1	Six species of nontuberculous mycobacteria carry non-identical 16S rRNA gene copies
2	
3	Keita Takeda ^{a,b,c,*} , Kinuyo Chikamatsu ^a , Yuriko Igarashi ^a , Yuta Morishige ^a , Yoshiro Murase ^a ,
4	Akio Aono ^a , Hiroyuki Yamada ^a , Akiko Takaki ^a , Satoshi Mitarai ^{a,c}
5	
6	^a Department of Mycobacterium Reference and Research, the Research Institute of
7	Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-0022, Japan
8	^b Center for Pulmonary Diseases, National Hospital Organization Tokyo National Hospital, 3-
9	1-1 Takeoka, Kiyose, Tokyo 204-8585, Japan
10	° Department of Basic Mycobacteriology, Graduate School of Biomedical Science, Nagasaki
11	University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
12	
13	E-mail addresses: takedak@tokyo-hosp.jp (K. Takeda), chikamatsu@jata.or.jp (K.
14	Chikamatsu), igarashi@jata.or.jp (Y. Igarashi), ymorishige@jata.or.jp (Y. Morishige),
15	ymurase@jata.or.jp (Y. Murase), a.aono1967@gmail.com (A. Aono), hyamada@jata.or.jp (H.
16	Yamada), takaki@jata.or.jp (A. Takaki), mitarai@jata.or.jp (S. Mitarai)
17	
18	*Corresponding author at: Department of Mycobacterium Reference and Research, the
19	Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo, 204-0022, Japan
20	E-mail: takedak@tokyo-hosp.jp (K. Takeda)

21 Abstract

22	Nontuberculous mycobacteria (NTM) can carry two or more 16S rRNA gene copies
23	that are, in some instances, non-identical. In this study, we used a combined cloning and
24	sequencing approach to analyze 16S rRNA gene sequences of six NTM species,
25	Mycobacterium cosmeticum, M. pallens, M. hodleri, M. crocinum, M. flavescens, and M.
26	xenopi. Our approach facilitated the identification of two distinct gene copies in each species.
27	The two M. cosmeticum genes had a single nucleotide difference, whereas two nucleotide
28	polymorphisms were identified in M. hodleri, M. flavescens, and M. xenopi. M. pallens had a
29	difference in four nucleotides and <i>M. crocinum</i> — in 23 nucleotides. Thus, we showed that
30	the six NTM species possess at least two non-identical 16S rRNA gene copies. The full-
31	length sequences of the intraspecies 16S rRNA variants will facilitate NTM identification and
32	sequence analysis of specimens or other samples.
33	
34	Keywords: 16S rRNA, gene copy, Mycobacterium, nontuberculous mycobacteria
35	
36	Abbreviations: LB, Luria-Bertani; NTM, nontuberculous mycobacteria; WGS, whole-
37	genome sequencing

1. Introduction

40	Nontuberculous mycobacteria (NTM) comprise over 190 species of the genus
41	Mycobacterium (Euzéby, 1997). NTM species are classified based on sequence comparisons
42	of select housekeeping genes, such as 16S rRNA, rpoB, and hsp65, as well as the 16S–23S
43	rRNA internal transcribed spacer region (Domenech et al., 1994; Kim et al., 2015; Kirschner
44	et al., 1993; Lee et al., 2000; Rogall et al., 1990; Stahl and Urbance, 1990; Tagliazucchi et al.,
45	2017; Telenti et al., 1993; Tortoli, 2012; Tortoli et al., 2000). Several commercial tests are
46	available that use these genomic sequences for species identification (Bergmann and Woods,
47	1996; Helb et al., 2010; Huh et al., 2015; Lee et al., 2009; Tanaka et al., 2010). However,
48	some NTM species cannot be identified using these tests because of insufficient genome
49	sequence information.
50	Specifically, Chikamatsu et al. (2018) reported failed attempts to identify several
51	NTM species using the PyroMark Q24 test kit (Qiagen, Tokyo, Japan), which is based on
52	pyrosequencing. Ambiguous bases were found within the 16S rRNA gene in six NTM
53	species, Mycobacterium cosmeticum, M. pallens, M. hodleri, M. crocinum, M. flavescens, and
54	M. xenopi (Chikamatsu et al., 2018). Direct sequencing using the Sanger method suggested
55	that these species carry two non-identical 16S rRNA gene copies. In general, rapid-growing
56	mycobacteria carry two copies of the 16S rRNA gene (Domenech et al., 1994), whereas, with

57	a few exceptions, slow-growing mycobacteria possess only one copy (Ji et al., 1994). For
58	example, it has been reported that isolates of the slow-growing M. terrae complex (Ninet et
59	al., 1996) and M. celatum (Reischl et al., 1998) harbor two non-identical copies of the 16S
60	rRNA gene. Here, we applied a combined cloning and sequencing approach to unequivocally
61	determine the copy numbers and complete sequences of all 16S rRNA genes of the six NTM
62	species investigated earlier (Chikamatsu et al., 2018): M. cosmeticum, M. pallens, M. hodleri,
63	M. crocinum, M. flavescens, and M. xenopi.
64	
65	2. Materials and Methods
66	2.1. Bacterial strains
67	M. cosmeticum JCM14739, M. pallens JCM16370, M. hodleri JCM12141, and M.
68	crocinum JCM16369 were obtained from the Japan Collection of Microorganisms (JCM,
69	Ibaraki, Japan). M. flavescens ATCC14474 and M. xenopi ATCC19250 were acquired from
70	the American Type Culture Collection (ATCC, Manassas, VA). All strains were initially
71	grown on 7H10 agar and then cloned from single colonies. The isolates were sub-cultured in
72	2% Ogawa medium at 37 °C.
73	

74 2.2. DNA extraction

_	_	
7	5	
1	J	

Bacterial DNA was extracted using the Isoplant Kit (Nippon Gene Co., Ltd, Toyama,

76	Japan). Briefly, one inoculation loop (approximately 10 μ L) of fresh colonies grown on
77	Ogawa medium were suspended in 300 μ L of extraction buffer and again suspended in 150
78	μ L of lysis buffer for 15-min incubation at 50 °C. Genomic DNA was extracted with sodium
79	acetate (pH 5.2) on ice for 15 min. After centrifugation (12,000 × g , 15 min at 4 °C), the
80	upper phase was transferred to a new tube, and the genomic DNA was precipitated with 70%
81	ethanol. The DNA pellet was dissolved in 50 μ L of TE buffer (10 mM Tris-HCl, 1 mM
82	EDTA).
83	
84	2.3. Cloning
85	The target 16S rRNA genes from each bacterial DNA preparation were amplified with
86	primers 285 (5' GAG AGT TTG ATC CTG GCT CAG 3') and rp2 (5' ACG GCT ACC TTG
87	TTA CGA CTT 3') yielding the almost complete 16S rRNA gene (Adekambi and Drancourt,
88	2004; Domenech et al., 1994). In brief, 25 μ L of a mixture containing ExTaq HS (TaKaRa
89	Bio Inc., Shiga, Japan), 2.5 mM dNTP mixture, 10 μ M of each primer, and 5 μ L template
90	DNA was used for PCR. Amplification was performed in a GeneAmp PCR System 9700
91	(Applied Biosystems, Foster City, CA) using 30 cycles of 30 s at 94 °C, 30 s at 60 °C, and 90
92	s at 72 °C. Then, the PCR products were purified and cloned using a TOPO TA Cloning Kit
93	(Invitrogen, USA). In brief, the PCR products, salt solution, water, and TOPO® vector using
94	vaccinia topoisomerase I were mixed at room temperature (22-23 °C) and incubated for 30

95	min. The recombinant TA cloning mixes were incubated with E. coli competent cells (DH5
96	alpha) for 30 min on ice to perform the transformation. The process was stopped by
97	incubating the samples at 42 °C for 60 s (heat shock), immediately followed by incubation on
98	ice. Super optimal broth with catabolite repression was added to the samples and incubated at
99	37 °C for 1 h.
100	The competent cells were cultured on Luria-Bertani (LB) agar supplemented with 2
101	mg of X-gal. Ten white colonies of each transformation were picked from the LB agar and
102	individually cultured in LB broth. Plasmid DNA was isolated and purified using the a
103	minipreparation Flexiprep Kit (Amersham Biosciences, Little Chalfont, Buckinghamshire,
104	UK) and a column method with a FastGene Gel/PCR Extraction Kit (Nippon Genetics Co.,
105	Ltd, Tokyo, Japan).
106	
107	2.4. Sequence analysis
108	Sequencing of each 16S rRNA clone was performed using the primers M13 Forward
109	(5' GTA AAA CGA CGG CCA GT 3'), M13 Reverse (5' CAG GAA ACA GCT ATG AC
110	3') and 264 (5' TGC ACA CAG GCC ACA AGG GA 3') with a BigDye Terminator Cycle
111	sequencing kit ver. 3.1 (Applied Biosystems) in an ABI 3500 Genetic Analyzer (Applied
112	Biosystems). Finally, the sequences (approximately 1,500 bp each) of the 10 clones of each
113	species (approximately 1,500 bp each) were aligned and further analyzed using Molecular

114 Evolutionary Genetics Analysis software package ver. 7 (Kumar et al., 2016).

116	3. Results
117	The sequence alignments led to the identification of two non-identical 16S rRNA
118	copies for each of the six NTM species. The results have been deposited with GenBank under
119	accession numbers as follows: M. cosmeticum (MH169224 and MH169226), M. pallens
120	(MH169208 and MH169209), M. hodleri (MH169216 and MH169217), M. crocinum
121	(MH169218 and MH169219), <i>M. flavescens</i> (MH169220 and MH169222), and <i>M. xenopi</i>
122	(MH169221 and MH169241). Nucleotide polymorphisms are shown in Fig. 1. M.
123	cosmeticum had a single nucleotide difference between the two sequences. Two-nucleotide
124	differences were found in M. hodleri, M. flavescens, and M. xenopi. M. pallens had a
125	difference in four nucleotides and <i>M. crocinum</i> — in 23 nucleotides.
126	
127	4. Discussion
128	It is well documented that some species of the genus Mycobacterium harbor multiple
129	16S rRNA gene copies with distinct sequences (Chikamatsu et al., 2018; Cilia et al., 1996;
130	Conville et al., 2005; Menendex et al., 2002; Ninet et al., 1996; Reischl et al., 1998; Viezens
131	and Arvand, 2008). In this study, the cloning experiments targeting 16S rRNA genes
132	facilitated the identification of two distinct copies in six NTM species: M. cosmeticum, M.

133	pallens, M. hodleri, M. crocinum, M. flavescens, and M. xenopi. Each strain was re-isolated
134	from a single colony, and each of the two 16S rRNA gene copies was reproducibly obtained
135	from multiple clones derived from these isolates. In addition, nucleotide polymorphisms
136	observed for the species-specific gene copies were supported by earlier findings obtained by
137	direct sequencing, e.g., the nucleotide position 185 of the 16S rRNA copies in M. cosmeticum
138	was A or G by our cloning-sequencing experiment (Fig. 1), but a mixture of A and G at this
139	position had been indicated earlier by direct Sanger sequencing (Chikamatsu et al., 2018).
140	Our new data were confirmed by multiple clones per strain to minimize the possible impact
141	of technical sequencing errors.
142	Cilia et al. (1996) reported earlier that sequences obtained from clones may be more
143	definitive than sequence data obtained from direct sequencing. Indeed, our sequence data
144	obtained from the cloning experiment unequivocally established the existence of two non-
145	identical gene copies per species, whereas the earlier direct sequencing only suggested a
146	polymorphism based on sequence ambiguities. Hence, it is recommended to avoid direct
147	sequencing for species identification if there are non-identical genomic copies of the target
148	sequence.
149	However, our study could not reveal whether the NTM species had more than two
150	16S rRNA gene copies per genome. It is possible that one genome carries several 16S rRNA
151	copies with identical sequences. This problem might be resolved by whole-genome

152	sequencing (WGS). A database search revealed that <i>M. cosmeticum</i> DSM 44829 has two 16S
153	rRNA genes (GenBank accession: NZ_CCBB010000003.1), M. flavescens strain M6 has
154	three genes (GenBank accession: NZ_MIHA00000000.1), and <i>M. xenopi</i> has one (Strain
155	DSM 43995, GenBank accession: LQQB01000023.1) or two (Strain RIVM700367, GenBank
156	accession: NZ_AJFI01000116.1) genes. These WGS data were obtained by shotgun
157	sequencing, which also has limitations regarding the identification of identical or almost
158	identical gene copies (Goodwin et al., 2016; Nakano et al., 2017; Schadt et al., 2010). Hence,
159	cloning along with sequencing is still required, but improvements in WGS data accuracy will
160	be obtained in the near future by implementing long-read sequencing using the single-
161	molecule real-time sequencing technology (Nakano et al., 2017; Schadt et al., 2010).
162	Currently, the exact 16S rRNA gene copy number is not yet known for <i>M. pallens</i> , <i>M.</i>
163	hodleri, and M. crocinum, which requires further analysis.
164	In this study, we established the existence of two 16S rRNA gene copies for each of
165	the six NTM species examined. However, species identification using 16S rRNA sequencing
166	can be challenging because of the detected nucleotide polymorphisms. The identification of
167	two non-identical 16S rRNA copies in the six NTM species will be helpful for sequence
168	analyses of specimens or other samples and sequencing efforts.
169	

Declaration of interest

171 The authors declare no conflict of interest.

- 174 Adekambi, T. and Drancourt, M., 2004. Dissection of phylogenetic relationships among 19
- rapidly growing *Mycobacterium* species by 16S rRNA, *hsp65*, *sodA*, *recA* and *rpoB*gene sequencing. Int. J. Syst. Evol. Microbiol. 54, 2095–2105.
- 177 Bergmann, J.S. and Woods, G.L., 1996. Clinical evaluation of the Roche AMPLICOR PCR
- 178 *Mycobacterium tuberculosis* test for detection of *M. tuberculosis* in respiratory
- 179 specimens. J. Clin. Microbiol. 34, 1083–1085.
- 180 Chikamatsu, K., Aono, A., Hata, H., et al., 2018. Evaluation of PyroMark Q24
- 181 pyrosequencing as a method for the identification of mycobacteria. Diagn. Microbiol.
- 182 Infect. Dis. 90, 35–39.
- 183 Cilia, V., Lafay, B., Christen, R., 1996. Sequence heterogeneities among 16S ribosomal RNA
- 184 sequences, and their effect on phylogenetic analyses at the species level. Mol. Biol.
- 185 Evol. 13, 451–461.
- 186 Conville, P.S. and Witebsky, F.G., 2005. Multiple copies of the 16S rRNA gene in Nocardia
- *nova* isolates and implications for sequence-based identification procedures. J. Clin.
- 188 Microbiol. 43, 2881–2885.
- 189 Domenech, P., Menendez, M.C., Garcia, M.J., 1994. Restriction fragment length

190	polymorphism of 16S rRNA genes in the differentiation of fast-growing
191	mycobacterial species. FEMS Microbiol. Lett. 116, 19-24.
192	Euzéby, J.P., 1997. List of prokaryotic names with standing in nomenclature: a folder
193	available on the Internet. Int. J. Syst. Bacteriol. 47, 590-592.
194	Goodwin, S., McPherson, J.D., McCombie, W.R., 2016. Coming of age: ten years of next-
195	generation sequencing technologies. Nat. Rev. Genet. 17, 333-351.
196	Helb, D., Jones, M., Story, E., et al., 2010. Rapid detection of Mycobacterium tuberculosis
197	and rifampin resistance by use of on-demand, near-patient technology. J. Clin.
198	Microbiol. 48, 229–237.
199	Huh, H.J., Kwon, H.J., Ki, C.S., et al., 2015. Comparison of the genedia MTB detection kit
200	and the cobas TaqMan MTB assay for detection of Mycobacterium tuberculosis in
201	respiratory specimens. J. Clin. Microbiol. 53, 1012–1014.
202	Ji, Y.E., Colston, M.J., Cox, R.A., 1994. The ribosomal RNA (rrn) operons of fast-growing
203	mycobacteria: primary and secondary structure and their relation to rrn operons of
204	pathogenic slow-growers. Microbiology 140, 2829–2840.
205	Kim, S.Y., Park, H.Y., Jeong, B.H., et al., 2015. Molecular analysis of clinical isolates
206	previously diagnosed as Mycobacterium intracellulare reveals incidental findings of
207	"Mycobacterium indicus pranii" genotypes in human lung infection. BMC Infect. Dis.
208	15, 406.

209	Kirschner, P., Springer, B., Vogel, U., et al., 1993. Genotypic identification of mycobacteria
210	by nucleic acid sequence determination: report of a 2-year experience in a clinical
211	laboratory. J. Clin. Microbiol. 31, 2882–2889.
212	Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics
213	Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874.
214	Lee, H., Park, H.J., Cho, S., et al., 2000. Species identification of mycobacteria by PCR-
215	restriction fragment length polymorphism of the <i>rpoB</i> gene. J. Clin. Microbiol. 38,
216	2966–2971.
217	Lee, A.S., Jelfs, P., Sintchenko, V., et al., 2009. Identification of non-tuberculous
218	mycobacteria: utility of the GenoType Mycobacterium CM/AS assay compared with
219	HPLC and 16S rRNA gene sequencing. J. Med. Microbiol. 58, 900–904.
220	Menendez, M.C., Garcia, M.J., Navarro, M.C., et al., 2002. Characterization of an rRNA
221	operon (rrnB) of Mycobacterium fortuitum and other mycobacterial species:
222	implications for the classification of mycobacteria. J. Bacteriol. 184, 1078–1088.
223	Nakano, K., Shiroma, A., Shimoji, M., et al., 2017. Advantages of genome sequencing by
224	long-read sequencer using SMRT technology in medical area. Hum. Cell 30, 149-
225	161.
226	Ninet, B., Monod, M., Emler, S., et al., 1996. Two different 16S rRNA genes in a
227	mycobacterial strain. J. Clin. Microbiol. 34, 2531–2536.

228	Reischl, U., Feldmann, K., Naumann, L., et al., 1998. 16S rRNA sequence diversity in
229	Mycobacterium celatum strains caused by presence of two different copies of 16S
230	rRNA gene. J. Clin. Microbiol. 36, 1761–1764.
231	Rogall, T., Wolters, J., Flohr, T., et al., 1990. Towards a phylogeny and definition of species at
232	the molecular level within the genus Mycobacterium. Int. J. Syst. Bacteriol. 40, 323-
233	330.
234	Schadt, E.E., Turner, S., Kasarskis, A., 2010. A window into third-generation sequencing.
235	Hum. Mol. Genet. 19, 227–240.
236	Stahl, D.A. and Urbance, J.W., 1990. The division between fast- and slow-growing species
237	corresponds to natural relationships among the mycobacteria. J. Bacteriol. 172, 116-
238	124.
239	Tagliazucchi, S., Fabio, A., Bettua, C., et al., 2017. The new phylogeny of the genus
240	Mycobacterium: The old and the news. Infect. Genet. Evol. 56, 19–25.
241	Tanaka, H., Hirose, H., Kato, Y., et al., 2010. Clinical evaluation of TRCRapid M.TB for
242	detection of Mycobacterium tuberculosis complex in respiratory and nonrespiratory
243	specimens. J. Clin. Microbiol. 48, 1536–1541.
244	Telenti, A., Marchesi, F., Balz, M., et al., 1993. Rapid identification of mycobacteria to the
245	species level by polymerase chain reaction and restriction enzyme analysis. J. Clin.
246	Microbiol. 31, 175–178.

247	Tortoli, E., Fedrizzi, T., Meehan, C.J., et al., 2000. Novel diagnostic algorithm for	
248	identification of mycobacteria using genus-specific amplification of the 16S-23S	
249	rRNA gene spacer and restriction endonucleases. J. Clin. Microbiol. 38, 1094–1104.	
250	Tortoli, E., 2012. Phylogeny of the genus Mycobacterium: many doubts, few certainties.	
251	Infect. Genet. Evol. 12, 827–831.	
252	Viezens, J. and Arvand, M., 2008. Simultaneous presence of two different copies of the 16S	
253	rRNA gene in Bartonella henselae. Microbiology 154, 2881–2886.	
254		
255		
256		
257	Figure legend	
258	Fig. 1. Nucleotide polymorphisms between two non-identical 16S rRNA sequences of six	
259	NTM species. Nucleotide positions were derived from an alignment with the 16S rRNA gene	
260	of <i>M. tuberculosis</i> H37Rv ATCC272 (GenBank accession: NC_000962).	
261		

Figure 1

M. cosmeticum				
185				
Variant 1: ATAGGACTCCAGG				
Variant 2: <u>G</u>				
M. pallens				
185—187	470			
Variant 1: ATAGGACCACATGCTTCATGGTG	GACGGTACCT A TAGAAGAAGC			
Variant 2 :	<u>G</u>			
M. hodleri				
197 198				
Variant 1: GATGCATGTC <u>TC</u> TTGGTGGAAA				
Variant 2:				
M. crocinum				
73 77 80 87 90 93	183 185–187 196 197			
Variant 1: AACGG T AAG-GC C CTTCGG G GT-AC A CGA	GT GGACC <u>A</u> C <u>GGC</u> CTTCATGG <u>GT</u> TGTGG			
Variant 2: $\dots \underline{\mathbf{A}} \dots \underline{\mathbf{T}} \dots \underline{\mathbf{T}} \dots \underline{\mathbf{A}} \dots \underline{\mathbf{G}} \dots \underline{\mathbf{T}} \dots$	<u>G</u> . <u>ATG</u> <u>TG</u>			
441445	467—471 1245			
Variant 1: TTTCAGTAGGGACGAAGCGCAAGTGACGG	TA <u>CCTAT</u> AGAAG CCGGTACAAA A GGCTGCGATG			
Variant 2: <u>CCCAC</u>	<u>GTGGG</u>			
M. flavescens				

	184 185				
Variant 1:	ant 1: AATATTCCCTATGTCGCATG				
Variant 2 :	Variant 2:				
M. xenopi					
	210	434			
Variant 1:	TGGTGGAAAG T GTTTGGTAGC	GTTGTAAACC T CTTTCAGCCT			
Variant 2 :	<u>c</u>	<u>C</u>			

Highlights

- 16S rRNA gene sequences of six nontuberculous mycobacterium species were obtained
- Two distinct 16S rRNA gene copies were obtained from each of the six species
- The two copies varied in 1–23 nucleotides, depending on the species