散乱光法によるねじりを受けるポリエステルの ひずみ速度の影響を考慮した光粘弾塑性解析法[†]

平野貞三*林 佳彦*今井康文**

Photovisco-Elasto-Plastic Analysis Considering Strain Rate Effect on Polyester under Torsion by Scattered-Light Method

by

Teizo HIRANO*, Yoshihiko HAYASHI* and Yasufumi IMAI**

Three-dimensional photovisco-elasto-plastic analysis considering strain rate effect was investigated by a scattered-light method using polyester as a model material. In order to examine the mechanical and optical properties of polyester, torsion tests were carried out on solid shafts under various twisting rates at 30°C and the effects of strain rate on the shearing stress, shearing strain, fringe gradient and increasing rate of fringe gradient were investigated. Regardless of the strain rate, it was found that the shearing stress-strain relation can be expressed by a Ramberg-Osgood equation and the fringe gradient-shearing strain relation was successfully represented by a nondimensional equation. Finally, the relation between the fringe gradient and its increasing rate was formulated as a function of strain rate. From these results, we established a method to estimate the shearing stress and the shearing strain in a three-dimensional model only by measuring the finge gradient and its increasing rate. The calculated torques from the shearing stress estimated by this photovisco-elasto-plastic analysis were consistent with the applied torques on solid and hollow shafts.

Key words : Experimental stress analysis, Photovisco-elasto-plasticity, Polyester,

Scattered-light method, Torsion, Shearing strain rate, Fringe gradient-shearing strain relation

1 緒 言

光塑性法とは、金属材料と類似な応力・ひずみ挙動を 示す透明な高分子材料を使用し、その複屈折効果を利用 して、弾性限を越えた塑性域までの応力またはひずみを 解析する実験法の一つである. これまでにも、光塑性 法に関する多くの研究が行われている. 光塑性モデル 材料としては、セルロイ^{1)で1},ポリカーボネイ^{5)で7},ポリエ ステル、セルロースアセテートなどが使用され、それぞ れ特色のある解析方法により二次元問題の光塑性解析が 行われている. その中で、モデル材料のひずみ速度の影 響を考慮した研究としては、大橋、但野・石川らの研究 がある.

三次元問題の光塑性解析に関する研究としては, Dally-Mulc¹⁴のポリカーボネイトを用いた圧縮除荷後の 短円柱の残留ひずみ分布の解析,Gomide-Burger¹⁵のポ リエステルを用いた圧縮短円環の残留ひずみ分布の解析, 万・高橋のポリカーボネイトを用いたひずみ凍結後の圧 縮短円柱のひずみ分布の解析などが報告されている.こ れらいずれの場合も,モデルの機械的スライスを必要と し,種々の負荷状態についてひずみ分布の解析を行うた めには,多数のモデルを必要とする不便な点がある.ま た,Johnson¹⁷⁷はプロピオン酸セルロースを用いて,散乱 光法によりステップ荷重方式によるねじり試験を行い, 負荷後15分経過したときの応力・ひずみ曲線と応力・ 縞こう配曲線から、ねじり応力とひずみの解析を行って いる.しかし、この負荷方法では非常に遅い変形速度で 実験しなければならず、しかも種々の負荷状態について 調べるには、時間がかかり過ぎて実用的な方法とは言い 難い.

したがって,現在,三次元光塑性法の研究においては, モデル材料の粘性の影響を考慮に入れた実用的な実験方 法と解析法の確立が望まれている.

本研究は,実験方法として散乱光法を用いて,モデル 材料の粘性の影響を考慮に入れた三次元光粘弾塑性解析 法を提案するもので,本報では,一つのモデルで弾性, 塑性領域が得られるねじりの問題について検討する.

散乱光法は,Weller によって提案された三次元の実 験応力解析法の一つで,従来の平行光法に比べて,モデ ルの応力凍結や機械的スライスを必要とせず,光学的ス ライスを行うため非破壊的な計測が可能であり,一つの モデルで広範囲な負荷状態の解析ができる利点がある. しかし,散乱光は微弱なため,明瞭な縞が得られにくい 欠点もあった.

しかし,著者らは,ポリエステル材を用いて,ねじり 試験を行い,浸漬液にポリエステルモノマー溶液を使用 することによって,明瞭な散乱光縞が得られることを明

852

⁺ 原稿受理 平成6年3月14日 Received Mar. 14, 1994

^{*} 正会員 久留米工業大学機械工学科 〒830 久留米市上津町, Dept. of Mech. Eng., Kurume Inst. of Tech., Kamitsu-machi, Kurume, 830

^{**} 正 会 員 長崎大学工学部機械システム工学科 〒852 長崎市文教町, Dept. of Mech. Systems Eng., Nagasaki Univ., Bunkyo-machi, Nagasaki,

らかにした.

本研究では、モデル材料として、ポリエステル材を用 いて、ねじり負荷状態の応力およびひずみの光粘弾塑性 解析を行うために必要なせん断応力-せん断ひずみ関係、 稿こう配-せん断ひずみ関係、稿こう配-編こう配増加率 関係に及ぼすせん断ひずみ速度の影響を縞解析の精度の 良い試験片外皮の縞に注目して検討した.その結果より、 縞こう配と縞こう配増加速度からモデル内部のせん断応 力およびせん断ひずみを推定できる実験解析式の誘導を 試みた.

2 実 験 方 法

本実験で使用した材料は、硬質ポリエステル(リゴ ラック1557)と軟質ポリエステル(リゴラック70F) を重量比3:7の割合で混合し、触媒(パーメックN) と硬化促進剤(ナフテン酸コバルト)とを重量比で約 0.5% ずつ添加して室温で硬化させたポリエステル丸棒 材である.これよりFig.1に示すような中実丸棒試験片 を機械加工により作製した.試験片の両端部には、ピン を通してねじり負荷を加えるための円孔を設けた.

ねじり負荷装置は、島津ねじり試験機を使用した. 試験片平行部のねじれ角は、つかみ部間のねじれ角から算 出し、平行部の外皮のせん断ひずみ γ は、試験片平行 部のねじれ角 θ から算出した.

ねじり負荷条件としては、ねじれ角速度 θ が 1.45 ×10⁻³ rad/s~2.62×10⁻² rad/s (試験片平行部の外 皮のせん断ひずみ速度 γ の大きさが 2.33×10⁻⁴ l/s~ 4.16×10⁻³ l/s)の範囲の 6 条件で、実験はすべて温度 30°C の下で行った.なお、この温度条件の下では、負 荷中にポリエステルの複屈折効果の符号反転現象⁹は生じ ないことを予備実験により確認した.散乱光実験の光学 装置の概略図を Fig.2 に示す.光源には、500 W の超高 圧水銀灯 (波長 λ =546.1 nm)を用いた.本実験では、

Fig. 1. Shape and dimensions of specimen.

偏光が試験片表面に入射する際の反射と屈折をさけて明 瞭な散乱光縞を得るために液浸法を用いた.浸漬液には, 試験片の屈折率(1.537)と等しくするために実験材料と 同じポリエステルモノマー溶液を使用した.

散乱光縞の撮影は,幅1mmのスリットを通過した偏 光層を浸漬液槽内の試験片の軸に直交して入射させ,光 路に垂直な方向から一定時間ごとに写真撮影を行った. また,同時にトルクとねじれ角の測定を行った.

散乱光縞の解析には,撮影したネガフィルムを拡大投 影機にかけ,光電管により縞の光強度を測定する方法を 用いて,縞の位置の確定を行った.

3 実験結果および考察

3・1 せん断応力-せん断ひずみ関係

ねじり試験より得られたトルクーねじれ角線図から Nadai の方法により求めた試験片外皮のせん断応力 τ とせん断ひずみ γ の関係を Fig. 3 に示す. 薄肉円筒を 用いても同様な結果が得られた. 図より, $\tau-\gamma$ 関係は せん断ひずみ速度に依存し, ひずみ速度が速くなるにつ れて, せん断応力も増加している. これはポリエステル 材料が大きな粘性をもっているため,変形速度が速くな るほど粘性抵抗が大きくなるためである.

従来から,光塑性材料の応力-ひずみ関係を表示す る方法として,Ramberg-Osgood 則がよく利用され ^{2),5),0,7),11),12} ている.本報でも,せん断応力-せん断ひずみ関係を Ramberg-Osgood 則を用いて次式のように表示するこ とを試みた.

$$\frac{G\gamma}{\tau_y} = \frac{\tau}{\tau_y} + \frac{3}{7} \left(\frac{\tau}{\tau_y}\right)^m \tag{1}$$

ここで、G は横弾性係数、 τ_y は降伏せん断応力(セ カント係数 $G_s=0.7G$ となるときの応力)、m は加工硬 化指数である.

Fig. 3 の $\tau - \gamma$ 線図から求めた横弾性係数 G および降 伏せん断応力 τ_y とせん断ひずみ速度 $\dot{\gamma}$ の関係を Fig. 4 に示す. 図より, G および τ_y は, いずれもせん断ひず み速度に依存し, ひずみ速度が速くなるにつれて, 増加 している. G および τ_y は, ひずみ速度の標準値を $\dot{\gamma}_0$ =10⁻³ l/s に定めるとそれぞれ式 (2), (3) で近似でき, Fig. 4 に式 (2), (3) を実線で示した.

curves under torsion.

Fig. 4. Effects of shearing strain rate on shearing modulus and yield shearing stress.

Fig. 5. Nondimensional stress~strain relation.

$$G = 43.3 \log \frac{\dot{\gamma}}{\dot{\gamma}_0} + 70.1$$
 (MPa) (2)

$$\tau_y = 2.12 \log \frac{\dot{\gamma}}{\dot{\gamma}_0} + 3.35 \quad (\text{MPa}) \tag{3}$$

Fig. 5 には, $\tau - \gamma$ 関係を降伏応力 τ_y で, 無次元化し た応力 (τ/τ_y)とひずみ ($G\gamma/\tau_y$)の実験結果を示す. 図よ り明らかなように, 実験値はせん断ひずみ速度に関係な く, 一つの曲線で近似できることがわかる. 図中, 実線 は式(1)の指数 m=4の曲線を示す. したがって, ポリ エステルのせん断応力-せん断ひずみ関係は次式のよう に表せる.

$$\frac{G\gamma}{\tau_y} = \frac{\tau}{\tau_y} + \frac{3}{7} \left(\frac{\tau}{\tau_y}\right)^4 \tag{4}$$

3・2 縞こう配-せん断ひずみ関係

ねじれ角速度 $\dot{\theta}$ が 8.72×10⁻³ rad/s の実験で得られ た散乱光縞写真の例を Fig. 6 に示す. 図中, (a), (b) は平 行ニコル, (c)~(f) は直交ニコルの散乱光縞である. 散 乱光縞は, ねじれ角が増加するにつれて, その次数が増 加し, 縞の間隔が狭まっていく. 縞こう配 n は, 縞次 数 N を偏光の入射光路程 S で微分した値 dN/dS で求 めることができる. Fig. 7 には, 試験片外皮の縞こう配 n とせん断ひずみ γ の関係を示す. 図より, $n-\gamma$ 関係 はせん断ひずみ速度に依存し, ひずみ速度が速くなるに つれて, 縞こう配も増加している. これは, ポリエステ ル材料の持つ粘性効果が光学的性質にも大きな影響を及 ぼすことを示すものである.

 $n-\gamma$ 関係をそれぞれの降伏時の値を用いて無次元化 式で表示することを試みた.降伏せん断応力 τ_y に対応 するせん断ひずみを降伏せん断ひずみ γ_y とすると, γ_y は Fig. 3 の $\tau-\gamma$ 線図において破線で示すように, せん 断ひずみ速度に関係なく, 0.066~0.069 の範囲にあった. また,降伏せん断ひずみ γ_y に対応する縞こう配 n の値 を降伏縞こう配 n_y とすると, n_y は Fig. 7 の $n-\gamma$ 線図 から求められる.得られた降伏縞こう配 n_y とせん断ひ ずみ速度 $\dot{\gamma}$ の関係を Fig. 8 に示す.図より, n_y はせん 断ひずみ速度に依存し, ひずみ速度が速くなるにつれて, 増加している. n_y は,式(5)で近似でき, Fig. 8 に実線 で示した.

$$n_{y} \cdot \lambda = 7.70 \times 10^{-5} \log \frac{\dot{\gamma}}{\dot{\gamma}_{0}} + 2.14 \times 10^{-4}$$
 (5)

ここで、 λ は波長、 $\dot{\gamma}_{0}$ はひずみ速度の標準値である. Fig. 9 には、 $n-\gamma$ 関係をそれぞれの降伏時の値で無次 元化した縞こう配 (n/n_{y}) とせん断ひずみ (γ/γ_{y}) の実験 結果を示す. 図より、 (γ/γ_{y}) と (n/n_{y}) の関係はせん断 ひずみ速度に関係なく、 $0 < (\gamma/\gamma_{y}) < 1$ の範囲では、二次

Fig. 6. Scattered-light fringe patterns for polyester under torsion. ($\dot{\theta} = 8.72 \times 10^{-3} \text{ rad/s}$); (a), (b) parallel nicols pattern, (c)~(f) crossed nicols pattern.

曲線で近似でき、(γ/γ_y)≥1の範囲では、直線で近似で きることがわかった.その近似式を式(6)、(7)に示す.

Fig. 9. Nondimensional fringe gradient~ shearing strain relation.

図中,式(6),(7)を実線で示したが,実験値をよく表している.また,せん断ひずみ速度 y を変化させた場合にも同式は成立した.

 $0 < (\gamma / \gamma_y) < 1$ のとき

$$\frac{n}{n_y} = 0.70 \left(\frac{\gamma}{\gamma_y}\right) + 0.30 \left(\frac{\gamma}{\gamma_y}\right)^2 \tag{6}$$

(γ/γ_y)≧1のとき

$$\frac{n}{n_y} = 1.67 \left(\frac{\gamma}{\gamma_y}\right) - 0.67 \tag{7}$$

3・3 縞こう配-縞こう配増加率関係

Fig. 7 から明らかなように,一定のせん断ひずみ速度 の下でも,ポリエステルの縞こう配増加率は,一定では なく,降伏前 $(0 < (\gamma / \gamma_y) < 1)$ より降伏後 $((\gamma / \gamma_y) \ge 1)$ の方 が大きくなっている.これは,ポリエステル材料のひず み複屈折感度が降伏前より降伏後の方が高いためで,ポ リエステル材料が塑性域の解析に適していることになる. 縞こう配増加率 π ($\pi = (dn/dt)/(d\gamma/dt)$)は,縞こう配 nと時間 t の関係図より求めた.その結果を縞こう配 n と縞こう配増加率 π の関係図として Fig. 10 に示した. 図より, π は n が増加するにつれて増加するが, n が n_y に達すると π は一定となる.また, π はせん断ひず み速度に依存し, せん断ひずみ速度が速くなるほど増加 する.

これから, n の測定のみからせん断ひずみ速度を推定 することを試みる. まず, \overline{n} が一定となる開始点の nの値は, 前述した降伏縞こう配 n_y と一致していたので, 降伏縞こう配 n_y と縞こう配増加率 \overline{n} の関係を次式 (8) で近似する. 図中, 式 (8)を破線で示した.

 $n_y \cdot \lambda = 2.73 \times 10^{-4} \log (\overline{n} \cdot \lambda) + 8.46 \times 10^{-4}$ (8) したがって、降伏縞こう配 n_y は、縞こう配増加速度 dn/dtから決定することができる.

つぎに, n と n の関係 (0 < n < n_y) を,式 (9) のよう に近似し,その係数 A, B のひずみ速度依存性を調べて みる.

$$\log (\overline{n} \cdot \lambda) = A(n \cdot \lambda)^2 + B \tag{9}$$

ここで, A, B は係数である.

Fig. 10 からそれぞれのせん断ひずみ速度に対して求

Fig. 10. Fringe gradient ~ fringe gradient increasing rate curves under torsion.

められた係数 *A*, *B*の関係を Fig. 11 に示す. Fig. 11 より,係数 *A* はひずみ速度が速くなるほど減少し,係数 *B* はひずみ速度が速くなるほど増加している.係数 *A*, *B*の値は,それぞれ式(10),(11)で近似でき,図中,実線 で示した.

$$A = -5.90 \times 10^{6} \log \frac{\dot{\gamma}}{\dot{\gamma}_{0}} + 8.48 \times 10^{6}$$
(10)

 $B = 0.19 \log \frac{\gamma}{\dot{\gamma}_0} - 2.62 \tag{11}$

n≥n_yのときは式(9)で, n=n_yとしたものになる. したがって,ポリエステルの縞こう配 n と縞こう配 増加率 n の関係は,次式のように表せる. Fig. 10 の実 線は式(12)を示したもので,実験値をよく表している.

$$\log (\overline{n} \cdot \lambda) = \left(-5.90 \times 10^{6} \log \frac{\gamma}{\dot{\gamma}_{0}} + 8.48 \times 10^{6}\right) \lambda^{2} \cdot [n]^{2} + \left(0.19 \log \frac{\dot{\gamma}}{\dot{\gamma}_{0}} - 2.62\right)$$

$$\begin{cases} 0 < n < n_{y} \ \mathcal{O} \succeq \overset{*}{\Rightarrow} [n] = n \\ n \ge n_{y} \ \mathcal{O} \succeq \overset{*}{\Rightarrow} [n] = n_{y} \end{cases}$$
(12)

このことから, 縞こう配 n と縞こう配増加速度 dn/dt を測定することによって, せん断ひずみ速度 γ を推定することができる.

3・4 散乱光法による光粘弾塑性解析法の手順

ねじり負荷を受ける粘弾塑性モデルに生ずるせん断応 力とせん断ひずみの光粘弾塑性解析法の手順として次の ような方法が考えられる.

(1) モデル内の各点の散乱光縞こう配 n と縞こう配 増加速度 dn/dt を測定し,式(8)より,降伏縞こう配 n_vを計算する.

(2) 測定した縞こう配 n が計算した ny よりも小さいときは、式(6), (12)を用い、 ny よりも大きいときは、式
(7)と式(12)を用いて、せん断ひずみ y とせん断ひずみ速度 y を推定する.

(3) さらに, せん断ひずみ速度 γ から, 式(2), (3) を 用いて, 横弾性係数 *G* および降伏せん断応力 τ_y を計算 し, 得られた γ , *G* および τ_y から式(4) を用いて, せん 断応力 τ を推定する.

3・5 せん断ひずみ分布とせん断応力分布の解析結果

今までの結果は,試験片外皮の解析結果をまとめたもので,上記の解析方法を適用してモデル内部のせん断ひずみ分布とせん断応力分布の解析結果について述べる. ねじれ角速度 θ が 8.72×10⁻³ rad/s の場合の中実丸棒の横断面上のせん断ひずみ分布とせん断応力分布の解析結果を Fig. 12 と Fig. 13 に示す.図中,解析結果を 〇印で示した.この解析結果の精度について検討することにした.

ー般にねじり負荷を受ける場合の,中心から任意の位置のせん断ひずみ γ と試験片外皮のせん断ひずみ γ の関係は次式で表される.

$$\gamma = \frac{r}{R} \gamma_R \tag{13}$$

ここで, *R* は試験片外皮の半径, *r* は中心から任意の位置である.

Fig. 12 中,式(13)を実線で示した.中心部は, 縞こう 配が小さく精度が悪いが,全体として解析値は式(13)と ほぼよい一致を示していることがわかる.

つぎに, トルク T とせん断応力 τ の関係は, 次式で 表される.

$$T = 2\pi \int_0^R \tau r^2 dr \qquad (14)$$

Fig. 13 のせん断応力分布より,式(14) を用いて計算し たトルクの値 *T*。と実際に加えたトルク *T* を比較した 結果を Table I に示す.また,中空丸棒(内径 10 mm,

Distance from center of shaft r/R Fig. 12. Distribution of shearing strain on the cross section of solid shaft under torsional loadings.

Fig. 13. Distribution of shearing stress on the cross section of solid shaft under torsional loadings.

Table I. Comparison between applied and calculated torques on solid shaft. $(\dot{\theta}=8.72\times10^{-3} \text{ rad/s})$

θ (rad)	T (Nm)	T_c (Nm)	T_c/T	
0.478	5.09	5.25	1.031	
0.648	6.20	6.37	1.027	
0.817	7.04	7.04	1.0	
1.07	7.93	7.83	0.987	
1.24	8.46	8.50	1.005	
1.50	9.19	9.14	0.995	

T: Applied torque.

 T_c : Calculated torque

Table II.Comparison between applied and
calculated torques on hollow shaft.

 $(\dot{\theta} = 8.72 \times 10^{-3} \text{ rad/s})$

θ (rad)	T (Nm)	$T_{\rm c}~({\rm Nm})$	$T_{\rm c}/T$
0.455	4.74	4.68	0.987
0.625	5.73	5.79	1.010
0.792	6.47	6.55	1.012
0.961	7.11	7.13	1.003
1.14	7.62	7.63	1.001
1.31	8.04	8.08	1.005

T: Applied torque.

 T_c : Calculated torque.

外径 20 mm) のトルクの比較を Table Ⅱ に示す. 中空 丸棒の方が, 精度の悪い部分が入らない分だけ精度が良 い. Table I, Ⅱ より, 計算値と測定値の誤差は約3% 以内であることが確認された.

したがって,以上の結果から散乱光法を用いた本光粘 弾塑性実験法は三次元モデルの粘弾塑性応力・ひずみ解 析法として有効であると判断できる.

4 結 論

三次元光粘弾塑性モデル材料として、ポリエステル材 料を使用し、ねじり試験を行い、解析に必要なポリエス テルの機械的および光学的性質に及ぼすひずみ速度の影 響について調べた結果、次のような結論を得た.

 ポリエステルのせん断応力-せん断ひずみ関係は、 ひずみ速度に依存した G および r_gで無次元化すれば、 一つの Ramberg-Osgood 式で表示できる.

(2) ポリエステルの横弾性係数,降伏せん断応力,降 伏時の縞こう配は,せん断ひずみ速度の関数で表示でき る.

(3) ポリエステルの縞こう配~せん断ひずみ関係は, それぞれの降伏時の値で無次元化することで,一つの関 係で表示できる. (4) ポリエステルの縞こう配〜縞こう配増加率関係は, せん断ひずみ速度の関数として表示でき,逆に,縞こう 配と縞こう配増加速度を測定すれば,モデル内のせん断 ひずみ速度が算出でき,ひずみ速度を考慮したせん断応 力およびせん断ひずみの値が推定できる.

(5) 本粘弾塑性解析法によって求めたせん断応力およ びせん断ひずみ分布の解析結果より,散乱光法を用いた 本実験法は三次元モデルの粘弾塑性応力ひずみ解析法と して有効であると判断できる.

参考文献

- 1) M. Nisida, M. Hondo and T. Hasunuma, Proc. 6th Japan Nat. Congr. Appl. Mech., 137 (1956).
- 2) M. M. Frocht and R. A. Thomson, Exp. Mech., 1, 43 (1961).
- 3) Y. Ohashi, Exp. Mech., 13, 287 (1973).
- 4) J. Javornicky, Photoplasticity, 73 (1974) Elsevier.
- 5) H.F. Brinson, Exp. Mech., 11, 467 (1971).
- 6) 島本 聡, 日本機械学会論文集, A-47, 959 (1981).
- 7)高橋 賞,末次正寛,島本 聡,日本機械学会論文集,A 53,865 (1987).
- 8) S. Miki, Proc. 8th Japan Nat. Congr. Appl. Mech., 231 (1959).
- 9) 三木 教, "光弹性学要論", 9(1974) 理工新社.
- 10) D. H. Morris and W. F. Riley, Exp. Mech., 12, 448 (1972).
- 11) 三木正伸,大村安彦,栗谷丈夫,日本機械学会論文集,42, 3410 (1976).
- 12) 但野 茂,石川博將,日本機械学会論文集,A-54,139 (1988).
- 13) 但野 茂,石川博將,日本機械学会論文集, A-54, 1410 (1988).
- 14) J. W. Dally and A. Mulc, J. Appl. Mech., 40, 600 (1973).
- 15) H. A. Gomide and C. P. Burger, Exp. Mech., 21, 361 (1981).
- 16) 万 向,高橋 賞,日本機械学会論文集,A-57,977 (1991).
- 17) R. L. Johnson, Exp. Mech., 16, 201 (1976).
- 18) R. Weller, J. Appl. Phys., 14, 266 (1939).
- 19) 平野貞三,林 佳彦,応用力学連合講演予稿集,41,431 (1991).
- A. Nadai, Theory of Flow and Fracture of Solids, 347 (1950) McGraw-Hill.
- 21) W. Ramberg and W. R. Osgood, NACA Tech. Note, 902 (1943).