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Abstract

Classical isoperimetric inequality is shown in a complex plane. In
a complex plane we can use effectively the complex Fourier expansion
in the computations.

0 Introduction: isoperimetric problem and

isoperimetric inequality in a plane

Let C be a simply closed curve in a plane and D be the domain enclosed by
C. Let l be the length of C and A be the area of D. Then the isoperimetric
inequality is

A ≤ l2

4π
.

The classical isoperimtric problem claims that for every simply closed curve
C in a plane the isoperimetric inequality holds and that its equality holds if
and only if C is a circle of radius l/2π.

Since the radius of a circle which has the length l is r = l/2π the circle
has area π(l/2π)2 = l2/4π. The isoperimetric inequality thus shows that
among all simply closed curves of length l, circles of radius l/2π have the
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largest area l2/4π and the equality condition shows that the largest area is
attained only by those circles.

We show the claim of isoperimetric problem in a complex plane C. The
proof gets through along the classical line [1, 4]. The use of the complex
Fourier series in a complex plane makes the reasoning a little straightforward.

1 A closed curve in C and its Fourier

expansion

By similitude it suffices to consider curves of length l = 2π and to show the
isoperimetric inequality: A ≤ π. Let C be a simply closed curve of length
2π in a complex plane C. We assume that C is piecewise smooth and is
parametrized by its arc length. Let

C : z(s) = x(s) + iy(s), 0 ≤ s ≤ 2π, z(0) = z(2π)

be the parametrization of a closed curve z : [0, 2π] −→ C. Then the tangent
vector at z(s) is z′(s) = x′(s)+ iy′(s). When the curve is parametrized by its
arc length s, the length of the tangent vector is one: |z′(s)| = 1(except finite
points). And the total length of C is

2π =

∮

C

|z′(s)|ds =
∫ 2π

0

|z′(s)|ds.

Expand z(s) into the complex Fourier series:

z(s) =
∑
n∈Z

cne
ins, cn =

∫ 2π

0

z(s)e−ins ds

2π
.

By the term-by-term differentiation

z′(s) =
∞∑

n=−∞

icnne
ins.

The condition: 1 = |z′(s)|2 = z′(s)z′(s) thereby becomes

1 =
∞∑

n=−∞

icnne
ins

∞∑
m=−∞

−icmme−ims =
∞∑

n,m=−∞

cncmnmei(n−m)s.
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largest area l2/4π and the equality condition shows that the largest area is
attained only by those circles.

We show the claim of isoperimetric problem in a complex plane C. The
proof gets through along the classical line [1, 4]. The use of the complex
Fourier series in a complex plane makes the reasoning a little straightforward.

1 A closed curve in C and its Fourier

expansion

By similitude it suffices to consider curves of length l = 2π and to show the
isoperimetric inequality: A ≤ π. Let C be a simply closed curve of length
2π in a complex plane C. We assume that C is piecewise smooth and is
parametrized by its arc length. Let

C : z(s) = x(s) + iy(s), 0 ≤ s ≤ 2π, z(0) = z(2π)

be the parametrization of a closed curve z : [0, 2π] −→ C. Then the tangent
vector at z(s) is z′(s) = x′(s)+ iy′(s). When the curve is parametrized by its
arc length s, the length of the tangent vector is one: |z′(s)| = 1(except finite
points). And the total length of C is

2π =

∮

C

|z′(s)|ds =
∫ 2π

0

|z′(s)|ds.

Expand z(s) into the complex Fourier series:

z(s) =
∑
n∈Z

cne
ins, cn =

∫ 2π

0

z(s)e−ins ds

2π
.

By the term-by-term differentiation

z′(s) =
∞∑

n=−∞

icnne
ins.

The condition: 1 = |z′(s)|2 = z′(s)z′(s) thereby becomes

1 =
∞∑

n=−∞

icnne
ins

∞∑
m=−∞

−icmme−ims =
∞∑

n,m=−∞

cncmnmei(n−m)s.

2Integrating
∫ 2π

0
∗ ds/2π term by term, the only terms: n = m remain,

1 =
∞∑

n=−∞

cncnn
2 =

∞∑
n=−∞

|cn|2n2 (1)

since
∫ 2π

0
ei(n−m)sds/2π = δnm. This is the condition of the curve length

l = 2π.

2 The Green formula and isoperimetric

inequality

Let D be a bounded domian in a plane with piecewise smooth boundary ∂D.
Let P (x, y) and Q(x, y) be C1-functions near D. Then the Green formula is:

∫∫

D

(
∂P

∂x
− ∂Q

∂y

)
dxdy =

∮

∂D

Pdy +Qdx.

The formula states a basic relation between integration in a region and in-
tegration over its boundary in a plane. So put P = x,Q = −y. Then if
A =area(D),

2A =

∮

∂D

xdy − ydx.

In C we have xdy − ydx = (z̄dz − zdz̄)/2i = Im(zdz) (dz = dx + idy, dz̄ =
dx− idy).

For a curve C : z = z(s) (0 ≤ s ≤ 2π) and its enclosed region D in C we
have

2A = Im

∮

C

z̄dz = Im

∫ 2π

0

z(s)z′(s)ds.

We calculate quantity A/π = 2A/2π.

1

2π

∫ 2π

0

z(s)z′(s)ds =

∫ 2π

0

∞∑
n=−∞

cne
−ins

∞∑
m=−∞

icmmeims ds

2π

= i

∞∑
n,m=−∞

cncmm

∫ 2π

0

ei(m−n)s ds

2π
= i

∞∑
n=−∞

|cn|2n.
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Integrating
∫ 2π

0
∗ ds/2π term by term, the only terms: n = m remain,

1 =
∞∑

n=−∞

cncnn
2 =

∞∑
n=−∞

|cn|2n2 (1)

since
∫ 2π

0
ei(n−m)sds/2π = δnm. This is the condition of the curve length

l = 2π.

2 The Green formula and isoperimetric

inequality

Let D be a bounded domian in a plane with piecewise smooth boundary ∂D.
Let P (x, y) and Q(x, y) be C1-functions near D. Then the Green formula is:

∫∫

D

(
∂P

∂x
− ∂Q

∂y

)
dxdy =

∮

∂D

Pdy +Qdx.

The formula states a basic relation between integration in a region and in-
tegration over its boundary in a plane. So put P = x,Q = −y. Then if
A =area(D),

2A =

∮

∂D

xdy − ydx.

In C we have xdy − ydx = (z̄dz − zdz̄)/2i = Im(zdz) (dz = dx + idy, dz̄ =
dx− idy).

For a curve C : z = z(s) (0 ≤ s ≤ 2π) and its enclosed region D in C we
have

2A = Im

∮

C

z̄dz = Im

∫ 2π

0

z(s)z′(s)ds.

We calculate quantity A/π = 2A/2π.

1

2π

∫ 2π

0

z(s)z′(s)ds =

∫ 2π

0

∞∑
n=−∞

cne
−ins

∞∑
m=−∞

icmmeims ds

2π

= i

∞∑
n,m=−∞

cncmm

∫ 2π

0

ei(m−n)s ds

2π
= i

∞∑
n=−∞

|cn|2n.

3

Hence we get

A

π
=

2A

2π
=

1

2π
Im

∫ 2π

0

z(s)z′(s)ds =
∞∑

n=−∞

|cn|2n. (2)

Subtract (2) from (1) we have

1− A

π
=

∞∑
n=−∞

|cn|2n2 −
∞∑

n=−∞

|cn|2n =
∞∑

n=−∞

|cn|2(n2 − n)

=
∞∑

n=−∞

|cn|2
{(

n− 1

2

)2

− 1

4

}
≥ 0

since n ∈ Z. This proves the isoperimetric inequality for the curve C.
Because n2 − n = n(n − 1) = 0 iff n = 0, 1, the equality above holds if

and only if all cn = 0 except n = 0, 1. In the case in which the equality holds
the condition (1) becomes 1 = |c1|2 and the Fourier expansion of z(s) has
the only two non-zero terms:

z(s) = c0 + c1e
is, (0 ≤ s ≤ 2π).

Since |c1| = 1 this is exactly the parametrization of a circle of radius one and
of center c0 in the complex plane C.
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Hence we get

A

π
=

2A

2π
=

1

2π
Im

∫ 2π

0

z(s)z′(s)ds =
∞∑

n=−∞

|cn|2n. (2)

Subtract (2) from (1) we have

1− A

π
=

∞∑
n=−∞

|cn|2n2 −
∞∑

n=−∞

|cn|2n =
∞∑

n=−∞

|cn|2(n2 − n)

=
∞∑

n=−∞

|cn|2
{(

n− 1

2

)2

− 1

4

}
≥ 0

since n ∈ Z. This proves the isoperimetric inequality for the curve C.
Because n2 − n = n(n − 1) = 0 iff n = 0, 1, the equality above holds if

and only if all cn = 0 except n = 0, 1. In the case in which the equality holds
the condition (1) becomes 1 = |c1|2 and the Fourier expansion of z(s) has
the only two non-zero terms:

z(s) = c0 + c1e
is, (0 ≤ s ≤ 2π).

Since |c1| = 1 this is exactly the parametrization of a circle of radius one and
of center c0 in the complex plane C.

4

c0

|c1| = 1

z(s) = c0 + c1e
is

s

z(0) = z(2π)
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