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Abstract 

T helper type 17 (Th17) cells, a newly identified effector T cell subset, have recently been 

shown to play a role in numerous autoimmune diseases, including iodine-induced autoimmune 

thyroiditis in non-obese diabetic (NOD)-H2h4 mice, that had previously been thought 

Th1-dominant.  We here studied the role of Th17 in Graves’ hyperthyroidism, another 

thyroid-specific autoimmune disease, in a mouse model.  Two genetically distinct BALB/c and 

NOD-H2h4 strains with intact or disrupted IL-17 genes (IL-17+/+ or IL-17-/-) were immunized 

with adenovirus expressing the thyrotropin receptor A-subunit (Ad-TSHR289).  Both IL-17+/+ 

and IL-17-/- mice developed anti-TSHR antibodies and hyperthyroidism at the equally high 

frequencies on the BALB/c genetic background.  In contrast, some IL-17+/+, but none of 

IL-17-/-, mice became hyperthyroid on the NOD-H2h4 genetic background, indicating the crucial 

role of IL-17 for development of Graves’ hyperthyroidism in non-susceptible NOD-H2h4, but 

not in susceptible BALB/c mice.  In the T cell recall assay, splenocytes and lymphocytes from 

the draining lymph nodes from either mouse strains, irrespective of IL-17 gene status, produced 

IFN- and IL-10 but not other cytokines including IL-17 in response to TSHR antigen.  Thus, 

the functional significance of Th17 may not necessarily be predictable from cytokine expression 

patterns in splenocytes or inflammatory lesions.  In conclusion, this is, to our knowledge, the 

first report showing that the role of Th17 cells for the pathogenesis of a certain autoimmune 

disease depends on the mouse genetic backgrounds.   
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Introduction 

Graves’ disease is an organ-specific autoimmune disease characterized by overstimulation of 

the thyroid glands by agonistic anti-thyrotropin receptor (TSHR) antibody (thyroid stimulating 

antibody; TSAb), leading to hyperthyroidism and thyroid enlargement [1,2].   

Graves’ disease has long been assumed to be T helper type 2 (Th2)-dominant, because the 

disease is autoantibody-mediated.  However, this concept has been challenged both in humans 

and mouse models.  TSAb in many [3], but not all [4], patients are IgG1, of Th1 subclass in 

humans.  In all the mouse models of Graves’ disease so far studied, both Th1 and Th2 immune 

responses are elicited against the TSHR, and the most monoclonal TSAb are of Th1 subclass [5].  

In addition, the Th1 cytokine IFN- is secreted by splenocytes exposed to TSHR antigen in the 

T cell recall assay [6].  However, the outcomes of the immune manipulations to alter Th1/Th2 

balance are different among distinct mouse models.  Thus, Th2 immune response seems to be 

important in the mouse models using the fibroblasts or B cells expressing the TSHR and MHC 

class II, whereas Th1 is likely crucial in the models involving genetic immunization using 

plasmid or adenovirus, or dendritic cells expressing the TSHR [5].  Given all these 

controversial data, it is possible to speculate that Graves’ disease may involve different type of 

immune response(s) rather than the classical Th1/Th2 immune responses. 

IL-17 producing Th17 cells are another CD4+ effecter T cell lineage recently identified [7,8].  

Although the pathogenesis of most autoimmune diseases has long been argued on relative 

balance between Th1 versus (vs.) Th2, the recent studies revealed that Th17 immune responses 

play a major role in numerous autoimmune diseases, such as multiple sclerosis/experimental 

autoimmune encephalitis (EAE), uveitis, rheumatoid arthritis, Sjogren’s syndrome, myasthenia 

gravis and psoriasis, all of which had previously been thought to be Th1-diseases [9].  

Moreover we have recently demonstrated that Th17 cells as well as Th1 cells are critical for 

development of iodine-induced autoimmune thyroiditis in non-obese diabetic (NOD)-H2h4 mice 

[9].  The number of Th17 cells has also been recently shown to be increased in Hashimoto’s 
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thyroiditis in humans [10].        

This study was therefore conducted to investigate the role for Th17 cells in the pathogenesis 

of Graves’ hyperthyroidism, another thyroid-specific autoimmune disease, in a mouse model 

with adenovirus coding the TSHR A-subunit (Ad-TSHR289) [11,12].  Surprisingly, we 

observed that IL-17 cells are involved in the pathogenesis of Graves’ hyperthyroidism in 

NOD-H2h4, but not in BALB/c, mice.  Thus, to our knowledge, this is the first report showing 

that the significance of Th17 in disease pathogenesis is dependent on the mouse genetic 

backgrounds.   

 

Materials and Methods 

Mice used 

   IL-17-/- NOD-H2h4 mice were previously generated [9].  IL-17-/- BALB/c mice [13] were 

crossed with wild type (wt) BALB/c mice (Charles River Japan Laboratory Inc. (Tokyo, Japan), 

and the resulting F1 mice were then intercrossed each other to produce F2 littermates of IL-17+/+, 

IL-17+/+ and IL-17-/- mice.  Genotyping was performed by PCR analysis of tail DNA as 

previously reported [9,13].  All the mice were bred in the animal facility at Nagasaki 

University in a specific pathogen-free condition.  Animal care and all experimental procedures 

were performed in accordance with the Guideline for Animal Experimentation of Nagasaki 

University with approval of the Institutional Animal Care and Use Committee.  Both male and 

female mice were used for the current study.   

 

Immunization protocols 

Construction, amplification, and purification of non-replicative recombinant human 

adenovirus expressing the human TSHR-A subunit (Ad-TSHR289; kindly provided by Drs. 

McLachlan SM and Rapoport B at Cedars-Sinai Medical Center and University of California 

Los Angeles, CA), and determination of the viral particle concentration were described 

previously [11,12].  Six-week-old mice were injected intramuscularly in the quadriceps with 
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100 l PBS containing different doses (108 to 10 particles) of Ad-TSHR289 on two occasions at 

three-weekly intervals, as previously described [11,12].  Blood, spleens, and the thyroid glands 

were obtained two and six weeks after the second immunization.  Through the whole 

experiments, the drinking water was not supplemented with iodide in NOD-H2h4 mice.  

 

Free thyroxine (T4) and anti-TSHR antibody measurements 

Serum free T4 concentrations were measured with a RIA kit (DPC free T4 kit; Diagnostic 

Products, Los Angeles, CA).  The normal range was defined as the mean ± 3 S.D. of the 

control untreated mice. 

Anti-TSHR antibodies were measured using two different methods.  First is a flow 

cytometry assay as previously described [14].  Briefly, Chinese hamster ovary (CHO) cells 

stably expressing the TSHR [15] were incubated for 30 min at room temperature with mouse 

sera (1:100 dilution), followed by incubation for 30 min at 4 C with FITC-conjugated goat 

anti-mouse IgG (Sigma).  Flow cytometry was performed using FACSCanto II (BD 

Biosciences, San Diego, CA).  The normal range was also defined as the mean ± 3 S.D. of the 

control untreated mice.  This assay does not discriminate between stimulating and 

non-stimulating antibodies.  Second is a biological TSAb assay, which measures the 

stimulating antibodies responsible for hyperthyroidism [17].  Briefly, FRTL5 cells, a normal 

differentiated rat thyroid epithelial cell line expressing the rat TSHR, were incubated for 2 hrs at 

37 C with mouse sera (1:10 dilution), and cAMP released into the medium was measured with a 

cAMP radioimmunoassay kit (Yamasa, Choshi, Japan) [11].    

 

Thyroid histology 

Thyroid tissues were fixed in 10 % formalin and embedded in paraffin.  Five-m-thick 

sections were prepared and stained with hematoxylin and eosin (H & E).  
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Cytokine assays 

Splenocytes and lymphocytes from the draining lymph nodes were cultured (triplicate 

aliquots) at 5 x 105 cells per well in a 96-well round-bottomed culture plate in the presence or 

absence of 10 µg/ml TSHR289 protein, as previously described [6].  Four days later, the 

culture supernatants were collected.  The concentrations of various cytokines in these culture 

supernatants were determined with a Bio-PlexTM Suspension Array System and 23-Plex Panel 

(IL-1, 1, 2-6, 9, 10, 12 (p40 and p70), 13, 17, Eotaxin, G-CSF, GM-CSF, IFN-, KC, MCP-1, 

MIP-1 and 1, Rantes and TNF-) (Bio-Rad, Tokyo, Japan).   

 

Statistical analysis 

Levels of free T4, antibodies and cytokines were analyzed by Student’s t-test, and incidences 

of hyperthyroidism by chi-square test.  A p-value less than 0.05 was considered statistically 

significant. 

 

Results 

Serum T4 and anti-TSHR antibodies in wt and IL-17 gene-disrupted BALB/c and NOD-H2h4 

mice to immunization with Ad-TSHR289 

To clarify a role for Th17 cells in the pathogenesis of Graves’ hyperthyroidism, IL-17-/- mice 

and their IL-17 +/+ and IL-17+/- littermates on the BALB/c or NOD-H2h4 backgrounds were 

immunized twice with different doses of Ad-TSHR289.  Serum free T4, anti-TSHR antibodies 

and antigen-specific secretion of cytokines were then compared two and/or six weeks after the 

second immunization.  BALB/c and NOD-H2h4 mice are susceptible and intermediate, 

respectively, mouse strains to Graves’ disease [11,17 and unpublished data].   

In BALB/c mice immunized with high (1010 particle/mouse) or low doses (109 

particles/mouse) of Ad-TSHR289 (Fig. 1 A and B), the mean serum free T4 levels were 

increased to the comparable levels in IL-17 +/+, IL-17+/- and IL-17-/- mice (1.32 + 0.56, 1.18 + 
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0.61 and 1.08 + 0.48 ng/dl, respectively, in the high dose group, and 0.83 + 0.48, 0.83 + 0.39 

and 0.66 + 0.37 ng/dl in the low dose group; mean + S.D., n = 9-11), as compared to the control 

untreated mice (0.52 ± 0.05 or 0.31 ± 0.023), two weeks after the second immunization.  The 

incidences of hyperthyroidism were also similar in three groups (9/10 (90 %), 10/12 (83 %) and 

9/11 (82 %), respectively, in the high dose group, and 100 % in the low dose group).  To 

determine whether Th17 cells affect duration of hyperthyroidism, sera were also obtained six 

weeks after the second immunization in the low dose group.  There were no differences in the 

mean free T4 levels (0.86 + 0.73, 1.52 + 1.51and 0.74 + 1.14 ng/dl in IL-17 +/+, IL-17+/- and 

IL-17-/- mice, respectively) or in the incidences of hyperthyroidism (33, 50 and 20 %) (Fig. 1 C).  

Immune responses were barely detectable in all the mice immunized with 108 particles/mouse of 

Ad-TSHR289 (data not shown).   

Likewise, anti-TSHR antibody titers determined by flow cytometry were similar in IL-17 +/+ 

and IL-17-/- mice (1317 + 1125 vs. 792 + 485 mean fluorescein intensities (MFI), respectively, in 

the high dose group, and 1021 + 1386 and 1386 + 1580 MFI in the low dose group) (Fig. 2 A).  

These antibody titers were not significantly correlated with T4 levels (r = 0.356 and p > 0.05). 

TSAb was determined in the high dose group and found to be increased in most hyperthyroid 

mice irrespective of IL-17 gene status, which was significantly and positively correlated with T4 

levels (r = 0.62 and p < 0.01, Fig. 2 B) as previously reported [14], confirming the causative role 

of TSAb for hyperthyroidism.   

As previously reported [11,12], the thyroid glands from hyperthyroid BALB/c mice, 

irrespective of IL-17 gene status or the mouse genetic backgrounds, were diffusely enlarged 

with cuboidal thyroid epithelial cells, typical features for the hyperfunctioning thyroid glands 

(Fig. 3).  

By contrast, in NOD-H2h4 mice, five out of 20 (25 %) IL-17+/+ mice immunized with high 

dose (1010 particle/mouse) of Ad-TSHR289 developed hyperthyroidism vs. none (0 %) of 

IL-17-/- mice.  The mean free T4 levels were also significantly elevated in IL-17+/+ mice 

compared to IL-17-/- mice (0.87 + 0.27 vs. 0.70 + 0.17 ng/dl, p < 0.05) (Fig. 4 A).  The 
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anti-TSHR antibody titers in IL-17+/+ mice were higher than those in IL-17-/- mice, but the 

difference was not significant (1729 + 1660 vs. 1047 + 876 MFI, p > 0.05, Fig. 4 B).  Again 

these antibody titers were not significantly correlated with T4 levels (r = 0.118 and p > 0.05).  

TSAb was not measured in these NOD-H2h4 mice because we already showed increased T4 was 

mediated by TSAb in this mouse Graves’ model (Fig. 2B and ref. [14]).  Again, the thyroid 

histology in hyperthyroid NOD-H2h4 mice was compatible with that seen in hyperthyroid 

BALB/c mice (see above).   

 

Comparison of cytokine expression profiles in BALB/c and NOD-H2h4 mice 

   To seek possible explanation(s) for different responses between BALB/c and NOD-H2h4 

mice shown above, antigen-specific in vitro cytokine secretions of splenocytes were examined 

in the T cell recall assay.   

Compared with splenocytes cultured in medium alone, TSHR289 antigen stimulated 

increased production of IFN-bysplenocytes from IL-17+/+ and IL-17-/- BALB/c mice (9.4 + 1.6 

and 13.0 + 1.0 ng/ml, respectively) and from IL-17+/+ and IL-17-/- NOD-H2h4 mice (33.0 ± 6.71 

and 27.0 ± 5.63) (Fig. 5 B and E).  IL-10 tended to increase in response to TSHR289 antigen 

(Fig. 5 C and F).  However, background levels of IL-17 secretion (absent from IL-17-/- mice) 

was not increased in response to TSHR289 antigen in either IL-17+/+ BALB/c or NOD-H2h4 

mice (Fig. 5 A and D).  Other 20 cytokines showed negligible response to antigen stimulation 

(data not shown).  Thus, no noticeable differences were detected in the cytokine expression 

profiles between the two mouse strains.  Essentially identical results were obtained with 

lymphocytes from the draining lymph nodes (data not shown).   

 

Discussion 

   Th17 cells are newly identified effector T cells and are now well known to play a pivotal 

role in various autoimmune diseases [7, 8].  We have also recently found that, besides Th1 
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cells, Th17 cells are indispensable for iodine-induced autoimmune thyroiditis in 

thyroiditis-prone NOD-H2h4 mice [9].  We here extended our study to Graves’ hyperthyroidism, 

another thyroid-specific autoimmune disease, using a mouse model with adenovirus expressing 

the autoantigen TSHR that we have previously established [11,12].   

   Our results clearly demonstrate that the consequence of IL-17 gene disruption for induced 

Graves’ disease is dependent on the mouse genetic backgrounds.  Thus, both IL-17+/+ and 

IL-17-/- mice developed anti-TSHR antibodies and hyperthyroidism at the equally high 

frequencies on the susceptible BALB/c genetic background.  In contrast, however, some 

IL-17+/+, but not IL-17 -/-, mice became hyperthyroid on the non-susceptible NOD-H2h4 genetic 

background.   

   Data reminiscent of our unexpected findings have been previously demonstrated in a mouse 

model of dextran sodium sulfate (DSS)-induced inflammatory bowel disease.  Thus Th17 cells 

are pathogenic in C57BL/6 mice [18], but protective in BALB/c mice [19].  However, those 

two studies were performed in different ways: the former used IL-17-/- mice vs. the latter 

treatment with anti-IL-17 antibody.  It is therefore possible that a trace amount of IL-17 may 

have aggravated colitis in the latter.  In this regard, to our knowledge, we are the first to show a 

difference in the role of IL-17 in development of a certain autoimmune disease in mice with 

different genetic backgrounds using the same experimental approach.   

  What genetic factor(s) define the consequences of IL-17 deficiency? In the DSS-induced 

colitis model mentioned above, differences in the expression patterns of numerous cytokines, 

such as IL-1, IL-12, IL-17, IFN- etc, in inflamed intestines have been described for these two 

mouse strains [20].  In contrast, we could not find any differences in cytokine expression 

profiles in splenocytes and lymphocytes from the draining lymph nodes from BALB/c and 

NOD-H2h4 mice irrespective of IL-17 gene status.  We can only speculate that disruption of a 

single cytokine signaling may be much more crucial for disease development in resistant mice 

than in susceptible mice.   
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Absence of antigen-specific secretion of IL-17 from splenocytes in the T cell recall assay is 

reasonable in BALB/c mice, but is somewhat unexpected in NOD-H2h4 mice because of the 

critical role of Th17 cells in development of Graves’ hyperthyroidism in this mouse strain as 

mentioned above.  The exact reason(s) for these results are at present unclear.  However, 

since Th17 cells are reported to be induced earlier than Th1 cells in some autoimmune diseases 

in mice [21,22], one possibility is that small numbers of Th17 cells participated the very early 

stage of elicitation of anti-TSHR immune response in NOD-H2h4 mice.  Whatever the reasons, 

we have previously found the parallel results in the mouse Graves’ model we used in this study.  

Thus splenocytes from immunized BALB/c mice produced IFN-, but not IL-4, in the response 

to TSHR289 antigen in the T cell recall assay [6], whereas both IFN--/- and IL-4-/- BALB/c 

mice are resistant to hyperthyroidism [23].  The former implicates Th1, but the latter both Th1 

and Th2, in the pathogenesis of Graves’ disease.  The opposite was also reported in NOD mice, 

namely that IL-17 deficiency did not affect the incidence of hyperglycemia, although IL-17 

mRNA expression was increased upon development of diabetes [24].  Therefore, the 

importance of IL-17 can not necessarily be negated by the absence of antigen-specific 

splenocyte secretion of IL-17.  Similarly, mere expression of IL-17 does not indicate the 

functional importance of IL-17 in disease pathogenesis.   

Relative contribution of Th1 and Th17 immune responses for autoimmune disease 

pathogenesis varies in different autoimmune diseases.  For example, although Th17 cells are 

the main effector T cells for numerous autoimmune diseases including EAE, uveitis, etc; Th1 

cells are pathogenic while Th17 cells protective for the CD45RBhi transfer model of colitis [25]; 

and both Th1 and Th17 cells are pathogenic for iodine-induced autoimmune thyroiditis [9].  

Even in the same diseases, however, it is reported that the relative importance of Th17 is 

dependent on immunization protocols.  Thus Th1 and Th17 cells play a dominant role in 

uveitis induced by immunization with interphotoreceptor retinoid-binding protein (IRBP) 

emulsified with Complete Freund’s adjuvant or IRBP-pulsed mature dendritic cells, respectively 
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[26].  Transfer of in vitro generated antigen-specific Th1, Th2 and/or Th17 cells all induce 

EAE or uveitis [27,28].  More recently, Th17 cells were demonstrated to convert to Th1 cells 

in the mouse model of diabetes [29,30].  Furthermore, as mentioned in the Introduction, 

relative importance of Th1 or Th2 is different among the distinct Graves’ models [5].  From 

these data, together with our present results, one should be cautious in interpreting the data on 

Th17 (and also other effector T cells) obtained from animal disease models.  The results may 

be variable depending on immunization protocols, mouse strain, conventional or pathogen-free 

housing facilities, etc.  This assumption also implies that the pathogenesis of a certain 

autoimmune disease may involve subtle difference in individual humans because each patient 

has different genetic and environmental backgrounds.     

In conclusion, we demonstrate that the role of Th17 immune response in the pathogenesis of 

Graves’ hyperthyroidism in a mouse model is dependent on the genetic background.  Our 

findings and those of others [24] also suggest that the significance of Th17 in a certain disease 

can not be estimated from analysis of IL-17 expression in the inflamed tissues or splenocytes.  

Further studies will be necessary to clarify what genetic factors influence the relative 

significance of Th17 in autoimmune diseases.  However, the outcomes for IL-17-/- mice on 

different genetic backgrounds may contribute to understanding heterogeneity in human Graves’ 

disease.   
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Figure legends 

 

 

 

Figure 1. Serum free T4 concentrations in IL-17+/+, IL-17+/- and IL-17-/- BALB/c mice 

immunized with 1010 (A) or 109 (B and C) particles/mouse of Ad-TSHR289.  Free T4 levels 

were determined two (A and B) and six weeks (C) after the second immunization.  Data are 

shown for individual mice.  The horizontal solid lines indicate the mean values for each group.  

The horizontal broken lines designate the normal upper limits of free T4 values.  n.d., not 

determined.   



 19

 

 

Figure 2. Anti-TSHR antibody titers and TSAb in sera from IL-17+/+ and IL-17-/- BALB/c mice 

immunized with 1010 or 9 particles/mouse of Ad-TSHR289.  Sera were obtained from the mice 

two weeks after the second immunization.  (A) anti-TSHR antibodies were determined by flow 

cytometry.  Data are given as the mean fluorescence intensity (MFI).  Values are shown for 

individual mice.  The horizontal broken line designates the upper limit of anti-TSHR antibody 

values in control mice.  (B) TSAb was measured in mice immunized with 1010 particles/mouse 

of Ad-TSHR289 by bioassay, and the correlation with T4 values was shown.   
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Figure 3. Representative histology of the thyroid glands in control mouse (A) and hyperthyroid 

IL-17+/+ (B) and hyperthyroid IL-17-/- (C) BALB/c mice immunized with 1010 particles/mouse of 

Ad-TSHR289.  Magnification, x100.   
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Figure 4. Serum free T4 concentrations (A) and anti-TSHR antibody titers (B) in IL-17+/+ and 

IL-17-/- NOD-H2h4 mice immunized with 1010 particles/mouse of Ad-TSHR289.  Free T4 levels 

and TSHR antibody values were determined two weeks after second immunization.  Data are 

shown for individual mice.  The horizontal solid lines indicate the mean values for each group.  

The horizontal broken lines designate the upper limits for free T4 and TSHR antibodies in 

normal mice. *, p < 0.05. 
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Figure 5. Cytokine production from splenocytes in IL-17+/+ and IL-17-/- BALB/c and NOD-H2h4 

mice of untreated and treated with 1010 particles/mouse of Ad-TSHR289.  Splenocytes were 

cultured in the presence (solid bars) or absence (open bars) of 10 g/ml TSHR289 protein for 

four days.  IL-17 (A and D), IFN- (B and E) and IL-10 (C and F) were measured by ELISA 

(see the Materials and Methods).  The data are means + S.E. in A, B, D and E (n = 4) or means 

+ range in C and F (n=2) . *, p < 0.05; **, p < 0.01.    


