimize the possible impact 140 

of technical sequencing errors. 141 

Cilia et al. (1996) reported earlier that sequences obtained from clones may be more 142 

definitive than sequence data obtained from direct sequencing. Indeed, our sequence data 143 

obtained from the cloning experiment unequivocally established the existence of two non-144 

identical gene copies per species, whereas the earlier direct sequencing only suggested a 145 

polymorphism based on sequence ambiguities. Hence, it is recommended to avoid direct 146 

sequencing for species identification if there are non-identical genomic copies of the target 147 

sequence. 148 

However, our study could not reveal whether the NTM species had more than two 149 

16S rRNA gene copies per genome. It is possible that one genome carries several 16S rRNA 150 

copies with identical sequences. This problem might be resolved by whole-genome 151 
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sequencing (WGS). A database search revealed that M. cosmeticum DSM 44829 has two 16S 152 

rRNA genes (GenBank accession: NZ_CCBB010000003.1), M. flavescens strain M6 has 153 

three genes (GenBank accession: NZ_MIHA00000000.1), and M. xenopi has one (Strain 154 

DSM 43995, GenBank accession: LQQB01000023.1) or two (Strain RIVM700367, GenBank 155 

accession: NZ_AJFI01000116.1) genes. These WGS data were obtained by shotgun 156 

sequencing, which also has limitations regarding the identification of identical or almost 157 

identical gene copies (Goodwin et al., 2016; Nakano et al., 2017; Schadt et al., 2010). Hence, 158 

cloning along with sequencing is still required, but improvements in WGS data accuracy will 159 

be obtained in the near future by implementing long-read sequencing using the single-160 

molecule real-time sequencing technology (Nakano et al., 2017; Schadt et al., 2010). 161 

Currently, the exact 16S rRNA gene copy number is not yet known for M. pallens, M. 162 

hodleri, and M. crocinum, which requires further analysis. 163 

In this study, we established the existence of two 16S rRNA gene copies for each of 164 

the six NTM species examined. However, species identification using 16S rRNA sequencing 165 

can be challenging because of the detected nucleotide polymorphisms. The identification of 166 

two non-identical 16S rRNA copies in the six NTM species will be helpful for sequence 167 

analyses of specimens or other samples and sequencing efforts. 168 

 169 
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 256 

Figure legend 257 

Fig. 1. Nucleotide polymorphisms between two non-identical 16S rRNA sequences of six 258 

NTM species. Nucleotide positions were derived from an alignment with the 16S rRNA gene 259 

of M. tuberculosis H37Rv ATCC272 (GenBank accession: NC_000962). 260 
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Figure 1 
 
M. cosmeticum 

     185 
Variant 1: ATAGGACTCCAGCCTTCATGG 
Variant 2: ..........G.......... 
M. pallens 

     185––187                               470 
Variant 1: ATAGGACCACATGCTTCATGGTG            GACGGTACCTATAGAAGAAGC 
Variant 2: ..........GGC..........            ..........G.......... 
M. hodleri  

      197|198 
Variant 1: GATGCATGTCTCTTGGTGGAAA 
Variant 2: ..........CT.......... 
M. crocinum 

73   77  80      87  90  93               183|185–187    196|197 
Variant 1: AACGGTAAG-GCCCTTCGGGGT-ACACGAGT     GGACCACGGCCTTCATGGGTTGTGG 
Variant 2: .....A...T..T......A..G..T.....     .....G.ATG........TG..... 
            441––––445                      467–––471                        1245 

Variant 1: TTTCAGTAGGGACGAAGCGCAAGTGACGGTACCTATAGAAG         CCGGTACAAAAGGCTGCGATG 
Variant 2: .....CCCAC.....................GTGGG.....         ..........G.......... 
M. flavescens 



                    184|185  
Variant 1: AATATTCCCTATTGGTCGCATG 
Variant 2: ..........GC.......... 
M. xenopi 

     210                                          434 
Variant 1: TGGTGGAAAGTGTTTGGTAGC                    GTTGTAAACCTCTTTCAGCCT 
Variant 2: ..........C..........                    ..........C.......... 
 
 



 

 

Highlights 

 16S rRNA gene sequences of six nontuberculous mycobacterium species were 
obtained 

 Two distinct 16S rRNA gene copies were obtained from each of the six species 
 The two copies varied in 1–23 nucleotides, depending on the species 
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