On isoperimetric problem in a complex plane

Hiroshi Kajimoto and Kazuhiro Eguchi
Department of Mathematical Science, Faculty of Education
Nagasaki University, Nagasaki 852-8521, Japan
e-mail: kajimoto@nagasaki-u.ac.jp

(Received October 29, 2010)

Abstract

Classical isoperimetric inequality is shown in a complex plane. In a complex plane we can use effectively the complex Fourier expansion in the computations.

0 Introduction: isoperimetric problem and isoperimetric inequality in a plane

Let C be a simply closed curve in a plane and D be the domain enclosed by C. Let l be the length of C and A be the area of D. Then the isoperimetric inequality is

$$
A \leq \frac{l^{2}}{4 \pi}
$$

The classical isoperimtric problem claims that for every simply closed curve C in a plane the isoperimetric inequality holds and that its equality holds if and only if C is a circle of radius $l / 2 \pi$.

Since the radius of a circle which has the length l is $r=l / 2 \pi$ the circle has area $\pi(l / 2 \pi)^{2}=l^{2} / 4 \pi$. The isoperimetric inequality thus shows that among all simply closed curves of length l, circles of radius $l / 2 \pi$ have the largest area $l^{2} / 4 \pi$ and the equality condition shows that the largest area is attained only by those circles.

We show the claim of isoperimetric problem in a complex plane \mathbb{C}. The proof gets through along the classical line [1, 4]. The use of the complex Fourier series in a complex plane makes the reasoning a little straightforward.

1 A closed curve in \mathbb{C} and its Fourier expansion

By similitude it suffices to consider curves of length $l=2 \pi$ and to show the isoperimetric inequality：$A \leq \pi$ ．Let C be a simply closed curve of length 2π in a complex plane \mathbb{C} ．We assume that C is piecewise smooth and is parametrized by its arc length．Let

$$
C: \quad z(s)=x(s)+i y(s), \quad 0 \leq s \leq 2 \pi, \quad z(0)=z(2 \pi)
$$

be the parametrization of a closed curve $z:[0,2 \pi] \longrightarrow \mathbb{C}$ ．Then the tangent vector at $z(s)$ is $z^{\prime}(s)=x^{\prime}(s)+i y^{\prime}(s)$ ．When the curve is parametrized by its arc length s ，the length of the tangent vector is one：$\left|z^{\prime}(s)\right|=1$（except finite points）．And the total length of C is

$$
2 \pi=\oint_{C}\left|z^{\prime}(s)\right| d s=\int_{0}^{2 \pi}\left|z^{\prime}(s)\right| d s
$$

Expand $z(s)$ into the complex Fourier series：

$$
z(s)=\sum_{n \in \mathbb{Z}} c_{n} e^{i n s}, \quad c_{n}=\int_{0}^{2 \pi} z(s) e^{-i n s} \frac{d s}{2 \pi} .
$$

By the term－by－term differentiation

$$
z^{\prime}(s)=\sum_{n=-\infty}^{\infty} i c_{n} n e^{i n s}
$$

The condition： $1=\left|z^{\prime}(s)\right|^{2}=z^{\prime}(s) \overline{z^{\prime}(s)}$ thereby becomes

$$
1=\sum_{n=-\infty}^{\infty} i c_{n} n e^{i n s} \sum_{m=-\infty}^{\infty}-i \overline{c_{m}} m e^{-i m s}=\sum_{n, m=-\infty}^{\infty} c_{n} \overline{c_{m}} n m e^{i(n-m) s} .
$$

Integrating $\int_{0}^{2 \pi} * d s / 2 \pi$ term by term，the only terms：$n=m$ remain，

$$
\begin{equation*}
1=\sum_{n=-\infty}^{\infty} c_{n} \overline{c_{n}} n^{2}=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} n^{2} \tag{1}
\end{equation*}
$$

since $\int_{0}^{2 \pi} e^{i(n-m) s} d s / 2 \pi=\delta_{n m}$ ．This is the condition of the curve length $l=2 \pi$ ．

2 The Green formula and isoperimetric inequality

Let D be a bounded domian in a plane with piecewise smooth boundary ∂D. Let $P(x, y)$ and $Q(x, y)$ be C^{1}-functions near \bar{D}. Then the Green formula is:

$$
\iint_{D}\left(\frac{\partial P}{\partial x}-\frac{\partial Q}{\partial y}\right) d x d y=\oint_{\partial D} P d y+Q d x
$$

The formula states a basic relation between integration in a region and integration over its boundary in a plane. So put $P=x, Q=-y$. Then if $A=\operatorname{area}(D)$,

$$
2 A=\oint_{\partial D} x d y-y d x
$$

In \mathbb{C} we have $x d y-y d x=(\bar{z} d z-z d \bar{z}) / 2 i=\operatorname{Im}(\bar{z} d z)(d z=d x+i d y, d \bar{z}=$ $d x-i d y)$.

For a curve $C: z=z(s)(0 \leq s \leq 2 \pi)$ and its enclosed region D in \mathbb{C} we have

$$
2 A=\operatorname{Im} \oint_{C} \bar{z} d z=\operatorname{Im} \int_{0}^{2 \pi} \overline{z(s)} z^{\prime}(s) d s
$$

We calculate quantity $A / \pi=2 A / 2 \pi$.

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{z(s)} z^{\prime}(s) d s=\int_{0}^{2 \pi} \sum_{n=-\infty}^{\infty} \overline{c_{n}} e^{-i n s} \sum_{m=-\infty}^{\infty} i c_{m} m e^{i m s} \frac{d s}{2 \pi} \\
& \quad=i \sum_{n, m=-\infty}^{\infty} \overline{c_{n}} c_{m} m \int_{0}^{2 \pi} e^{i(m-n) s} \frac{d s}{2 \pi}=i \sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} n
\end{aligned}
$$

Hence we get

$$
\begin{equation*}
\frac{A}{\pi}=\frac{2 A}{2 \pi}=\frac{1}{2 \pi} \operatorname{Im} \int_{0}^{2 \pi} \overline{z(s)} z^{\prime}(s) d s=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} n \tag{2}
\end{equation*}
$$

Subtract (2) from (1) we have

$$
\begin{gathered}
1-\frac{A}{\pi}=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} n^{2}-\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2} n=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}\left(n^{2}-n\right) \\
=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}\left\{\left(n-\frac{1}{2}\right)^{2}-\frac{1}{4}\right\} \geq 0
\end{gathered}
$$

since $n \in \mathbb{Z}$ ．This proves the isoperimetric inequality for the curve C ．
Because $n^{2}-n=n(n-1)=0$ iff $n=0,1$ ，the equality above holds if and only if all $c_{n}=0$ except $n=0,1$ ．In the case in which the equality holds the condition（1）becomes $1=\left|c_{1}\right|^{2}$ and the Fourier expansion of $z(s)$ has the only two non－zero terms：

$$
z(s)=c_{0}+c_{1} e^{i s}, \quad(0 \leq s \leq 2 \pi)
$$

Since $\left|c_{1}\right|=1$ this is exactly the parametrization of a circle of radius one and of center c_{0} in the complex plane \mathbb{C} ．

References

［1］小林昭七，円の数学，裳華房， 1999 ．
［2］小林昭七，曲線と曲面の微分幾何，裳華房， 1977.
［3］G．Pólya 著，柴垣和三雄訳，帰納と類比，丸善， 1959.
［4］鶴見和之，安達謙三他，応用解析学，昭晃堂， 1992.

