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ABSTRACT 

Both fluctuations of local velocity and local temperature were measured in a steady turbulent diffusion flame of propane by 

using the semiconductor laser 2-focus velocimeter (L2F) and the optical fiber thermometer (OFT) respectively. The flame 

temperature and the soot particle density were calculated by applying the infrared two-color method to the measured radiant 

energy from the soot particles in the flame. In the analysis of the frequency power spectra of temperature and velocity fluctuations, 

the correlation-based slotting technique was adopted for those data with the nonuniform time interval. It is shown that the time 

mean value and the fluctuation of the flame temperature decrease gradually toward downstream in the luminous flame region, 

and those of the soot density increase due to decay of turbulence along the flame axis. On the other hand, both time mean and 

fluctuation of the flame temperature increase in the radial direction from the center to the periphery due to the effect of air 

entrainment marked in the peripheral region of the flame. Furthermore, the power spectrum of the velocity fluctuation is not 

always the same as that of the temperature fluctuation in the flame center. 
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1. INTRODUCTION 

In order to clarify the structure of turbulent diffusion flame, image measurement 1 , temperature measurements by laser Ray leigh 

scattering 2 , and by thermocouple with thin wire 3 have been reported. The authors 4 have revealed the temporal variation and 

the spacial distribution of the flame temperature and the soot density in the combustion chamber of a direct injection diesel 

engine under various operating conditions by means of the optical fiber thermometer (OFT) which consists of the optical 

sensor made of a sapphire rod. And, the authors also clarified the applicability 5,6 of the semiconductor laser 2-focus velocimeter 

(L2F) to measurement of the turbulent velocity field in a centrifugal blower. 

In the present study, in order to understand more easily the processes of soot formation and soot oxidization in the diesel 

combustion, the basic structure or turbulence characteristics of a steady turbulent diffusion flame of propane was examined 

experimentally by measuring the gas velocity fluctuation and the flame temperature fluctuation under the luminous flame 
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condition which is usually seen in diesel engine combustion chamber. Measurements were conducted by using the above two 

non-intrusive measuring instruments, that is, the L2F for velocity measurement and the OFT for temperature measurement. 

The difficulty in these measurements is to be not easy for obtaining the continuous data with uniform time interval because the 

flame is not always luminous especially in the peripheral region of the flame even in the case of diffusion flame and the seeding 

particle for velocity measurement is supplied randomly into the measuring volume. In order to analyze accurately the frequency 

spectra of temperature and velocity fluctuations from the data with nonuniform time interval, the correlation-based slotting 

(CBS) technique 7,8 was adopted for both temperature and velocity data. 

2. MEASUREMENT AND ANALYSIS 

A steady turbulent diffusion flame was formed by using the burner with a circular nozzle of 3 mm in diameter. A small amount 

of air was inducted in the propane gas for supplying the seeding particles which is inevitable for velocity measurement by the 

L2F. Therefore, the flame in the present experiment is not a complete diffusion one but a premixed one with a rich propane 

concentration. The equivalence ratio of the propane mixture was 17.5 and the Reynolds number was 8,830. Figure 1( a) shows 

the system diagram of the flame temperature measurement consisting of the optical fiber thermometer Model 100C manufac

tured by Accufiber Corp. The radiant energy from the luminous flame was concentrated on the tip of the optical fiber with a 

diameter of 0.6 mm through two lenses, and the radiant energy of the two wave lengths of 800 and 950 nm was selected and 

converted to each electric voltage output. These voltage outputs were sampled by the transient combustion analyzer CB-467 

manufactured by Ono Sokki Ltd., and were transferred to workstations (HP715/33 and HP715/75) for the calculation of the 

flame temperature and the KL value based on the two-color method 9 • The KL value is the index which represents the density 

of the soot particles in the measuring volume. The axes in the measuring volume are as follows; the z -axis is the direction of 

fuel gas flow, the y -axis corresponds to the optical fiber sensor axis, and the x -axis is taken perpendicular to both the z -and y 

-axes. The radiant energy of the focal point is led to the optical fiber correctly, however, the radiant energy from outside of the 

focal point might be included in a part. Figure l(b) shows the size of the measuring volume estimated from the geometrical 

optics under the condition of the present lens system for temperature measurement. The shape of the measuring volume having 

the radiant energy level of 100le % of that of the focal point is a revolution of ellipse which has the major axis length of 6.6 mm 
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in the y -direction and the minor axis diameter of 1.2 mm in the x, z -directions. The length between the focal point and the left 

edge of the measuring volume is larger than that between the focal point and the right edge. 

Figure 2 (a) shows the system diagram of the laser 2-focus velocimeter (L2F) for the gas flow velocity measurement. A wide

stripe semiconductor laser with the maximum output power of 1 W was installed as the light source. This semiconductor laser 

was an infrared type with a wave length of 810 nm. The diverging light from the semiconductor laser was led to a collimating 

lens and was divided into two beams with a very small difference in angle by the beam splitter. In order to form the measuring 

volume, the condenser lens with a focal length of 40 mm transferred two beams to two foci. The back-scattered lights from a 

seeding particle at each focus were led to each Si-avalanche photo diode through a collimating lens and a microscope objective. 

The diameter of the sensible area of the Si-avalanche photodiode was 3.0 mID. The scattered light was converted to an electric 

pulse by the Si-avalanche photodiode and was led to the time-of-flight counter through an amplifier. The timer counted the time 

when a time-of-flight datum acquired. The time-of-flight data and the timer data were acquired simultaneously by a persona] 

computer through a digital interface with the maximum sampling rate of 100 kHz. The optical system was 350 mm long 

including the light source. Figure 2 (b) shows the measuring volume consisting of two sheet-shaped foci facing each other. The 

distance S between two foci was about 0.09 mID, the thickness L of the focus was about 0.01 mm and the width w was about 0.25 

mm in the x' -direction. Two foci are almost parallel each other. In order to form the observation area with the uniform light 

intensity in the center part of the focus region, the slit with the width of 0.2 mID, the length of 3 mm and the thickness of 0.013 

mm was mounted in front of the photodiodes. The corresponding observation area at the focus was about 0.01 mm thick, 

because the microscope objective of 20 magnifications was used for expanding the focus image. Silicon dioxide powder with a 

mean diameter of 2 f.J. m was used as the seeding particle for the flow measurement by the L2F. 
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3. TIME HISTORY OF TEMPERATURE 
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The maximum height of the tested diffusion flame was about 450 mm, and the maximum diameter of the flame was about 50 

mm. In the region of z>90 mm, the luminous flame was observed. Figure 3 shows an example of the temporal variation of the 



OFT output voltage, and the calculated flame temperature and the KL value at the measuring point (x, y, z)=(O, -10, 300). The 

total measuring time (). Twas 72 ms, and the data sampling frequency was 20kHz. The temperature fluctuates highly near the 

measuring time T of around 64 ms due to a very low voltage output of the OFT. At this time, no luminous flame must be in the 

measuring volume judging from both the OFT output and the KL value. The reliability of the measured temperature calculated 

from the extremely low OFT output is not enough for the temperature fluctuation analysis. Therefore, the flame temperature can 

be conditionally sampled only when the luminous flame must be in the measuring volume. This is a similar situation of the 
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Fig. 3 Time history of OFT output, temperature and KL value 
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velocity measurement by the L2F because the laser velocimeters can obtain the data only when the seeding particle comes into 

the measuring volume. 

4. VELOCITY AND TEMPERATURE DISTRIBUTIONS ALONG THE FLAME AXIS 

Figure 4 shows the measured spatial distributions of time mean velocity Uave ' fluctuation velocity Urms ' and fluctuation inten

sity Ur,JU ave along the flame axis. The number of effective data sampled was 32,000 at each measuring point. Mean velocity 

and velocity fluctuation decreased gradually toward downstream along the flame axis. It is expected that the momentum of the 

fuel jet was transferred to the entrained air, and that the effect of gas expansion by combustion was not remarkable in the 

measured region. Flow velocity could not measured in the region higher than 200 mm in the z-direction because of the short 

focus length of 43 mm in the focusing lens of the present L2F system. 

Figure 5 shows the spatial distributions of time mean temperature T ave ' temperature fluctuation Trms ' and fluctuation intensity 

Trm./T ave of the measured temperature along the flame axis. The number of effective data sampled was 14,400 at each measuring 

point. In the measured region between 125 and 300 mm in the flame height, the time mean temperature and the temperature 

fluctuation decreased gradually along the flame axis partly due to the entrainment of ambient air and partly due to the decay of 

turbulence based on a decrease in flow velocity. Furthermore, the flame temperature in the region lower than 125 mm could not 

measured because of too low OFT output, and the temperature in the region higher than 300 mm is not shown here because the 

measured temperature was highly disturbed by a large intermittent fluctuation. 

Figure 6 shows the spatial distributions of time mean KL value indicated by KLave' fluctuation KLrms ' and fluctuation intensity 

KLrms/KLave KL along the flame axis. The luminous flame does not appears in the region lower than 125 mm judging from that 

the value of KL ave was almost zero. It is noticeable that the time mean KL value and its fluctuation increase along the flame axis 

to the contrary of decrease in velocity and temperature. It might be caused by that the oxygen concentration decreased down

stream in the central part of the flame due to the decrease in turbulence even though air is entrained in the peripheral region of 

the flame. The mean KL value should become zero at the flame top. In Fig.6, the KLrms increased with the KLave' however, the 
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fluctuation intensity KLrmlKLave decreased gradually along the direction of gas flow. Furthermore, near the position where the 

luminous flame firstly appears, the fluctuation intensity KLr,JKLave is very high having the order of unity. 

The correlation-based slotting (CBS) technique proposed by Roberts et al. 7 can analyze the turbulence spectrum from the data 

with nonuniform time interval. This CBS technique was adopted for analyzing the turbulence spectrum of both the data of flow 

velocity and temperature. Figure 7 shows the power spectra of temperature measured at 150, 225 and 300 mm high on the 

flame axis. The data sampling rate was 20 kHz, however, the maximum analyzing frequency was set 2 kHz in order to estimate 

the spectrum accurately. The power level in the range from 102 to 103 Hz decreased markedly in the spectra obtained at z=225 

and 300 mm compared with the spectrum at z=150 mm. The straight line shown in Fig.7 shows the -5/3 power law of the 

isotropic turbulence. Judging from that the inclination of the power spectrum is almost the -5/3 power law near the frequency 

of 103 Hz, the temperature fluctuation has a characteristics of the isotropic turbulence. The power spectrum of temperature 
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Fig. 7 Power spectrum of temperature along the flame axis 
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Fig. 9 Comparison of power spectrum density between velocity and temperature 

fluctuation measured at z=150 mm is almost flat in the frequency range smaller than 300 Hz, and the power spectrum at z=225 

mm and z=300 mm decreased gradually from the frequency of 100 Hz which are similar as the result reported by Ida et aI. to . 

Figure 8 shows the power spectra of the KL value at z=150, 225, and 300 mm. The power spectrum level of the KL increases 

remarkably in the frequency range smaller than 2 kHz as the measuring position moves downstream because KL rms increased 

along the flame axis. It is noticeable that the power spectrum at z=150 mm is almost flat in the frequency range smaller than 

300 Hz, on the other hand, the power spectra at z=225 and z=300 decreased gradually as the frequency increases. This behavior 

is similar as in the case of the temperature power spectrum shown in Fig. 7. 

Figure 9 shows a comparison of power spectrum density between velocity and flame temperature fluctuations measured at the 

point (X, y, z)=(O, 0, 150). The number of velocity data used was 20,000. The power spectrum density of the flame temperature 

is higher than that of the gas velocity at the frequency of 102 Hz, on the other hand, the power spectrum density of the gas 
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velocity is higher than that of the flame temperature near the frequency of uP Hz. The correlation between the two fluctuations 

of velocity and temperature was not confirmed clearly. It seems to be necessary to acquire more number of data for the better 

spectrum analysis. 

5. TEMPERATURE VARIATION IN THE RADIAL DIRECTION 

Figure 10 shows the spatial distributions of time mean flame temperature Tave and fluctuation intensity of temperature Trms in 

thex -direction atz=150, 225, and 300 mm. The left edge data in eachz position shown in Fig. 10 indicates almost the periphery 

of the flame. In the measured region, both T ave and Trms increased in the radial direction from the center to the periphery of the 

flame. These results shows that air entrainment is remarkable in the peripheral region of the flame. 
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Figure 11 shows the spatial distributions of time mean KL value KLave and KL fluctuation KLrms in the x -direction at z=150, 

225, and 300 mm. The KLave distribution is almost uniform in the flame section at each z position, and the KLrms increases in the 

radial direction which might be due to air entrainment. 

Figure 12 shows comparison among the power spectra of the temperature fluctuation obtained at three radial positions in the 

section of z=225 mm. The power spectrum in the frequency range smaller than 200 Hz at x=-15 mm is larger than that at x=O 

and -8. It might be caused by a remarkable temperature fluctuation due to the air entrainment vortex in the peripheral region of 

the flame. Figure 13 shows comparison among the power spectra of the KL fluctuation at the same positions shown in Fig.12. 

The KL power spectra are similar tendency as the flame temperature power spectra, that is, the power spectrum in the periph

eral region of the flame is higher in the low frequency range. 

Figure 14 shows the spatial distributions of the time mean flame temperature T ave and the temperature fluctuation T rms in the y 

-direction at z=150, 225, and 300 mm. The radial variation of Tave in the y -direction is different from that of Tave in the x

direction shown in Fig.9, and the radial variation of temperature is not clear in the y -direction. On the other hand, the radial 

variation of the Trms in the y -direction is similar as in the x -direction. This difference between the x -direction and the y -

direction might be caused by that the measuring volume of the OFT is very small in the x-z plane, on the other hand, it spreads 

largely in the y -direction. In other word, more than half of the measuring volume locates outside of the flame if the focal point 

is set at the periphery of the flame. 

6. CONCLUSION 
The temperature and the soot particle density in the luminous flame region of a turbulent diffusion flame was measured by the 

optical fiber thermometer based on the two-color method. The gas velocity in the flame was also measured accurately in the 

turbulent diffusion flame by means of the semiconductor laser 2-focus velocimeter developed by the authors. The correlation

based slotting technique was effectively adopted for the frequency power spectrum analysis of fluctuations of the flame 



temperature, the soot particle density and the gas velocity, which were the data with nonuniform time interval sampled only 

under the luminous flame condition. 

The spatial distributions of the flame temperature and the soot particle density with respect to both time mean and fluctuation 

intensity could be measured accurately by the present optical system even under the condition that the measuring volume is 

several mm long along the optical axis. It is shown that the time mean value and the fluctuation of the flame temperature 

decrease gradually toward downstream in the luminous flame region, and those of the soot density increase due to decay of 

turbulence along the flame axis. On the other hand, both time mean and fluctuation of the flame temperature increase in the 

radial direction from the center to the flame periphery due to the effect of air entrainment marked in the peripheral region of the 

flame. Furthermore, the power spectrum of the velocity fluctuation is not always the same as that of the temperature fluctuation 

in the flame center. 
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