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ABSTRACT 

The development of technologies for the in vitro amplification of the abnormal 

conformers of prion protein (PrPSc) has generated the potential for a novel diagnostic 

assay for prion disease. Previously, we developed a new PrPSc amplification assay 

designated quaking-induced conversion (QUIC), which involves intermittent, automated 

shaking of the substrate, soluble recombinant PrP. We further improved the rapidity and 

practicality of this method by combining it with thioflavin T fluorescence to monitor the 

amyloid fibril formation. This assay, termed “real-time QUIC (RT-QUIC)”, allows 

within 48 h, the detection of ≥1 fg of PrPSc in diluted Creutzfeldt-Jakob disease (CJD) 

brain homogenate. Moreover, we assessed the technique first in a series of Japanese 

subjects, and then in a blind study of 30 cerebrospinal fluid specimens from Australia, 

which achieved greater than 80% sensitivity and 100% specificity. These findings 

indicate the promising enhanced diagnostic capacity of RT-QUIC in the ante-mortem 

evaluation of suspected CJD. 
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Transmissible spongiform encephalopathies or prion diseases are characteristically 

associated with the accumulation of PrPSc in the central nervous system through 

auto-catalytic conversion of normal cellular PrP (PrPc) into replicate misfolded 

isomers1,2. Despite occasional reported exceptions3,4, PrPSc remains the best 

characterized and most reliable marker of prion disease.  

Definitive ante-mortem confirmation of CJD requires the detection of PrPSc in 

patient biopsy specimens, the practice of which is discouraged because it is both 

invasive and poses risks to health care personnel. Recently, however, in vitro PrPSc 

amplification techniques, including protein misfolding cyclic amplification (PMCA)5-7, 

the amyloid seeding assay8, as well as QUIC have been reported to enable the direct and 

highly sensitive detection of PrPSc in various tissues, including cerebrospinal fluid 

(CSF). QUIC assays involve the use of soluble recombinant PrP (rPrP-sen) as a 

substrate, which is seeded with PrPSc, and then subjected to intermittent automated 

shaking. This technique can be performed more easily than the PMCA, which requires 

repeated sonication. Previous studies have demonstrated that QUIC assays correctly 

discriminated between normal and scrapie-infected CSF samples in both hamster and 

sheep prion disease models9,10. However, ultrasensitive PrPSc detection in CSF from 

CJD subjects has not yet been accomplished. Accordingly, we further refined the QUIC 
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assay to improve its sensitivity and practicability, and then applied the technique in a 

blind pilot study to detect PrPSc in CJD-CSF specimens.  

Given that a correlation between protease-resistant rPrP aggregate (rPrP-res) 

levels and thioflavin T (ThT) fluorescence had been shown previously7, we sought to 

determine the relative kinetics of rPrP-res formation by monitoring levels of ThT 

fluorescence in the QUIC assay. This was intended to minimize the time needed to 

detect rPrP-res. We first tested whether PrPSc-dependent rPrP-res (rPrP-res(Sc)) 

formation could be induced using a microplate reader with intermittent shaking. Human 

rPrP-sen (rHuPrP-sen) and a 10–7 dilution of CJD (molecular subtype MM1) brain 

homogenate (BH) were used as the substrate and “seed”, respectively. We conducted 

QUIC reactions at various concentrations (0, 0.25, 0.5 and 1.0 M) of guanidine-HCl 

(GdnHCl), because it has been demonstrated that GdnHCl greatly enhances conversion 

of PrP-sen to PrP-res in cell-free conversion reactions. Unexpectedly, positive 

PrPSc-dependent ThT fluorescence was observed within 24 h, both in the presence and 

absence of GdnHCl (Fig. 1a). In contrast, the negative control reactions without seed 

and in the absence of GdnHCl resulted in no increase in ThT fluorescence over 24 h; 

however, de novo formation of rPrP-res (rPrP-res(spon)) was rapidly induced in the 

presence of GdnHCl when shaking was added (Fig. 1a,b). These results indicate that 
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shaking accelerates PrPSc-dependent rPrP-res(Sc) formation even without GdnHCl 

(Supplementary Fig. 1), albeit with a lower peak of fluorescence. 

Shaking is thought to cause partial unfolding of a portion of the rPrP-sen by 

increasing the air-water interface11. Moreover, shaking enhances the interaction between 

rPrP-sen and PrPSc, and promote the fragmentation of rPrP-res polymers12. It is 

generally accepted that the energetic barrier of seed-dependent fibril formation and 

elongation is lower than that of spontaneous fibril formation, which first requires 

nucleation as the rate-limiting step13. The partial unfolding of rPrP-sen by shaking 

appears to be more heterogeneous than that facilitated by a denaturant such as GdnHCl, 

perhaps because the air-water interfaces created by shaking are unequally distributed in 

solution. The addition of GdnHCl to QUIC reactions leads to an increase in the 

nucleation rate, and increased spontaneous fibril formation. The early appearance of 

rPrP-res(spon) decreases the specificity of QUIC, because ThT fluorescence cannot 

distinguish between rPrP-res(Sc) and rPrP-res(spon). Therefore, we chose not to use 

GdnHCl in subsequent analyses. 

To further optimize the conditions, we examined the effects of pH, as well as 

the concentrations of rHuPrP-sen and salt on QUIC reactions in GdnHCl-free conditions 

with shaking (Fig 1c–e and Supplementary Fig. 2). After assessment, we successfully 
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established a method for the real-time monitoring of the kinetics of rPrP fibril formation 

seeded with CJD-BH (see Supplementary Methods online), without the generation of 

rPrP-res(spon), and designated the assay “real-time QUIC (RT-QUIC)”.  

To determine the minimum amount of PrPSc detectable by the RT-QUIC, we 

diluted CJD-BH (MM1 and MM2) serially with artificial CSF (A-CSF) and used these 

dilutions to seed the reactions. Increased PrPSc-dependent ThT fluorescence was seen 

within 48h in more than half the replicates of CJD-BH, with dilutions ranging from 10–5 

to 10–9 (Fig. 1f and Supplementary Table 1). With 10–10 BH dilutions we observed a 

marginally lower rate of positive reactions and the 10–11 dilutions of the CJD-BHs 

produced no ThT fluorescence response. The negative controls seeded with 10–5 and 

10–7 dilutions of non-CJD BH or A-CSF alone (no seed) did not produce an increase in 

the fluorescence. The 10–9 dilutions of MM1 and MM2-CJD-BH contained 

approximately 0.8 and 1.9 fg of PrPSc, respectively, according to our estimation (data 

not shown). Consequently, the results indicate that this assay consistently enables us to 

detect ≥ around 1 fg of PrPSc in the diluted CJD-BHs within 48 h. Moreover, the fact 

that there was no rPrP-res(spon) formation under the conditions employed implies a 

reduced and acceptable risk of false-positive reactions. Whether the RT-QUIC has the 

same sensitivity to CJD-BH with 129MV or VV as 129MM remains to be determined.  
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CSF is routinely used in the evaluation of CNS disorders, and presumably 

contains more PrPSc and fewer impurities than blood. This prompted us to compare the 

RT-QUIC seeding activity in CSF samples from CJD- and non-CJD subjects. For the 

pilot study, we initially tested CJD-CSF samples from 18 definite cases of CJD in Japan 

(Table 1) and 35 non-CJD controls from subjects with other neurodegenerative diseases 

(Supplementary Table 2). We saw minimal ThT fluorescence increase in the controls, 

with no false positives in the assay. In contrast, increased PrPSc-dependent fluorescence 

was seen in at least one of four replicates in 15/18 (83.3%) of the CJD-CSF samples 

(Table 1 and Supplementary Table 3). 

To further confirm the very promising reliability of RT-QUIC, we conducted a 

blind trial using 30 CSF samples from the Australian National CJD Registry and 155 

CSF samples, containing 25 probable cases of CJD and 130 cases of other neurological 

diseases, obtained in Japan. In the Australian samples, we were able to detect PrPSc in 

14/16 (87.5%) definite CJD-CSF samples, as opposed to 0/14 of the non-CJD controls 

(Table 1, Supplementary Fig. 3 and Supplementary Table 3). It should be noted that 

3/4 129VV and 2/2 129MV cases were positive by the RT-QUIC. These results indicate 

that RT-QUIC has the ability to discriminate CJD-CSF samples that include 129MM, 

MV and VV cases from non-CJD CSF samples. In addition, none of the 130 Japanese 
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cases of other neurological diseases was positive, further confirming the reliability of 

this assay (Supplementary Table 4). Collectively, the RT-QUIC assays showed more 

than 80% sensitivity and 100% specificity. The sensitivity was equivalent, and the 

specificity greatly exceeded that of 14-3-314,15, a non-specific marker of rapid neuronal 

damage (Supplementary Table 3).  

Although we have never experienced a false-positive reaction among the 

hundreds of non-CJD neurodegenerative disease samples we have so far tested, it 

remains possible that certain conditions may evoke a positive reaction, and further 

studies will be required to eliminate this possibility. Furthermore, scrupulous attention 

to the conditions of the assay is essential to avoid false-positives in the clinical setting. 

Nevertheless, we believe that the ultrasensitive detection of PrPSc in CSF by RT-QUIC 

represents a valuable novel means for the early, rapid and specific diagnosis of CJD. 
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Table 1 Clinical data and RT-QUIC reactions seeded with CSF samples 

CSF from 18 definite CJD subjects in Japan 

No. Age(yr)/Sex 
CJD 

 type 

Molecular  

subtypea 

14-3-3 

(γ-isoform)b 
RT- QUICc 

C1 68/M sCJD MM 1 + + (3/4) 

+ (2/4) 

+ (1/4) 

+ (2/4) 

+ (2/4) 

+ (2/4) 

– (0/4) 

+ (4/4) 

– (0/4) 

+ (3/4) 

+ (4/4) 

– (0/4) 

+ (3/4) 

+ (3/4) 

+ (2/4) 

+ (4/4) 

+ (3/4) 

+ (3/4) 

C2 66/F sCJD MM 1 + 
C3 71/F sCJD MM 1 + 
C4 57/F sCJD MM 2 + 
C5 70/M sCJD MM 2 + 
C6 66/M sCJD MM 2 + 
C7 60/F sCJD MM 2 – 
C8 73/F sCJD MM 2 + 
C9 74/M sCJD MM 2 + 
C10 79/F sCJD MM 2 – 
C11 65/F sCJD MM 2 + 
C12 69/M sCJD MM 2 + 
C13 69/F sCJD MM 2 + 
C14 54/F sCJD MM 2 + 
C15 76/F sCJD MM 2 – 
C16 68/M sCJD MM 2 – 
C17 58/F iCJD MM 1 + 
C18 79/F iCJD MM 1 – 

 

Blind trial using 30 CSF samples in Australia 

No. Age(yr)/Sex Diagnosisd Codon129
profile of 

PrPSc 

14-3-3 

 (all isoforms)e 

Real-time 

QUICg 

A1 53/F PN/MC   – – (0/4) 

A2 59/F PN/ MC   – – (0/4) 

A3 85/M AD   – – (0/4) 

A4 60/F ICD   + – (0/4) 

A5 83/M AD   + – (0/4) 

A6 73/M sCJD VV 2 + + (2/4) 

A7 67/F sCJD MM 1 + + (4/4) 
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A8 82/F sCJD MM 1 + + (2/4) 

A9 67/M sCJD MV 1 – + (2/4) 

A10 50/M sCJD MM 1 + + (3/4) 

A11 66/M PN/MC   – – (0/4) 

A12 61/M PN/MC   – – (0/4) 

A13 84/F sCJD MM 1 + + (3/4) 

A14 76/M sCJD MM 1 + + (2/4) 

A15 69/M sCJD MV 1 + + (4/4) 

A16 67/M AD   – – (0/4) 

A17 75/F PN/MC   + – (0/4) 

A18 93/M DLB/PD   – – (0/4) 

A19 67/F sCJD ND 2 + + (2/4) 

A20 53/M DLB/PD   – – (0/4) 

A21 71/F sCJD VV 2 + – (0/4) 

A22 62/F sCJD MM 2 – – (0/4) 

A23 90/M sCJD VV ND + + (1/4) 

A24 61/F DLB/PD   – – (0/4) 

A25 74/M sCJD MM ND  ±f + (2/4) 

A26 74/F AD   – – (0/4) 

A27 68/F sCJD ND ND + + (2/4) 

A28 69/F sCJD VV 2 + + (1/4) 

A29 82/M DLB/PD   + – (0/4) 

A30 70/F sCJD ND 2 + + (4/4) 
aCJD can be divided into six molecular subtypes based on whether methionine (M) or valine (V) 

is present at codon 129 of the prion protein gene combined with the profile of PrPSc (type 1 or 

type 2) as determined by Western blotting16. bThe levels of the γ-isoform of 14-3-3 protein in CSF 

were determined by Western blotting using polyclonal antibody specific for  γ-isoform of 14-3-3 

protein17 (+, positive reaction; –, negative reaction). cRT-QUIC was performed as described in 

Supplementary Methods. Positive/number of replicates is shown in parentheses. Samples with 

at least one positive reaction were defined as +, representing a positive result in the RT-QUIC. 
dThe final diagnosis was made by the Australian National CJD Registry. eLevels of 14-3-3 protein 

(all isoforms) in CSF were determined by Western blotting. fAdditional atypical bands were 

observed. gKinetics graphs are provided in Supplementary Figure 3. Subjects or their families 

agreed with the aims and significance of our research and gave appropriate informed consent. 

The investigation protocol was approved by the Ethics Committee of Nagasaki University 

Hospital (ID: 10042823) and the study was registered with the University Hospital Medical 
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Information Network (ID: UMIN000003301). sCJD, sporadic Creutzfeldt-Jakob disease; iCJD, 

iatrogenic Creutzfeldt–Jakob disease; PN/MC, paraneoplastic/metastatic cancer; ICD, 

inflammatory CNS disorder; DLB/PD, dementia with Lewy bodies/Parkinson disease; ND, not 

determined.  
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FIGURE LEGENDS 

Figure 1 QUIC reactions induce PrPSc-dependent rHuPrP-res formation under 

GdnHCl-free conditions. (a,b) The effect of the indicated concentration of Gdn-HCl on 

the kinetics of rHuPrP fibril formation with or without 10–7 dilution of CJD-BH (type 1, 

129MM). The reaction buffer contained 150 mM NaCl, 50 mM PIPES pH 7.0, 1 mM 

EDTA and 10 μM ThT. The concentration of rHuPrP-sen was 0.1 mg ml–1. The graphs 

in a depict one representative of triplicates. The maximal fluorescence intensity of each 

single reaction for 24 h is plotted on b. (c,d,e) The effect of pH (c), the concentrations 

of rHuPrP-sen (d) and the concentration of NaCl (e) were tested using the indicated 

dilutions of CJD-BH (type 1, 129MM) as seeds. Buffers used in c were: pH 5; sodium 

acetate buffer, pH 6; 50 mM MES, pH 7; 50 mM PIPES, pH 8; 50 mM HEPES. The 

concentration of NaCl in c and d was 150 mM, the pH of the buffer in d and e was 7.0 

(50 mM PIPES), and the rHuPrP-sen concentration in c and e was 0.1 mg ml–1. Each 

symbol represents the maximal fluorescence intensity from an individual reaction for 48 

h. (f) Detection limit of real-time QUIC using the indicated dilutions of CJD-BH 

(129MM, type 1), CJD-BH (129MM, type 2) as seeds. The indicated dilutions of 

non-CJD-BH (dissecting aneurysm) or artificial CSF (A-CSF) were used as negative 

controls. The RT-QUIC reactions were performed as described in Supplementary 
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Methods. The colored curves represent the kinetics of ThT fluorescence from an 

individual reaction seeded with the same dilution of BH. The graphs are representative 

of two independent experiments, each performed in triplicate. 
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Supplementary Figure 1 The formation of rPrP-res(Sc) on QUIC reactions seeded with 
CJD-BH in the absence of GdnHCl. All reaction buffers contained 500 mM NaCl, 50 mM 
PIPES pH 7.0, 1 mM EDTA and 10 M ThT. The concentration of rHuPrP-sen was 0.1 
mg ml–1. After reactions, the samples were digested with 10 g ml–1 of proteinase K (PK). 
PK-digested samples were immunoblotted using polyclonal anti-PrP antibody R20 
(epitope located at human PrP amino acids 218–231)1. The QUIC reaction seeded with 
non-CJD-BH (dissecting aneurysm) produced no rPrP-res (lane 2), whereas the 
CJD-seeded reaction produced several (20-, 16-, 12-, 11-and 10-kDa) PK-resistant 
bands (lane3). The banding pattern of rHuPrP-res is similar to that of 263K-seeded 
rHaPrP-res reported previously2,3.  
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Supplementary Figure 2 The effect of pH, the concentration of rHuPrP-sen and NaCl 
on QUIC reactions with or without 10–7 dilutions of sCJD-BH. (a) All reaction buffers 
contained 150 mM NaCl, 1 mM EDTA and 10 M ThT. The concentration of rHuPrP-sen 
was 0.1 mg ml–1. Buffers used were: pH 5, sodium acetate buffer; pH 6, 50 mM MES; 
pH 7, 50 mM PIPES; pH 8, 50 mM HEPES. Artificial CSF was added to negative 
controls (no seed). The graphs are representative of two independent experiments, 
each performed in duplicate or triplicate. The colored curves represent the kinetics of 
ThT fluorescence from an individual reaction under the same conditions. In QUIC 
reactions performed at pH 5, 6, 7, and 8, we found that the rate of rPrP-res formation 

a 

b 

c 
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correlated positively with increases in the pH of the reaction mixture. An early and 
distinct PrPSc-dependent ThT fluorescence increase was observed at pH 7 within 24 h. 
There was no emergence of rPrP-res(spon) under these same conditions, indicating that 
the QUIC exhibits peak sensitivity at pH 7. (b) The effect of the concentration of 
rHuPrP-sen was tested with the indicated dilution (10–9 or 10–7) of CJD-BH (type 1, 
129MM) as seeds. All reaction buffers contained 150 mM NaCl, 50 mM PIPES pH 7.0, 1 
mM EDTA and 10 M ThT. Somewhat unexpectedly, we observed that there was an 
inverse correlation between the rate of rPrP-res formation at pH 7 and the concentration 
of rHuPrP-sen substrate. Notably, this inverse relationship between the substrate 
protein concentration and aggregation in a denaturant-free buffer with shaking has also 
been reported in other proteins4,5. In contrast, previous studies using cell-free 
conversion6 and rPrP fibril formation7–9, respectively, in the presence of denaturant or at 
low pH have shown that the rate of PrP-res formation was directly proportional to the 
PrP-sen concentration, presumably owing to the homogenous denaturation status of 
PrP-sen induced by these treatments. (c) The effect of the concentration of NaCl. All 
reaction buffers contained 50 mM PIPES pH 7.0, 1 mM EDTA and 10 M ThT. The 
concentration of rHuPrP-sen was 0.1 mg ml–1. Assessment of the effect of ionic strength 
on QUIC reactions showed that salt is needed for rPrP-res formation and the sensitivity 
of this method was maximal at 500 mM NaCl at pH7. The requirement for salt in 
rPrP-res formation is consistent with the fact that salt is required for cell-free conversion 
in the absence of GdnHCl10 and the maintenance of a protease-resistant PrPSc 
conformation11. In addition, salt has also been reported to reduce the thermodynamic 
stability of the rHuPrP-sen12.  
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Supplementary Figure 3 The kinetics graphs of real-time QUIC reactions using 30 
CSF samples from Australia. All reactions were performed in quadruplicate. The colored 
curves represent the kinetics of the ThT fluorescence from an individual reaction 
seeded with the same CSF. 
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Supplementary Table 1 Detection limit of RT-QUIC seeded with the indicated dilutions 
of CJD-BH (MM 1), CJD-BH (MM 2) as seeds 
 
 

 

The RT-QUIC reactions were performed as described in Supplementary Methods. 
Non-CJD-BH (dissecting aneurysm) seeded reactions were used as negative controls. 
The results shown are from two independent experiments, each performed in triplicate 
(positive/total reactions). ND, not determined. 

 

dilution 
CJD-BH Non-CJD-BH 

MM1 MM2 dissecting aneurysm   

10–5 (3/3, 3/3) (3/3, 3/3) (0/3, 0/3) 

10–7 (3/3, 3/3) (3/3, 3/3) ND 

10–9 (2/3, 3/3) (2/3, 2/3) (0/3, 0/3) 

10–10 (0/3, 1/3) (1/3, 1/3) ND 

10–11 (0/3, 0/3) (0/3, 0/3) ND 
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Supplementary Table 2 Clinical data and RT-QUIC reactions using CSF from 35 
non-CJD subjects in Japan 

 

No. Age(yr)/Sex Diagnosis 
14-3-3  

(-isoform) 
RT-QUIC 

N1 52/F FTLD – 

– 

– 

– 

– 

– 

– 

– 

– 

– 

– 

– 

– 

– 

+ 

– 

– 

– 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

N2 65/F AD 

N3 72/M AD 

N4 65/F AD 

N5 75/F PML 

N6 62/F FTLD 

N7 63/M AD 

N8 65/F AD 

N9 75/F HE 

N10 68/F HE 

N11 60/F AD 

N12 82/M Epilepsy 

N13 65/M AD 

N14 66/M Lymphoma 

N15 45/M Lymphoma 

N16 52/M Schizophrenia 

N17 58/M Schizophrenia 

N18 32/M AE 

N19 75/F NMO + 

N20 73/F CBD + 

N21 85/F AD + 

N22 87/F AD + 

N23 72/F AD – 

N24 76/F AD – 

N25 56/M AD – 

N26 83/F AD – 

N27 84/F AD – 

N28 62/F AD – 

N29 82/M AD – 

N30 77/F AD – 
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N31 72/F AD – – (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

– (0/4) 

N32 79/M VaD – 

N33 69/F VaD – 

N34 85/F VaD – 

N35 66/M VaD – 

Number of samples with positive reactions/total number of 

samples 
    0/35 

 

FTLD, frontotemporal lobar degeneration; AD, Alzheimer disease; PML, progressive 
multifocal leukoencephalopathy; HE, Hashimoto encephalopathy; AE, anoxic 
encephalopathy; NMO, neuromyelitis optica; CBD, corticobasal degeneration; VaD, 
vascular dementia. 
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Supplementary Table 3 Comparison of the sensitivity and specificity of RT-QUIC with 
those of 14-3-3 protein 
 

 

Positive samples/number of samples is shown in parentheses.  

 
CSF samples in Japan 

[Pilot study] 

 CSF samples from Australia 

 [Blind study] 

 RT-QUIC 
14-3-3 

(-isoform) 

 
RT-QUIC 

14-3-3 

(all isoforms) 

Sensitivity 83.3% (15/18) 72.2% (13/18)  87.5% (14/16) 87.5% (14/16) 

Specificity 100% (0/35) 85.7% (5/35)  100% (0/14) 71.4% (4/14) 
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Supplementary Table 4 Summary of the results from RT-QUIC reactions using 155 
CSF samples in Japan under blind conditions  
 

 
Diagnosis RT-QUICa 

14-3-3 

(-isoform)b 

 sporadic CJD 25/25 25/25 

 DAT 0/122 3/122 

 MELAS 0/2 2/2 

 limbic encephalitis 0/2 2/2 

 temporal epilepsy 0/2 2/2 

 PCD/LEMS 0/2 2/2 

 

All cases of sporadic CJD were typical in time-course, clinical features and 
diffusion-weighed image (DWI) in the MR image, and classified as “probable cases” 

according to the updated WHO diagnostic criteria13. Positive samples/number of 
samples is shown in parentheses. aRT-QUIC was performed as described in 
Supplementary Methods. bLevels of the -isoform of 14-3-3 protein in CSF were 
determined by Western blotting. DAT, Dementia of Alzheimer’s type; MELAS, 
mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes; 
PCD/LEMS, paraneoplastic cerebellar degeneration/Lambert-Eaton myasthenic 
syndrome. 
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Supplementary Methods 

Recombinant human PrP expression and purification. Recombinant PrP equivalent 

in sequence to residues 23–231 of the human PrP sequence (codon 129M) was 

expressed, refolded into a soluble form (rHuPrP-sen), and purified essentially as 

described previously
2
. The concentration of rHuPrP-sen was determined by measuring 

the absorbance at 280 nm. The purity of the final protein preparations was ≥ 99%, as 

estimated by SDS-PAGE, immunoblotting and liquid chromatography-mass 

spectrometry, and analysis by circular dichroism showed the -helical-rich 

conformation of rHuPrP-sen (data not shown). After purification, aliquots of the 

proteins were stored at –80 °C in 10mM phosphate buffer, pH 6.8. 

 

Real-time QUIC. We prepared reactions in a 96-well optical black bottom plate (Nunc 

265301) to a final total volume of 100 l. To avoid contamination, we prepared 

non-infectious materials inside a biological safety cabinet in a prion-free laboratory and 

used aerosol-resistant tips. Unless indicated otherwise, the final concentrations of 

reaction buffer components were 500 mM NaCl, 50 mM PIPES pH 7.0, 1 mM EDTA 

and 10 M Thioflavin T. We used only freshly-thawed rHuPrP-sen. We observed mild 

variations in the optimal rHuPrP-sen concentration (0.06–0.1 mg ml
–1

) between the lots 
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of rHuPrP-sen, but the final sensitivity was approximately the same. Diluted BH or CSF 

(5 l well
–1

) was used as seeds for the RT-QUIC reactions. Artificial CSF (A-CSF, 125 

mM NaCl, 2.5 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 25 mM HEPES, 50 mg dl
–1

 

glucose, 20 mg dl
–1

 BSA) was added to the negative controls; we refer to these as 

no-seed controls. Besides the reactions seeded with diluted BH or the CSF samples, we 

always conducted no-seed controls to confirm that no rPrP-res
(spon)

 formation occurred 

in the RT-QUIC. Dilutions of the seed-BHs were carried out in A-CSF immediately 

prior to the reactions. The 96-well plate was covered with sealing tape (Nunc 236366) 

and incubated at 37 °C in a plate reader (Infinite M200 or F200 fluorescence plate 

reader; TECAN) with intermittent shaking, consisting of 30 s of circular shaking at the 

highest speed and no shaking for 30 s, with a 2-min pause to measure the fluorescence. 

The kinetics of fibril formation was monitored by the bottom reading of the 

fluorescence intensity every 10 min using 440-nm excitation and 485-nm emission 

wavelength of monochromators (Infinite M200) or filters (Infinite F200). Although 

RT-QUIC reactions usually give all-or-none responses, the elevation of fluorescence 

was relatively slow and the peak was occasionally lower when the dilution of the BHs 

was very high (e.g. more than 10
–9

). In those cases, we regarded the well of a microplate 

as exhibiting a positive reaction when the fluorescence increase exceeded 200% of 
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baseline fluorescence of the buffer-only controls over six consecutive readings. 

 

Subjects. Type 1, codon 129 MM (MM1) and type 2, codon 129 MM (MM2) CJD brain 

tissues were obtained from individuals who had received a confirmed diagnosis of CJD 

at Nagasaki University Hospital. Unfortunately, CJD-BH with codon 129 MV or VV 

were not available because these polymorphisms are uncommon in Japan
14,15

. Non-CJD 

brain tissue was obtained from a person with a dissecting aneurysm at Tohoku 

University Hospital. CJD-CSF samples for the pilot study were collected from 18 

definite CJD subjects who were diagnosed according to WHO criteria through the CJD 

Surveillance Committee in Japan. All of these subjects were homozygous for MM at 

polymorphic PrP codon 129. Non-CJD-CSF samples for the pilot study were collected 

from 35 subjects with other diseases at Nagasaki University Hospital, or through the 

Japan CJD Surveillance Committee. To perform a blind trial of RT-QUIC, 30 CSF 

samples were sent from the Australian National CJD Registry, without any information 

other than the sample number. An additional blind test was performed on 155 CSF 

samples, containing 25 probable cases of CJD, the diagnosis of which had been made in 

accordance with the updated clinical diagnostic criteria for CJD published in 2009
13

, 

and 130 cases of other neurological diseases, kindly provided by Dr. Tsujihata at 
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Nagasaki Kita Hospital. Subjects or their families agreed with the aims and significance 

of our research and gave appropriate informed consent. The investigation protocol was 

approved by the Ethics Committee of Nagasaki University Hospital (ID: 10042823) and 

the study was registered with the University Hospital Medical Information Network 

(ID: UMIN000003301).  

   

Preparation of brain homogenates. Brain tissues were homogenized at 10% (w/v) in 

ice-cold PBS supplemented with a protease inhibitor mixture (Roche) using a 

multi-bead shocker (Yasui Kikai, Osaka, Japan). After centrifugation at 2,000 g for 2 

min, supernatants were collected and frozen at –80 °C until use. Total protein 

concentrations were determined by the BCA protein assay (Pierce). The PrP
Sc

 

concentrations in the BHs were estimated by dot-blot analysis using a reference 

standard of rHuPrP-sen, as described previously
16

. 

 

 



15 

 

Supplementary References 

1. Caughey, B., Raymond, G.J., Ernst, D. & Race, R.E. N-terminal truncation of the 

scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of 

conversion of PrP to the protease-resistant state. J Virol 65, 6597–6603 (1991). 

 

2. Atarashi, R., et al. Ultrasensitive detection of scrapie prion protein using seeded conversion 

of recombinant prion protein. Nat. Methods 4, 645–650 (2007). 

 

3. Atarashi, R., et al. Simplified ultrasensitive prion detection by recombinant PrP conversion 

with shaking. Nat. Methods 5, 211–212 (2008). 

 

4. Treuheit, M.J., Kosky, A.A. & Brems, D.N. Inverse relationship of protein concentration 

and aggregation. Pharm Res 19, 511–516 (2002). 

 

5. Sluzky, V., Tamada, J.A., Klibanov, A.M. & Langer, R. Kinetics of insulin aggregation in 

aqueous solutions upon agitation in the presence of hydrophobic surfaces. Proc Natl Acad 

Sci U S A 88, 9377–9381 (1991). 

 

6. Caughey, B., Kocisko, D.A., Raymond, G.J. & Lansbury, P.T., Jr. Aggregates of 

scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion 

protein to the protease-resistant state. Chem Biol 2, 807–817 (1995). 

 

7. Baskakov, I.V. & Bocharova, O.V. In vitro conversion of mammalian prion protein into 

amyloid fibrils displays unusual features. Biochemistry 44, 2339–2348 (2005). 

 

8. Jain, S. & Udgaonkar, J.B. Evidence for stepwise formation of amyloid fibrils by the mouse 

prion protein. J Mol Biol 382, 1228–1241 (2008). 

 

9. Stohr, J., et al. Mechanisms of prion protein assembly into amyloid. Proc Natl Acad Sci U S 

A 105, 2409–2414 (2008). 

 

10. Horiuchi, M. & Caughey, B. Specific binding of normal prion protein to the scrapie form via 

a localized domain initiates its conversion to the protease-resistant state. EMBO J 18, 

3193–3203 (1999). 

 

11. Nishina, K., Jenks, S. & Supattapone, S. Ionic strength and transition metals control PrPSc 



16 

 

protease resistance and conversion-inducing activity. J Biol Chem 279, 40788–40794 

(2004). 

 

12. Apetri, A.C. & Surewicz, W.K. Atypical effect of salts on the thermodynamic stability of 

human prion protein. J Biol Chem 278, 22187–22192 (2003). 

 

13. Zerr, I., et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. 

Brain 132, 2659–2668 (2009). 

 

14. Ohkubo, T., et al. Absence of association between codon 129/219 polymorphisms of the 

prion protein gene and Alzheimer's disease in Japan. Ann Neurol 54, 553–554; author reply 

555 (2003). 

 

15. Nozaki, I., et al. Prospective 10-year surveillance of human prion diseases in Japan. Brain 

133, 3043–3057. 

 

16. Fujihara, A., et al. Hyperefficient PrP Sc amplification of mouse-adapted BSE and scrapie 

strain by protein misfolding cyclic amplification technique. FEBS J 276, 2841–2848 (2009). 

 

 


	text
	supplement information



