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Abstract

Background: Malaria is a major public health problem in Bangladesh, frequently occurring as epidemics since the 1990s.
Many factors affect increases in malaria cases, including changes in land use, drug resistance, malaria control programs,
socioeconomic issues, and climatic factors. No study has examined the relationship between malaria epidemics and climatic
factors in Bangladesh. Here, we investigate the relationship between climatic parameters [rainfall, temperature, humidity,
sea surface temperature (SST), El Niño-Southern Oscillation (ENSO), the normalized difference vegetation index (NDVI)], and
malaria cases over the last 20 years in the malaria endemic district of Chittagong Hill Tracts (CHT).

Methods and Principal Findings: Monthly malaria case data from January 1989 to December 2008, monthly rainfall,
temperature, humidity sea surface temperature in the Bay of Bengal and ENSO index at the Niño Region 3 (NIÑO3) were
used. A generalized linear negative binomial regression model was developed using the number of monthly malaria cases
and each of the climatic parameters. After adjusting for potential mutual confounding between climatic factors there was
no evidence for any association between the number of malaria cases and temperature, rainfall and humidity. Only a low
NDVI was associated with an increase in the number of malaria cases. There was no evidence of an association between
malaria cases and SST in the Bay of Bengal and NIÑO3.

Conclusion and Significance: It seems counterintuitive that a low NDVI, an indicator of low vegetation greenness, is
associated with increases in malaria cases, since the primary vectors in Bangladesh, such as An. dirus, are associated with
forests. This relationship can be explained by the drying up of rivers and streams creating suitable breeding sites for the
vector fauna. Bangladesh has very high vector species diversity and vectors suited to these habitats may be responsible for
the observed results.
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Introduction

Malaria is the most important tropical and parasitic disease in

the world. In 2008, there were an estimated 243 million cases of

malaria, the vast majority of cases (85%) occurring in the African

Region. In 2008, malaria accounted for an estimated 863,000

deaths [1]. Bangladesh is one of ten Asian countries where malaria

is endemic [2]. In 2008, malaria morbidity and mortality in

Bangladesh were recorded as 84,690 and 154, respectively [3].

Malaria is endemic in 13 northern and eastern districts of

Bangladesh along the border with India and Myanmar, with 90%

of morbidity and mortality reported from three hill districts

(Rangamati, Bandarban and Khagrachari) (Figure 1). The malaria

prevalence rate in Bangladesh was 3.97% in 2007 [2]. The

majority of infections was P. falciparum (90.2%), with P. vivax and

mixed infections making up 5.3% and 4.5% respectively [2].

The malaria vector situation in Bangladesh is complex due to

high species diversity and the presence of species complexes with

many sibling species displaying different ecological behaviors [4].

In Bangladesh An. minimus s.l., An. dirus, An. philippinensis, and An.

sundaicus are considered primary malaria vectors and An. aconitus,

An. annularis, and An. vagus as secondary vectors [5]. However,

recent studies have incriminated a range of other species, such as

Anopheles nigerrimus, An. subpictus, An. barbirostris, and An. maculatus

[6,7]. The main vectors in the study area are An. baimai (dirus), An.

philippinensis, An. vagus, and An. minimus [7].

In Bangladesh, malaria became epidemic during the 1990s

possibly due to the ban of DDT (dichlorodiphenyltrichloroethane)

in 1985, lack of malaria control efforts, insecticide resistance and

resistance to chloroquine (1st line drug at that time) [8,9] and

many factors may account for the pattern of malaria infection in

the country. Land use change is a part of environmental change
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and directly affects vector habitats. With land use change, malaria

may either increase or decrease [10]. Drug resistance is also a key

factor and responsible for sharp increases in malaria [8]. An

efficient malaria control program can also significantly reduce

malaria transmission [11]. It is well known that malaria is a

poverty related disease and strongly associated with socioeconomic

status [12]. However, trends in climatic factors are also driving

forces which affect malaria transmission [13]. No previous studies

have elucidated the relationship between changes in the incidence

of malaria and fluctuations of climate variables in Bangladesh.

Studies throughout the world have linked changes in malaria

incidence with patterns of rainfall, temperature and humidity

[14,15]. Rainfall is considered to be a major factor influencing

malaria cases in Africa [16] and a causal relationship between

rainfall and malaria transmission is well recognized [17,18,19]. In

Sri Lanka, malaria cases were strongly correlated with rainfall with

a time lag of 0–3 months [14]. Malaria cases increased by 1.4% to

10.7% per month for each 10 millimeter increase in monthly

rainfall (with a 2–3 month lag) in the highlands of West Kenya

[20]. Natural climatic disasters such as floods and cyclones may

also have significant relationship with malaria outbreaks [21].

Temperatures between 15 to 40uC and humidity between 55 to

80% are suitable for the completion of the P. falciparum and P. vivax

malaria parasite life cycles [22]. Such conditions are found

throughout the seasons in India, where a close association between

temperature, rainfall conditions, and malaria has been reported

[22]. The minimum temperature was strongly associated with the

occurrence of malaria cases in Rwanda [23]. Another study in east

African highlands have shown that a 1uC increase in minimum

temperature with a lag time of 1–2 months and a 1uC increase in

maximum temperatures with a lag time of 2–5 months led to an 8–

95% increase in the number of malaria outpatients [24].

Satellites from the U.S. National Oceanic and Atmospheric

Administration (NOAA) environmental satellites provide a vegetation

Figure 1. Spatial distribution of malaria prevalence in Bangladesh.
doi:10.1371/journal.pone.0014341.g001

Climate Malaria Bangladesh

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e14341



survey at the climatic scale. Normalized Difference Vegetation

Index (NDVI) is a measure of vegetation conditions. NDVI values

vary between +1.00 and 21.00; the higher the NDVI value, the

denser or healthier the green vegetation. Strong relationship

between vegetation health (VH) (another measure of vegetation

conditions and similar to NDVI), and malaria cases has been

demonstrated in Bangladesh, indicating that VH can be used as an

indicator of climatic and environmental conditions [25].

El Niño and La Niña years coincide with low and high rainfall

years in southern Asia. El Niño Southern Oscillation (ENSO) has

been used as predictor of climatic events and a significant cor-

relation has been reported between sea surface temperature (SST)

and malaria cases [15,17,18,22]. El Niño Southern Oscillation

showed a significant association with malaria case numbers. A 1uC
increase in Niño 3.4 (region in Pacific) SST was associated with

about a 20% increase in malaria cases in Colombia [26]. An

analysis of 37 years of national statistics in India showed, in

general, that if the number of malaria cases in a particular year

was less than the decadal average, that particular year was

influenced by La Niña; and when the number of malaria cases in a

particular year exceeded the decadal average, that particular year

was influenced by El Niño [22].

There is a strong interest in investigating the relationship be-

tween climate variability and malaria transmission and with con-

cerns about potential climate change, this interest has increased. A

rise of about 6% in malaria cases during 2000 in middle income

countries was attributed to climate change [21]. In this study,

we investigate the relationship between climate variability and

malaria cases in the endemic area of Bangladesh.

Results

The time series of the number of malaria cases, rainfall, tem-

perature, humidity and NDVI from January 1989 to December

2008 are shown in Figure 2. The time series of SST of Bay of

Bengal, NINO3 during the study period is shown (Figure S1).

There was a distinct seasonality in the number of malaria cases

with a peak during June to August. High temperatures occurred in

April to September in each year. Except for some small

fluctuations, rainfall occurred between May and October. In

some years, high NDVI was observed in all seasons but the peak

occurred between in October and November. SST was lowest in

January and February, started to increase in March, remained

high until October and decreased from November onwards.

The number of malaria cases increased significantly with

increased temperature with a lag time of 0–3 months (p = 0.007)

(Figure 3a) but decreased significantly with higher rainfall with a

lag of 0–3 months (p = 0.002) (Figure 3b). The number of malaria

cases also decreased as humidity increased with a lag time of 0–3

months (p,0.001) (Figure 3c). The number of malaria was

significantly negatively associated with NDVI at a lag of 0–3

months (p,0.001) (Figure 3d).

The risk response relationships adjusted for potential mutual

confounding between malaria cases and temperature, rainfall, and

humidity with lag times of 0–3 months showed no significant

associations (Figure 4a–c). However, malaria cases remained

significantly associated with lower NDVI with a lag time of

0–3 months (Figure 4d). Each 0.1 increase in monthly NDVI

was associated with a 30.4% decrease in malaria cases (95% CI:

19.2–40.1).

Figure 2. Time series of the number of all malaria cases per month and meteorological data in Rangamati, 1989–2008.
doi:10.1371/journal.pone.0014341.g002
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Figure 3. Relationship between the number of malaria cases per month and (a) average mean temperature, (b) total rainfall, (c)
average relative humidity and (d) Normalized difference vegetation index (NDVI) over lags of 0–3 months (shown as a 3 d.f. natural
cubic spline) adjusted for seasonal variation and between-year variations. RR represents the relative risk of malaria (scaled against the
mean monthly number of cases). The centre line in each graph shows the estimated spline curve, and the upper and lower lines represent the 95%
confidence limits.
doi:10.1371/journal.pone.0014341.g003

Figure 4. Relationship between the number of malaria cases per month and (a) average mean temperature, (b) total rainfall, (c)
average relative humidity and (d) Normalized difference vegetation index (NDVI) over lags of 0–3 months (shown as a 3 d.f. natural
cubic spline) adjusted for potential mutual confounding between these 4 variables, seasonal variation and between-year
variations. RR represents the relative risk of malaria (scaled against the mean weekly number of cases). The centre line in each graph shows the
estimated spline curve, and the upper and lower lines represent the 95% confidence limits.
doi:10.1371/journal.pone.0014341.g004
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There were no significant associations between malaria cases

and SST using lag times of 0–3 months (Figure 5a) and NINO3

with different lag periods (Figure 5b–d).

The incorporation of the Fourier terms (up to fifth harmonics

adding 1 harmonic at a time) into the fully adjusted model, in

place of indicator variables for months, had broadly little effect on

the estimates of the effects of NDVI: model with no seasonal

control (24.8% (95%CI: 14.3–34.0) decrease). Although there was

no evidence for the effect of temperatures in the model adjusted

for season with indicator variables of months, there was a

significant positive effect of temperatures when there was no

seasonal control and with the Fourier terms of 1 harmonic (results

not shown).

Discussion

After adjusting for potential confounders, our study suggests

that the best leading indicator of the number of malaria cases was

NDVI at a lag of 0–3 months, and that NDVI was negatively

associated with malaria cases. We did not find significant rela-

tionships like other studies; however, this may be due to the fact

that other studies used different methodologies in different regions

of the world where the malaria ecology/epidemiology is quite

different. This study draws attention again to the complex nature

of the relationship between malaria and climate. However, it has

also illustrated the potential value of such studies, both for

identifying local factors which may predict the epidemiology of the

disease as well as for providing a deeper understanding of the

biology of the parasite system.

Temperature and number of malaria cases were positively

associated when not considering the effect of other climatic con-

founding factors. However, after adjusting for all other parameters,

no association was observed. Undoubtedly, temperature is a key

factor in malaria transmission [24,27,28,29,30,31], directly affecting

mosquito development, survival, reproduction, activity, and the

extrinsic incubation rate. For example, minimum temperatures

during the cool months or the previous month have been associated

with malaria transmission in China and Burundi, respectively [29,32].

The reason we were not able to detect a significant temperature-

malaria relationship could be because of the crude average tem-

perature data used here concealing shorter term effects impacting

vector populations. Furthermore, statistical significance alone does

not always address the complex biological dynamics of mosquito

development and temperature. However, temperature ranges in this

region of Bangladesh are always favorable for mosquito development.

Further research should consider multiple study areas, including

biological models of mosquito development [e.g. 36] to improve

detection of temperature effects on malaria transmission specific for

Bangladesh.

In the unadjusted analysis, rainfall showed a clear negative

correlation with the number of malaria cases, but incorporating

other climatic factors eliminated the significant relationship. It is

difficult to explain why the malaria-rainfall associations became

non-significant when other climatic factors were included in the

model. These results differ from studies carried out in Thailand

where malaria cases were positively associated with rainfall [33].

Rainfall is also a major contributing factor for the increase of

malaria cases in other areas [17,18,19,24]. However, rainfall was

negatively correlated with malaria cases in India [22]. Long term

data from Sri Lankan (January 1972 to December 2005) showed

that the region with the highest rainfall had the least malaria, and

that malaria cases increased with lower rainfall [14]. Moderate

correlation (r = 0.48, p = 0.069) with annual rainfall with malaria

incidence confirmed from Indian Rajasthan. The incidence of

Figure 5. Relationship between the number of malaria cases per month and (a) average sea surface temperature (SST) of the Bay of
Bengal over lags of 0–3 months, (b) average NINO3 over lags of 0–3 months, (c) 4–7 months and (d) 8–11 months (shown as a 3 d.f.
natural cubic spline) adjusted for potential mutual confounding between the lags of NINO3, seasonal variation and between-year
variations. RR represents the relative risk of malaria (scaled against the mean monthly number of cases). The centre line in each graph shows the
estimated spline curve, and the upper and lower lines represent the 95% confidence limits.
doi:10.1371/journal.pone.0014341.g005
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P. falciparum malaria showed a significant correlation (r = 0.61,

p = 0.016) with rainfall [34]. At the same time no clear relationship

was observed between rainfall and malaria incidence in Madhya

Pradesh, central India [35]. The interpretation was that drought

caused pools in the river bed, creating suitable conditions for

mosquito breeding. A similar explanation may be true in

Rangamati, where the main malaria vectors have a comparable

ecology to those in Sri Lanka [36]. For example, An. minimus s.l. is

associated with slow-moving streams [37] as is the primary vector

in Sri Lanka, An. culifacies which breeds in river bed pools [36]. An.

dirus, on the other hand, breeds in small temporal pools in heavily

shaded forests and seems to be positively associated with rainfall

[38]. Anopheles minimus and An. dirus are also primary vectors in

Thailand and it is thus difficult to explain the contradictory results

obtained here [33]. An important point to consider here is that we

might be witness of a potential shift in vector importance, which

again stresses the need for continuous monitoring of vector

transmission dynamics and detailed studies of vector bionomics in

the region.

Other reasons for the observed result may be that high and

intensive rainfall flush out breeding sites. It may also be that people

are more aware of the risk of malaria during high rainfall and so take

preventative measures. During the post monsoon, when rainfall

decreases or stops, malaria cases increase. Better entomological data

would greatly increase our understanding of the influence of rainfall

on the biology of malaria in Bangladesh. Unfortunately, such

entomological data are not yet available in Bangladesh.

In our study, a low relative humidity was associated with an

increase in malaria cases in the bivariate analysis but after adjusting

for other local climatic parameters, no significant relationship was

observed. This could be explained by the fact that humidity is

directly dependent on temperature and rainfall, thus confounding

the results. Generally, increased humidity is believed to favor vector

survival [39]. Little has been published on the relationship between

humidity and risk of malaria [30], but Bhattacharya and colleagues

reported humidity levels between 55 and 80% were suitable for both

P. falciparum and P. vivax [22]. Humidity was found to be related with

the number of malaria cases in China, where a relative humidity

below 60% shortened the life span of the mosquito so that below

60%, there was a decline in the risk of clinical malaria while above

60% relative humidity the infection rate increased significantly

[29,30]. It was also confirmed that the malaria risk at 80% humidity

was twice as high as that of 60% [29,30]. Further studies are needed

to elucidate the relationship between humidity and malaria

epidemiology in Bangladesh.

Normalized Difference Vegetation Index, both unadjusted and

adjusted for other variables, were negatively associated with

number of malaria cases. In Eritrea, NDVI and malaria cases were

significantly (positively) associated with each other [40]. Our

results differ from those of Bruce et al [41], who showed no

association with NDVI and infection rates in Malawi. In another

study in Indochina Peninsula, overlaying maps of the vegetation

index with indices of P. falciparum and P. vivax infection showed that

areas with NDVI values higher than 0.3 or 0.4 coincided with

areas of high malaria incidence [42]. A similar result was found in

Mali where an NDVI between 0.35 and 0.4 was associated with an

increase in malaria cases [43].

Satellite-based vegetation health (VH) indices have also been

compared with malaria epidemiology to study whether they could

be used as a proxy for monitoring malaria epidemics in sixty four

districts of Bangladesh. During drought years, when vegetation

was under stress, fewer people had malaria [25]. The fact that our

findings are not consistent with results from these areas could be

due to within-country variations, such as different ecological habits

of vector species and their siblings, changes in vector transmission

dynamics, geographical and socio-economic settings, drug resis-

tance, immunity among people, or control efforts. It can also be

due to differences among climatic parameters between African

countries and Bangladesh. Summer-winter seasonality may have

some affect on the activity of mosquito vectors. It is also mostly due

to the climatic dependency of vector behavior and different areas

are likely to experience different effects in the rate of malaria

vector growth because of climatic parameters including NDVI.

Interestingly, NDVI has already been shown to be a reliable

estimate of vector population and vector species distribution [44].

A relationship between weekly and monthly NDVI and mosquito

abundance has also been demonstrated [45].

There was no relationship between SST, NIÑO3 and malaria

cases. In contrast, analyses of the trends of SST over the eastern

equatorial Pacific indicated that SST during March, April and

May were negatively correlated with malaria cases in India from

1980 to 2000 [22]. Positive relationships were observed between

Southern Oscillation Index and monthly incidences of malaria in

China [46]. Historical epidemic malaria in Punjab between 1868

and 1943 correlates significantly with the sea surface temperature

anomalies in the Eastern Equatorial Pacific. At the same time, 9

out of 16 malaria epidemics in the south west part of Sri Lanka

were recorded between 1870 and 1945 during El Nino years [47].

In the East African highlands, ENSO events may trigger heavy

rainfall and raised temperatures and were associated with increased

malaria in the southwestern highlands of Uganda [48]. The same

ENSO and heavy rainfall reduced malaria in the Tanzanian

highlands [48]. The relationship between SST and rainfall in

Bangladesh has not been extensively investigated. During the ENSO

years of this study, rainfall decreased significantly in Bangladesh [49],

similar to an earlier study using a 43-year data set that established a

negative association between ENSO events and rainfall in

Bangladesh [49]. However, another study showed a positive

correlation between SST in the Bay of Bengal with June rainfall in

south-eastern Bangladesh, but no significant relationship with May,

July, August and September rainfall [50]. Results have shown that

the Indian summer monsoon and ENSO are negatively correlated

[51]. Therefore, it is clear that this parameter exerts different effects

in different places at different times.

The main climatic variables associated with malaria transmission

on the Indian sub-continent are rainfall, temperature and humidity

[22]. Studies on the interaction of climate and malaria in Bangladesh

are limited because of a paucity of malaria case data, lack of skilled

manpower and meteorological stations in endemic districts. In the

Chittagong Hill Tracts, for example, there is only one meteorological

station situated in Rangamati. However, the potential role of climate

change and its impact on health, particularly malaria, has received

increasing attention in Bangladesh.

It seems counterintuitive that a low NDVI, an indicator of low

vegetation greenness, is associated with increases in malaria cases,

since the primary vectors in Bangladesh, such as An. dirus, are

associated with forests. However, NDVI is a reasonably reliable

indicator of rainfall and the unadjusted analysis both indicate a

relationship between rainfall and malaria cases: i.e. as rainfall (and

NDVI) decreases malaria increases. This relationship can be

explained by the drying up of rivers and streams creating suitable

breeding sites for the vector fauna. Bangladesh has very high

vector species diversity and vectors suited to these habitats may be

responsible for the observed results.

The current study displays several limitations. First, the cases

were based on one hospital’s data. Although the hospital is the

reference hospital for all 10 sub districts of Rangamati district and

the cases are somewhat representative of the entire district, this

Climate Malaria Bangladesh
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sample may be underrepresented as only the severe cases are likely

to be referred to the hospital. However, whether or how this would

introduce a temporal trend in the data that would distort the

results is not evident. Second, P. vivax and P. falciparum malaria

cases were pooled together as total malaria cases. This may

confound more detailed interactions of these two parasites, their

vectors and climatic conditions. However, environmental condi-

tions permitting parasite development broadly overlaps with

P. vivax being somewhat more permissive in its temperature

tolerances. Furthermore, as more than 90% of malaria cases are

due to P. falciparum and the proportion of P. vivax is very small in

this area, separate analysis may not be statistically meaningful.

Third, the study was based on only one district, the Chittagong

Hill Tracts, so that extrapolating these results to other parts of the

country or south Asia needs to be done with caution. This region,

however, includes areas with some of the highest rates of malaria

transmission and so is of practical importance in itself. Fourth,

there may be concerns about a possible effect of non-climatic

factors such as land use changes, population growth, development

of drug resistance, change in diagnostic criteria, changes in local

health infrastructure, access to care and public health interven-

tions over the duration of the 20 year study. However, as these

factors are not likely to change on a monthly interval, and it seems

unlikely that they would obscure the short-term dependence of

malaria on the factors investigated in this study.

Methods

Malaria and Climate Data
All malaria cases were collected from the Rangamati district

hospital (22u 409 N, 92u 119 E) from January 1989 to December

2008. This hospital is the reference hospital for all 10 sub-districts

of Rangamati district. There is no other hospital or clinic in the

central town of Rangamati. Not all cases were confirmed by

microscopy. From 1988 to 2004, cases were characterized as

uncomplicated malaria (UM), treatment failure malaria (TFM)

and severe malaria (SM). Uncomplicated malaria was presump-

tively determined while TFM and SM were confirmed by malaria

microscopy. From 2004 to 2009, cases were confirmed as

uncomplicated malaria presumptive (UMP), uncomplicated ma-

laria confirmed (UMC), as well as SM and VM (vivax malaria).

Neither microscopy nor rapid diagnosis tests (RDT) were

performed for UMP, but for the others either microscopy or

RDT was used for diagnosis. A survey conducted by the authors in

one of the thana (Rajathali sub-district) in Rangamati district

showed that 93.2% of malaria cases were P. falciparum, 1.9% were

P. vivax and 5.0% were mixed infections (unpublished data).

Monthly climatic data including rainfall, temperature, and relative

humidity were obtained from the Bangladesh Meteorological

Department. The meteorological station is in the central town of

the district within 5 km of the study hospital. Normalized

difference vegetation index was derived from the data library of

the International Research Institute (IRI) of Lamont Doherty

Earth Observatory (LDEO) at Columbia University, USA. Mean

monthly SSTs in the Bay of Bengal (20–21uN, 90–91uE) were

derived from the NOAA Optimum Interpolation Sea Surface

Temperature dataset [52,53]. The strength of ENSO was

measured using SST in the Niño 3 region (NIÑO3) in the Pacific

Ocean, which were extracted from NOAA climate prediction

center datasets [54].

Statistical Analysis
The climatic data and malaria case time series data were

computerized and cross checked. Seasonality and peaks of malaria

cases as well as different climate parameters in the study period were

observed graphically using scatter plots. Due to over-dispersed data

for monthly malaria cases, a generalized linear negative binomial

regression model was developed using the number of monthly

malaria cases and climatic parameters. Potentially significant

associations were analyzed by comparing patterns of variation in

incidence of malaria over time with the patterns of each climatic

parameter, using time series regression analysis. The unit of analysis

in this study was the month, thus potential confounders that must be

controlled are those that vary over time, possibly coinciding with

each climate variable. Thus the association between the particular

climatic parameter (e.g. temperature) and malaria incidence can be

confounded by the other climatic parameters (e.g. rainfall, humidity

and NDVI).

Temporal associations between climate and disease can be con-

founded by trends and seasonal patterns. To account for seasonality

of malaria that was not directly linked with the climate, we included

indicator variables for each month in the model. Indicator variables

for the years of the study were also incorporated into the model to

allow for long-term trends and other variations between years. To

allow for autocorrelations, an autoregressive term at order 1 was

incorporated into the model [55].

Models for temperature, rainfall, humidity, NDVI and SST
From exploratory analyses, we considered lag times, (the delay

in the effect of climate factors on the number of malaria cases) of

up to 3 months for temperature, rainfall, humidity, NDVI and

SST of the Bay of Bengal. In our initial analyses, we fitted a

natural cubic spline (3 df) [56] to the average climatic factors over

lag times of 0–3 months. Natural cubic splines were used to create

graphs, where the number of malaria cases was plotted as

smoothed functions of climatic factors [56], to visually assess the

functional form of the adjusted relationship, thereby identifying

whether the relationship was likely to be linear or not across the

full range of independent variables. Finally, potential mutual

confounding between temperature, rainfall, humidity and NDVI

were adjusted to identify independent associations of monthly

malaria cases and each particular climatic parameter. Since the

SST of the Bay of Bengal was regarded as a more distant factor

(compared with local climatic factors), we did not adjust it for the

effect of the local climatic parameters of temperature, rainfall,

humidity and NDVI. The final model was:

log E Yð Þð Þ~azNS TEMP0{3 , 3 dfð ÞzNS RAIN0{3 , 3 dfð Þ

zNS HUM0{3 , 3 dfð ÞzNS NDVI0{3 , 3 dfð Þ

zi:monthzi:yearzAR1

ð1Þ

log E Yð Þð Þ~azNS SST0{3 , 3 dfð Þzi:monthzi:yearzAR1ð2Þ

E(Y) is the expected monthly case count, NS indicates a natural

cubic spline function, TEMP0–3, RAIN0–3, HUM0–3, NDVI0–3 and

SST0–3 represent average temperature, rainfall, relative humidity,

NDVI and SST at lag 0–3 months, respectively, i.month represents

indicator variables for the month, i.year represents indicator

variables for the year, and AR1 represents a first-order auto-

regressive term. For example, NS(TEMP0–3, 3 df) indicates a linear

term (raw data) and two spline terms of temperature at a lag of 0–3

months.

We then fitted the data to the linear threshold models i.e.,

models that assume a log-linear increase in risk. The increase in

the number of malaria cases associated with 1% decrease in a

Climate Malaria Bangladesh

PLoS ONE | www.plosone.org 7 December 2010 | Volume 5 | Issue 12 | e14341



given measure of climatic parameters (estimated as coefficients

from the regression model) was reported as a percentage change.

Model for NINO3
We considered lag times of up to 11 months for NINO3. We

fitted a natural cubic spline (3 df) [56] to the average NINO3 over

each 4-month period (i.e. lags 0–3, 4–7 and 8–11 months), as

separate splines that were simultaneously included in the model.

log E Yð Þð Þ~azNS NINO3 0{3 , 3 dfð Þ

zNS NINO3 4{7 , 3 dfð Þ

zNS NINO3 8{11 , 3 dfð Þ

zi:monthzi:yearzAR1

ð3Þ

To investigate whether the results were sensitive to the levels of

control for seasonal patterns, analyses were repeated using Fourier

terms of the month up to the fifth harmonic per year, adding one

harmonic at a time. Diagnostics for model (1) including plots of

model residuals, predicted and observed time series plots, par-

tial autocorrelation function of the residuals were calculated

(Figure S2). All analyses were performed by STATA 10 (Stata

Corporation, College Station, Texas).

Supporting Information

Figure S1 Time series of the average sea surface temperature

(SST) of the Bay of Bengal and NINO3, 1989–2008.

Found at: doi:10.1371/journal.pone.0014341.s001 (0.11 MB TIF)

Figure S2 Diagnostics of malaria-climate (temperature, rainfall,

humidity and NDVI) models: (a) plots of model residuals, (b)

predicted and observed time series plots, (c) partial autocorrelation

function of the residuals.

Found at: doi:10.1371/journal.pone.0014341.s002 (0.12 MB TIF)
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