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Abstract 

 

Background & Aims: The transcription factor RUNX3 is a gastric tumor suppressor. 

Tumorigenic Runx3–/– gastric epithelial cells attach weakly to each other, compared with 

non-tumorigenic, Runx3+/+ cells. We aimed to identify RUNX3 target genes that promote 

cell–cell contact to improve our understanding of RUNX3’s role in suppressing gastric 

carcinogenesis. 

 

Methods: We compared gene expression profiles of Runx3+/+ and Runx3–/– cells and 

observed down-regulation of genes associated with cell–cell adhesion in Runx3–/– cells. 

Reporter, mobility shift, and chromatin immuoprecipitation assays were used to examine 

the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistological 

analyses of human gastric tumors were performed to confirm the role of the candidate 

genes in gastric tumor development. 

 

Results: Mobility shift and ChIP assays revealed that the promoter activity of the gene 

that encodes the tight junction protein claudin-1 was up-regulated via the binding of 

RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells from 

Runx3–/– mice was significantly reduced by restoration of claudin-1 expression, whereas 

knockdown of claudin-1 increased the tumorigenicity of human gastric cancer cells. 

Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric 

epithelium and cancers. 

 

Conclusions: The tight junction protein claudin-1 has gastric tumor suppressive activity 

and is a direct transcriptional target of RUNX3. Claudin-1 is downregulated during the 

epithelial–mesenchymal transition (EMT); RUNX3 might therefore act as a tumor 

suppressor to antagonize the EMT. 
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Introduction 

 

Gastric cancer remains a major public health problem worldwide. It is the most common 

epithelial malignancy and is the leading cause of cancer-related death in Asia and in parts 

of South America. It remains the second most frequently diagnosed malignancy 

worldwide and is a cause of 12% of all cancer-related deaths each year1, 2. 

Various genetic and epigenetic alterations of tumor suppressor and tumor-related 

genes have been associated with the development and progression of gastric cancer. 

Mutations in p533, 4, E-cadherin5, and in the transforming growth factor beta (TGF-) 

receptor6 are involved in gastric carcinogenesis. Oncogenic activation of -catenin and K-

ras and amplification of c-erbB2 and c-met have also been reported to be involved in the 

process7. Microsatellite instability (MSI) was observed in 5–10% of diffuse and 15–40% 

of intestinal-type gastric cancer, which is mainly caused by the inactivation of hMLH1, 

via promoter hypermetylation8. Although many genes have been analyzed in attempts to 

understand the molecular bases of human gastric carcinogenesis, a restricted number of 

genes that carry frequent alterations have been identified to date. 

The Runt-related (RUNX) gene has been documented to play a role in 

gastrointestinal carcinogenesis. RUNX3 is 1 of the 3 Runt-domain transcription factors 

that function in the TGF-/SMAD signaling pathway, which is essential for 

developmental and physiological processes9, 10. We have shown that loss of RUNX3 

abrogates TGF- signaling and that RUNX3 is inactivated in more than 80% of gastric 

cancers, not only by gene silencing but also by protein mislocalization11, 12. RUNX3 

directly up-regulates the cyclin-dependent kinase inhibitor, p21WAF1/Cip113 and the 
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proapoptotic gene, Bim,14, 15 in response to TGF- signaling and down-regulates VEGF16.  

We thus concluded that RUNX3 is a gastric tumor suppressor gene that controls the 

growth, apoptosis, and differentiation of gastric epithelial cells17-20. Recently, RUNX3 

was found to form a ternary complex with -catenin/TCF4 and to attenuate the oncogenic 

Wnt signaling activity in human and mouse intestinal tumors21. These results support the 

contention that RUNX3 functions as a tumor suppressor in gastrointestinal tract 

carcinogenesis. 

In a previous study, we found that mouse embryonic gastric epithelial cells (GIF 

cells) isolated from E16.5 Runx3–/–p53–/– mice are tumorigenic in nude mice, whereas 

GIF cells from Runx3+/+p53–/– mice are not11. Furthermore, Runx3–/– GIF cells attach 

weakly to each other and do not form any glandular structures when cultured on collagen 

gel, while Runx3+/+ GIF cells formed simple columnar epithelia with occasional glandular 

structures19, which suggests that cell polarity and epithelial sheet formation could not be 

established in Runx3–/– gastric epithelial cells. 

One of the structures involved in cell–cell adhesion is the tight junction. The 

proteins that participate in the formation of tight junctions include claudins, occludins, 

junctional adhesion molecules (JAM), zona occludens (ZO), AF-6 (afadin), and cingulin. 

Claudins interact directly with occludin, ZO-1, ZO-2, and ZO-3 and indirectly with AF-6 

and the myosin-binding molecule cingulin. These protein–protein interactions promote 

the scaffolding of the tight junction transmembrane proteins, thus providing a link to the 

actin cytoskeleton for the transduction of regulatory signals to and from tight junctions22, 

23. Because of this ability, tight junction proteins are believed to be involved in the 

regulation of proliferation, differentiation, and other cellular functions. Claudin-1 is the 
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main component of the tight junction family of proteins and its expression is often cell-

type- and tissue-dependent24, 25. Expression of claudin-1 is negatively regulated by 2 

related transcription factors, Snail and Slug, which are involved in the induction of 

epithelial-mesenchymal transition (EMT), which is a normal developmental process 

characterized by loss of cell adhesion and increased mobility; EMT is now considered to 

contribute to invasive and metastatic tumor growth26. 

In this study, we examined the expression of a group of genes related to cell–cell 

adhesion, to identify RUNX3 target genes that function in cell adhesion and to 

understand their role in gastric carcinogenesis. We identified claudin-1 as a novel 

downstream target of RUNX3. The identification of this target gene will contribute to the 

improvement of our understanding of the mechanism underlying RUNX3-mediated 

suppression of gastric carcinogenesis. 
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Materials and Methods 

 

Cell lines and cell culture 

The GIF cell lines were isolated from gastric epithelial tissues of 16.5 dpc.  Runx3–/–p53–

/– (GIF-5 and -14) and Runx3+/+p53–/– (GIF-9 and -13) mouse fetuses, as described 

previously11, 19. GIF cells were maintained in DMEM supplemented with 10% fetal 

bovine serum (FBS). 

The SNU16 and SNU719 gastric cancer cell lines were maintained in RPMI-1640 

medium supplemented with 10% FBS. AGS, MKN74, and 293T cells were cultured in 

DMEM supplemented with 10% FBS. SNU16 and SNU719 cells were treated with 3 

ng/ml of TGF- and 1 g/ml of TGF- inhibitor (SB431542; GlaxoSmithKline 

Pharmaceuticals, Brentford Middlesex, United Kingdom) was used for SNU16. 

SNU16 cells that expressed antisense DNA against human RUNX3 or Flag-

RUNX3 stably were generated as described previously12, 15. SNU719 and MKN74 cells 

that expressed Flag-tagged human RUNX3 stably were generated via transfection using 

Lipofectamine 2000 (Invitrogen, Carlsbad, CA) as reported previously15, 27, followed by 

selection using 1 mg/ml G-418 (Roche Diagnostics, Indianapolis, IN). SNU16 cells that 

expressed antisense DNA against human claudin-1 stably were generated via transfection 

with the pcDNA3.1 vector (Invitrogen) containing the entire inverted open reading frame 

(ORF) of the human claudin-1 gene (636 bp), followed by selection using 0.125 mg/ml 

Hygromycin (Invitrogen). The endogenous RUNX3 in SNU719 cells was knocked down 

using shRNA targeting RUNX3 (5'-tcagtagtgggtaccaatctt-3')21 and control shRNA 

targeting GFP (5'-ggctacgtccaggagcgca-3'). GeneClip U1 Hairpin Cloning Systems 
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(Promega, Madison, WI) was used as the vector for transfection, and transfectants were 

selected using 1 mg/ml G-418. GIF-5 and GIF-14 cells that expressed claudin-1 stably 

were generated via transfection with the pcDNA3.1 vector containing the entire murine 

claudin-1 ORF (636 bp)28 using Fugene 6 (Roche Diagnostics), followed by selection 

using 0.125 mg/ml Hygromycin. 

 

Reverse-transcription polymerase chain reaction and Western blotting 

Total RNA and complementary DNA (cDNA) were obtained using the RNeasy mini kit 

(QIAGEN, Hilde, Germany) and the Omniscript reverse transcription kit (QIAGEN), 

respectively. Semiquantitative reverse-transcription polymerase chain reaction (RT–

PCR) for the detection of claudin-1 and GAPDH was then carried out using the following 

PCR primers: 5–CCAACGCGGGGCTGCAGCT–3 and 5–

TTGTTTTTCGGGGACAGGA–3 for claudin-1, and 5–

GGTCGGAGTCAACGGATTTGGTCG–3 and 5–

CCTCCGACGCCTGCTTCACCAC–3 for GAPDH. Quantitative RT–PCR was 

performed using the real-time TaqMan Fast Universal PCR Master Mix system on an 

ABI PRISM 7900HT instrument (Applied Biosystems, Foster City, CA) for the detection 

of RUNX3 (Hs00231709_m1; Applied Biosystems) and human claudin-1 

(Hs00221623_m1; Applied Biosystems). 

Western blotting was performed using anti-RUNX3 (R3-5G412; Medical & 

Biological Laboratories [MBL], Nagoya, Japan), anti-claudin-1 (18-7362; Zymed, South 

San Francisco, CA), anti-claudin-2 (51-6100; Zymed), anti-claudin-3 (34-1700; Zymed), 

anti-claudin-4 (36-4800; Zymed), anti-claudin-7 (34-9100; Zymed), anti-claudin-11 (36-
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4500; Zymed), anti-claudin-16 (34-5400; Zymed), anti-ZO-1 (61-7300; Zymed), anti-

ZO-2 (71-1400; Zymed), anti-ZO-3 (36-4100; Zymed), anti-occludin (71-1500; Zymed), 

anti-E-cadherin (610181; BD Pharmingen, San Jose, CA), and anti--actin (AC-15; 

Sigma, St Louis, MO) antibodies. 

 

Reporter assay 

The promoter region of human claudin-1, 1.5kb upstream from the claudin-1 

transcription start site, was PCR-amplified from SNU16 genomic DNA using the primers 

5–CGGGGTACCCCCTGGGATACAACACG–3 and 5–

CGAGCTCCCCAGGCTCGGGAACTGAG–3. The amplified DNA segment was 

cloned into the pGL3-Basic vector (E1751; Promega) between the KpnI and SacI 

restriction sites. Three RUNX binding sites were mutated using the QuickChange XL 

site-directed mutagenesis kit (Stratagene, La Jolla, CA). AGS cells were transfected with 

the reporter plasmids and a promoterless pRL-SV40 vector (Promega), in which the 

SV40 promoter was deleted. The Dual-Luciferase Reporter Assay System (Promega) was 

used to measure the luciferase activity of the reporter plasmids, which was normalized to 

the activity of the promoterless pRL-SV40 vector. 

 

Xenografts using nude mice 

GIF-5, GIF-14, and SNU16 cells (5  106 cells each) were injected subcutaneously into 

the flanks and backs of nude mice. Sixty days after injection, tumors were dissected and 

weighed. 
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Immunohistochemistry and immunocytochemistry 

Mouse tissues were fixed with 4% paraformaldehyde, embedded in paraffin, and 

sectioned at 5 m. Human tissues were fixed with 10% neutral-buffered formalin, 

embedded in paraffin, and serially sectioned at 4 m. Rehydrated specimens were treated 

for 40 min at 96C with an antigen retrieval solution (S1700; DAKO, Glostrup, 

Denmark). The specimens were incubated with anti-claudin-1 (18-7362; Zymed) or anti-

RUNX3 (R3-6E912; MBL) antibodies. The EnVision+ system (K4010; DAKO) was used 

for visualization of signals. 

Cells cultured on glass slides were incubated with rabbit anti-claudin-1 (18-7362; 

Zymed) antibody. Biotinylated anti-rabbit immunoglobulin G (IgG) (BA-1000; VECTOR 

Laboratories, Burlingame, CA) and fluorescein-conjugated avidin D (A-2001; VECTOR 

Laboratories) were subsequently used for immunofluorescence imaging. 

 

Gastric cancer specimens 

Fifty-two gastric adenocarcinoma samples and corresponding non-cancerous tissues were 

obtained from the Department of Pathology and Surgery of the National University of 

Singapore, under a protocol approved by the Institutional Review Board. 

  

Electrophoresis mobility shift assay  

Electrophoresis mobility shift assay (EMSA) was performed using the LightShift 

Chemiluminescent EMSA kit and a Chemiluminescent Nucleic Acid Detection Module 

(Pierce Biotechnology, Rockford, IL). Nuclear extracts from 293T cells expressing Flag-

tagged RUNX3 were prepared using NE-PER Nuclear and Cytoplasmic Extraction 
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Reagents (Pierce Biotechnology). For supershift of bands, anti-RUNX3 (R3-5G4; MBL) 

antibody or mouse normal IgG were added after the binding reaction. The following 

oligonucleotides were used as labeled or unlabeled probes; 5–

CTTCCCCTCCCACCACACTCGCACC–3 (wild-type RUNX site [W]) and 5– 

CTTCCCCTCCCATTACACTCGCACC–3 (mutated RUNX site [M]) for site 1, 5–

ACACTCGCACCACACACAAAAAGCA–3 (W) and 5–

ACACTCGCATTACACACAAAAAGCA–3 (M) for site 2, and 5–

TTCAATGATTCCTAACCACAACAGCACTTCTGACT–3 (W) and 5–

TTCAATGATTCCTAATTACAACAGCACTTCTGACT–3 (M) for site 3. The 5 end 

of the site 1 and 3 probes and the 3 end of the site 2 probe were biotinylated. 

 

Chromatin immunoprecipitation assay 

Chromatin immunoprecipitation (ChIP) was performed using the chromatin 

immunoprecipitation assay kit (Upstate) with the anti-RUNX3 antibody (R3-6E9; MBL) 

or mouse normal IgG (sc-2025; Sigma). The primers used to amplify the DNA fragment 

were designed to comprise all three RUNX binding sites (sites 1-3): 5–

AAAACCATAGAAGCTTCCCCTCCC–3 and 5–

CCTCTATGTTTCTCCAAAGCTTCC–3. 
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Results 

 

RUNX3 mediates claudin-1 expression 

Runx3–/– gastric epithelial cells attached weakly to each other in collagen gel culture in 

vitro, which suggests the RUNX3 mediates expression of genes responsible for cell–cell 

contact and for formation of epithelial cell sheets19. To identify RUNX3 target genes 

involved in cell–cell contact, first we compared the gene expression profile of of 

Runx3+/+ (GIF-9) and Runx3–/– (GIF-5) cells. As shown in S.Table 1, we found that the 

expression of tight junction genes was generally reduced in Runx3–/– cells. As revealed by 

Western blot analysis, claudin-1, claudin-3, ZO-3, and occludin were highly expressed in 

the Runx3+/+ GIF-9 and -13 cells, whereas no expression or very low levels of these 

proteins were detected in the Runx3–/– GIF-5 and -14 cells (Fig. 1A). Claudin-2, -4, -7, -

11, and -16 were not detected in any of the GIF cell lines, as assessed by Western blotting 

(data not shown). Inactivation of E-cadherin has been reported in diffuse type gastric 

cancer5; however, its level of expression was similar in all GIF cells, regardless of Runx3 

state. 

To identify genuine direct targets of RUNX3 among the genes encoding tight 

junction proteins, we used the human gastric cancer-derived SNU16 cell line, in which 

we can conditionally activate RUNX3 function. RUNX3 is inactive in the cytoplasm of 

SNU16 cells; however, it becomes functional when translocated into the nucleus via 

TGF- treatment12, 15. Among the tight junction proteins tested, only claudin-1 was up-

regulated in a time-dependent manner after addition of TGF- to SNU16 cells (Fig. 1B). 

This up-regulation was abrogated in the presence of the TGF- inhibitor (Fig. 1C). The 
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knockdown of RUNX3 abolished this TGF--mediated up-regulation of claudin-1, at 

both the protein and the mRNA levels (Fig. 1D). Furthermore, the knockdown of RUNX3 

in SNU719 cells which express endogenous RUNX3 at a low level inhibited the TGF--

induced claudin-1 expression as well (Fig. 1E). The results show TGF--dependent and 

RUNX3-mediated induction of claudin-1 in SNU16 and SNU719 cells. On the other hand, 

overexpression of exogenous RUNX3 up-regulated claudin-1 in SNU719 and a RUNX3-

negative cell line, MKN7412, 27(Fig. 1F). These results suggest that claudin-1 is a strong 

RUNX3 target gene candidate and that its expression is positively regulated by RUNX3 

in gastric epithelial cells. 

Consistent with these results, claudin-1 was clearly immnunodetected at the 

cellular membrane in Runx3+/+ cells (e.g., GIF-9, -13, and wild-type mouse gastric 

epithelial cells), but not in Runx3–/– cells (e.g., GIF-5, -14, and Runx3–/– mouse cells) (Fig. 

2A, B). Thus, for all follow-up experiments, we focused on the elucidation of the 

mechanism underlying the RUNX3-mediated regulation of claudin-1 expression. 

 

Claudin-1 is a direct target of RUNX3 

We found that the human claudin-1 promoter region between nucleotides –1176 and –

1080 is highly homologous (81%) to that of the mouse claudin-1 promoter and that it 

contains three RUNX consensus binding sites (sites 1–3; Fig. 3A). To examine the 

regulation of human claudin-1 expression by RUNX3 through consensus binding sites, 

we generated a luciferase reporter construct encompassing 1.5 kb of sequence upstream 

from the human claudin-1 transcription start site (Fig. 3B). The three RUNX consensus 

sites were mutated in turn, as shown in Fig. 3B, and seven types of reporter plasmids, 



13 
 

termed M1, M2, M3, M1+2, M1+3, M2+3, and M1+2+3, as well as the wild-type (WT) 

promoter construct, were subjected to reporter assays using the RUNX3-negative cell line 

AGS. RUNX3 forms complexes with Smads to stimulate transcription of target genes in a 

cooperative manner after stimulation by TGF-  . We found that the 1.5 kb human 

claudin-1 WT promoter was activated by exogenous RUNX3 and was enhanced by 

coexpression of RUNX3 with Smad3 and Smad4 (Fig. 3C). The activation of the 1.5 kb 

human claudin-1 promoter depended on the three RUNX consensus sites, as shown in Fig. 

3D. 

The direct binding of RUNX3 to the consensus sites in the claudin-1 promoter 

was confirmed using the EMSA and ChIP assays. As shown in Fig. 3E, RUNX3 

specifically bound to the three RUNX consensus sites, as shown by EMSA, and its 

binding was significantly enhanced by TGF- treatment, as revealed by ChIP assay (Fig. 

3F). These results suggest that claudin-1 expression is directly regulated by RUNX3 in 

gastric epithelial cells. 

 

Restoration of claudin-1 expression suppresses Runx3–/– tumorigenicity in nude mice 

In a previous study, we showed that GIF cells from Runx3–/–p53–/– mouse gastric 

epithelium are tumorigenic in nude mice, whereas those of Runx3+/+p53–/– mice are not11. 

As shown in Figs 1A and 2A, the Runx3–/– GIF-5 and -14 cells expressed claudin-1 at 

very low or negligible levels. To assess whether claudin-1 acts as a tumor suppressor in 

gastric epithelial cells, we generated GIF-5 and -14 cells stably expressing exogenous 

claudin-1 (Fig. 4D) and examined their tumorigenicity by inoculating them into nude 

mice. The restoration of exogenous claudin-1 expression greatly suppressed the 
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tumorigenicity of Runx3–/– cells and this tumor suppressive effect was correlated with the 

level of expression of claudin-1 in these cell lines (Fig. 4A, B, D). 

Conversely, we examined the effect of claudin-1 knockdown on the tumorigenesis 

of human gastric epithelial cells. We transfected SNU16 cells with antisense DNA 

against human claudin-1 and obtained stable cell lines in which the level of claudin-1 

was significantly reduced. The tumorigenicity of these SNU16 cells was inversely 

correlated with the level of expression of claudin-1 (Fig. 4D). These observations 

collectively show that claudin-1 has tumor suppressive activity in gastric epithelial cells. 

 

The expression of claudin-1 and RUNX3 is highly correlated in normal human 

gastric epithelia and human gastric cancers 

The expression patterns of RUNX3 and claudin-1 in normal gastric epithelium were 

immunohistochemically examined. Claudin-1 was strongly expressed in surface epithelial 

cells and chief cells, but was weakly expressed in parietal cells (Fig. 5). RUNX3 was 

immunodetected in the nucleus of surface epithelial cells and in the nucleus and 

cytoplasm of chief cells, as reported previously12. These results demonstrate that the 

expression of claudin-1 and RUNX3 is highly correlated in normal human gastric mucosa. 

We also examined the expression of these proteins in human gastric cancers. 

Among the 52 gastric cancer samples tested here, 29 (56%) were intestinal and 23 (44%) 

were diffuse types. Thirty-seven samples (71%) exhibited RUNX3 inactivation (Table 1). 

Nucleus RUNX3 expression was scored as positive, whereas no or cytoplasmic RUNX3 

expression were scored as negative. Fifteen samples were both RUNX3- and claudin-1-

positive (29%; Figure 6A and Table 1), 17 cases were negative for both (33%; Figure 6B 
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and Table 1), and 20 cases were RUNX3-negative but claudin-1-positive (38%; Table 1). 

However, no RUNX3-positive and claudin-1-negative cases were found (Table 1). This 

observation suggests that claudin-1 is a positive target of RUNX3 and that factors other 

than RUNX3 are also likely to participate in stimulating its expression. SNU16 and 

SNU719 cells in the absence of TGF-(Fig. 1B-E) and RUNX3-negative MKN74 cells 

(Fig. 1F) showed the basal level of claudin-1 expression. The mechanism of regulation of 

claudin-1 expression by the factors other than RUNX3 remains to be studied. 

Interestingly, however, in the absence of RUNX3 expression, claudin-1 expression 

appeared less intense when compared with RUNX3-positive cases in all 3 types of 

gastric cancers analyzed (Fig. 6C). 

Taken together, these observations show that claudin-1 is a positive target of 

RUNX3 in gastric epithelial cells. 
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Discussion 

 

In the present study, we examined the possible mechanism via which RUNX3, a 

transcription factor and a potent gastric cancer tumor suppressor, regulates cell–cell 

adhesion. We found that a major tight junction protein, claudin-1, is transcriptionally 

regulated by RUNX3. Furthermore, exogenous expression of claudin-1 suppressed tumor 

growth and knockdown of claudin-1 expression enhanced tumor growth. Thus, we 

concluded that claudin-1 has tumor suppressive activity and is a direct target of RUNX3. 

Approximately 75% of our Runx3 knockout mice died during the first day after 

birth because of starvation, and none of the mice with the C57BL/6 genetic background 

survived beyond 10 days 11. We also observed a characteristic wrinkled skin appearance 

in our Runx3 knockout mice, similar to that observed in the claudin-1 knockout mice 

(data not shown). The wrinkled skin appearance, which is a result of the loss of epidermal 

barrier function, leads to death of the claudin-1 knockout mice within 1 day after birth30. 

Therefore, it is possible that Runx3–/– mice also die from the loss of epidermal barrier 

function in the skin. 

RUNX3 has been shown to contribute to tumor suppressor activity as a 

component of the TGF- tumor suppressor pathway9 through the attenuation of cell 

growth with a CDK inhibitor13, induction of apoptosis15, and inhibition of angiogenesis16 

and metastasis31 in gastric cancers. Here, we showed that RUNX3 also exerts its tumor 

suppressor activity by regulating tight junction function in gastric cancer. Thus, RUNX3 

may play a central role in the suppression of tumorigenesis, not only by coordinating 
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various signaling pathways but also by controlling cell morphology and tissue structures 

via the regulation of tight junction protein expression. 

One of the most exciting developments in the field of cancer research in recent 

years is the concept of cancer stem cells and their relationship to EMT. The cell–cell 

contact is usually loosened in cancer cells and epithelial cells acquire mesenchymal cell 

properties. Snail and Slug are activated by oncogenic stimuli, which in turn repress E-

cadherin expression to induce EMT32, 33. Recently, claudin-1 was also shown to be 

negatively and positively regulated by Snail/Slug34 and p63, respectively, which function 

primarily in epithelial–mesenchymal development during embryogenesis35. This suggests 

that reduction of claudin-1 expression is a part of the EMT process. As we found that 

claudin-1 is positively regulated by RUNX3, the tumor suppressor function of RUNX3 

may be, at least in part, to inhibit induction of EMT and, perhaps, cancer stem cells. 

RUNX3 was found to positively regulate the expression of claudin-1. However, 

RUNX3 did not alter the expression of E-cadherin. The von Hippel-Lindau (VHL) tumor 

suppressor gene was shown recently to regulate claudin-1 and occludin, without 

involving E-cadherin36. The similarity between the VHL and RUNX3 tumor suppressor 

genes in this respect suggests that tight junction proteins are important tumor suppressor 

targets and loss of tumor suppressors with concomitant loss of tight junction proteins 

suggests the importance of tight junction proteins and perhaps EMT in carcinogenic 

processes. 

In many types of cancers, TGF-plays a complex dual role. At early stages of 

epithelial neoplasia the TGF-pathway functions as a tumor suppressor, inhibiting 

primary tumor growth and inducing apoptosis. At later stages of carcinogenesis, however, 



18 
 

tumor cells that have developed the ability to bypass these tumor suppressor functions 

may use TGF-for tumor progression and invasion, promoting EMT37. RUNX3 

functions as a tumor suppressor under the TGF--signalling pathway9. In this study, we 

used SNU16 and SNU719 cell lines sensitive to cell growth-inhibitory and apoptosis-

inducing action of TGF- . Using the system for examining the tumor suppressive 

TGF-function in early stages of epithelial neoplasia, we successfully demonstrated the 

up-regulation of claudin-1. 

Expression of claudin family in gastric and other cancers has been studied by 

many laboratories but the results are conflicting. Although some investigators observed 

that claudin-1,-3,-4,-5 and -7 are reduced in diffuse type gastric cancer38-40, up-regulation 

of claudin-7 in intestinal type has also been reported39, 40. Reports on the expression of 

claudin family in other types of cancer are also controversial. In breast cancer, decreased 

expression of claudin-1 and -7 was reported41, but increased claudin-1 and -4 expression 

in the basal-like subtype42 and increased claudin-4 expressin in poor prognosis and high 

tumor grade43 were also published. In colon cancer, while decreased expression of 

claudin-1 was reported to be associated with higher tumor grade44, an opposite 

conclusion has also been reported45. A possible cause of this controversy may be a 

reflection of the complexity of cancer cells. For example, claudin-7 is shown to be 

associated with EpCAM46. Association of cellular proteins to claudins in some cases, but 

not in other cases, might change the antigenicity of claudins. Some investigators reported 

the expression by semi-quantitative manner, whereas others described simply in a 

positive or negative fashion. To avoid conflicting results, precise mechanisms of 
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regulation of each claudin expression and their subcellular localizarion would have to be 

studied. 

In the present study, we found that claudin-1 is a direct target of RUNX3. The 

latter is deeply involved in the TGF--signaling pathway, which is well related to gastric 

carcinogenesis. The stage of carcinogenesis at which the expression of claudin-1 is down-

regulated and how this correlates with other signaling cascades (e.g., oncogenic Wnt 

signaling) remain to be determined. 
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Figure Legends 

 

Figure 1. RUNX3 mediates the TGF--induced expression of claudin-1. 

(A) Expression of the indicated tight junction proteins and E-cadherin in the Runx3–/– 

GIF-5 and -14 cells and in the Runx3+/+ GIF-9 and -13 cells, as revealed by Western blot 

analysis. 

(B) Induction of the expression of the indicated tight junction proteins and E-cadherin by 

TGF- in SNU16 cells, as revealed by Western blot analysis. 

(C) Abolishment of the TGF--induced claudin-1 expression by the TGF- inhibitor in 

SNU16 cells, as revealed by Western blot analysis. 

(D) The TGF--induced claudin-1 expression was inhibited by RUNX3 knockdown in 

SNU16 cells, as revealed by RT–PCR and Western blot analyses. RUNX3 was knocked 

down using an antisense DNA against RUNX3 (AS-SNU16). 

(E) The TGF--induced claudin-1 expression was inhibited by RUNX3 knockdown in 

SNU719 cells, as revealed by Western blot analyses. RUNX3 was knocked down using a 

shRNA targeting RUNX3 (sh-RUNX3). A shRNA targeting GFP (sh-GFP) was used as a 

control. 

(F) Up-regulation of claudin-1 by exogenous Flag-tagged RUNX3 (Flag-RUNX3) in 

SNU719 and MKN74 cells, as revealed by Western blot analyses. The exogenous Flag-

RUNX3 (exo) and endogenous RUNX3 (endo) were detected using an anti-RUNX3 

antibody (R3-5G4) in SNU719 cells. Cells were transfected with the pcDNA3 as a 

control (Vector). 
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Figure 2. Claudin-1 is expressed in Runx3+/+ cells but not in Runx3–/– cells, both in vivo 

and in vitro. 

(A) Expression of claudin-1 in Runx3+/+ GIF-9 and -13 cells but not in Runx3–/– GIF-5 

and -14 cells in vitro, as assessed by immunocytochemical analysis. 

(B) Expression of claudin-1 in wild-type (WT) but not in Runx3–/– (–/–) samples from the 

stomach of neonatal mice in vivo, as revealed by immunocytochemical analysis. 

Specimens were counterstained with hematoxylin. Scale bars, 100 m. 

 

Figure 3. RUNX3 regulates claudin-1 expression through the RUNX consensus sites 

present in its promoter. 

(A) Three RUNX consensus sites (sites 1–3) are located in the highly conserved claudin-

1 promoter region. The figure shows nucleotides –1176 to –1080 of the human claudin-1 

promoter. 

(B) Mutations (M1 to M3) were introduced in the RUNX consensus sites, upstream from 

the human claudin-1 transcriptional start site. 

(C) The Claudin-1 promoter was activated by RUNX3 and was enhanced by 

coexpression of RUNX3 with Smad3 and Smad4 in AGS cells. The luciferase activity 

was normalized to the activity of the promoterless pRL-SV40 vector, which was used as 

an internal control. 

(D) Activity of the WT and of the seven mutant reporter constructs (M1, M2, M3, M1+2, 

M1+3, M2+3, and M1+2+3) shown in panel B in AGS cells. AGS cells were 

cotransfected with the control vector or with expression vectors for RUNX3 and/or 
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Smad3 and Smad4. The luciferase activity was normalized to the activity of the 

promoterless pRL-SV40 vector, which was used as an internal control. 

(E) Direct binding of RUNX3 to the three RUNX consensus sites (sites 1–3; see panel A) 

in the promoter, as revealed by EMSA. The nuclear extracts of 293T cells expressing 

exogenous RUNX3 (+) or the empty control vector (–) were incubated with the wild-type 

(W) and RUNX site-mutated (M) probes. To shift the RUNX3/probe complexes, an anti-

RUNX3 antibody (R3-5G4; R3) and a normal mouse IgG (IgG) were added. The 

RUNX3/probe complexes (arrow), bands shifted by the anti-RUNX3 antibody (SS), and 

non-specific bands (asterisk) were detected. 

(F) Direct binding of RUNX3 to the RUNX consensus sites in the promoter, as revealed 

by ChIP analysis. TGF--treated SNU16 cells were subjected to ChIP analysis using an 

anti-RUNX3 antibody or a normal murine IgG. DNA precipitates were PCR-amplified 

(30, 32, or 35 cycles) using primers for the human claudin-1 promoter region (which 

contains three RUNX consensus sites) or for GAPDH, which was used as an internal 

control. 

 

Figure 4. Tumor suppressive effect of claudin-1 in gastric epithelial cells. 

(A and B) Weight of tumors formed by Runx3–/– GIF-5 (A) and -14 (B) cells transfected 

with plasmids expressing mouse claudin-1 (clones 1 and 2; Cl-1 and -2). GIF-5 and -14 

cells expressing the empty vector (pcDNA3) were used as controls. 

(C) Weight of tumors formed by SNU16 cells. SNU16 cells stably expressing an 

antisense DNA against human claudin-1 (clones 1 and 2; AS-Cl-1 and -2) and control 

SNU16 cells expressing the empty vector (pcDNA3) were inoculated into nude mice. 
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(D) Expression of exogenous mouse claudin-1 in GIF-5 and -14 cells and of endogenous 

human claudin-1 in SNU16 cells, as revealed by Western blot analysis.  

 

Figure 5. Expression of RUNX3 and claudin-1 in normal human gastric epithelium. 

Boxed regions are enlarged below. Specimens were counterstained with hematoxylin. 

Scale bars, 100 m. 

 

Figure 6. Expression of RUNX3 and claudin-1 in human gastric cancer samples. 

(A) Claudin-1-positive and RUNX3-positive gastric cancer samples. Intestinal and diffuse 

types are shown. Membranous claudin-1 and nuclear RUNX3 were detected. 

(B) Claudin-1-negative and RUNX3-negative gastric cancer samples. Intestinal and 

diffuse types are shown. RUNX3 was retained in the cytoplasm in intestinal gastric 

cancer samples. 

(C) The level of expression of claudin-1 was lower in RUNX3-negative samples than in 

RUNX3-positive samples. (i), (iv) and (vi) showed membranous staining of claudin-1. 

(ii), (iii) & (v) showed membranous and cytoplasmic staining of claudin-1. Specimens 

were counterstained with hematoxylin. Scale bars, 100 m. 
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Table 1. Expression of RUNX3 and claudin-1 in intestinal and diffuse types of gastric 

cancer 

 

  

RUNX3-

negative/ 

claudin-1-

negative 

n (%) 

RUNX3-

positive/ 

claudin-1-

negative 

n (%) 

RUNX3-

negative/ 

claudin-1-

positive 

n (%) 

RUNX3-

positive/ 

claudin-1-

positive 

n (%) 

Intestinal 

(n = 29) 9 (31%) 0 (0%) 15 (52%)  5 (17%) 

Diffuse 

(n = 23) 8 (35%) 0 (0%)  5 (22%) 10 (43%) 

Total  

(n = 52) 17 (33%) 0 (0%) 20 (38%) 15 (29%) 

 
RUNX3-negative cases contain the cases showing cytoplasmic localization of RUNX3. 
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Figure 1.  
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Figure 2. 
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Supplementary Table 1. Expression Profile of Genes Associated With Cell-Cell 

Adhesion in Runx3/ GIF-5 vs Runx3+/+ GIF-9 Cells, as Assessed by Oligonucleotide 

Microarray Analysis  

Entrez gene 

ID 

Gene  

symbol 
Gene name 

Ratio 

(GIF-5/GIF-9)

2802 Cldn1 Claudin-1 0.02 

3188 Cldn1 Claudin-1 0.03 

23812 Cldn3 Claudin-3 0.05 

21894 Cldn4 Claudin-4 0.02 

30129 Cldn6 Claudin-6 0.46 

35973 Cldn7 Claudin-7 0.04 

25782 Cldn9 Claudin-9 0.63 

17740 Cldn12 Claudin-12 1.57 

31760 Cldn14 Claudin-14 1.09 

34226 Cldn15 Claudin-15 2.07 

4033 Cldn18 Claudin-18 1.13 

13904 Cldnd1 Claudin domain containing 1 1.05 

28033 Cldnd1 Claudin domain containing 1 1.06 

42954 Ocln Occludin 0.53 

43157 Ocln Occludin 0.58 
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487 Jup Junction plakoglobin 0.5 

39262 Zfp120 Zinc finger protein 120 0.75 

23540 Sympk Symplekin 1.01 

17415 Calr3 Calreticulin 3 4.3 

8846 Calr Calreticulin  0.51 

8947 Calr Calreticulin  0.65 

13784 Cdk4 Cyclin-dependent kinase 4 0.85 

24747 Cdk6 Cyclin-dependent kinase 6 1.58 

25100 Cdk6 Cyclin-dependent kinase 6 1.51 

25691 Cdk6 Cyclin-dependent kinase 6 2.14 

3179 Jub Ajuba 1.75 

6774 Zyx Zyxin 1.12 

25825 Pxn Paxillin 0.56 

34015 Pxn Paxillin 0.81 

14888 Fhl2 Four and a half LIM domains 2 1.12 

16769 Trip6 Thyroid hormone receptor interactor 6 0.92 

4621 Trip6 Thyroid hormone receptor interactor 6 0.89 

42961 Ashl1 
Ash1 (absent, small, or homeotic) like 

(Drosophila) 
0.7 
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218 Ashl1 
Ash1 (absent, small, or homeotic) like 

(Drosophila) 
0.6 

12639 Ctnna1 Catenin (cadherin-associated protein),  1 0.85 

9543 Ctnnal1 
Catenin (cadherin-associated protein), -like 

1 
0.44 

29898 Ctnnal1 
Catenin (cadherin-associated protein), -like 

1 
0.56 

32399 Ctnnal1 
Catenin (cadherin-associated protein), -like 

1 
0.92 

34600 Ctnnal1 
Catenin (cadherin-associated protein), -like 

1 
0.52 

6845 Ctnnb1 Catenin (cadherin-associated protein),  1 1.16 

7115 Ctnnb1 Catenin (cadherin-associated protein),  1 1.47 

5128 Ctnnb1 Catenin (cadherin-associated protein),  1 1.11 

13598 Ctnnb1 Catenin (cadherin-associated protein),  1 1.12 

26926 Ctnnb1 Catenin (cadherin-associated protein),  1 1.13 

30387 Ctnnb1 Catenin (cadherin-associated protein),  1 1.12 

31524 Ctnnb1 Catenin (cadherin-associated protein),  1 1.13 

33613 Ctnnb1 Catenin (cadherin-associated protein),  1 1.13 

33796 Ctnnb1 Catenin (cadherin-associated protein),  1 1.11 
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35059 Ctnnb1 Catenin (cadherin-associated protein),  1 1.29 

35625 Ctnnb1 Catenin (cadherin-associated protein),  1 1.17 

36727 Ctnnb1 Catenin (cadherin-associated protein),  1 1.12 

34740 Ctnnbl1 
Catenin (cadherin-associated protein), -like 

1 
1.05 

35364 Ctnnbl1 
Catenin (cadherin-associated protein), -like 

1 
1.06 

6957 Ctnnd1 Catenin (cadherin-associated protein),  1 1.06 

7756 Ctnnd1 Catenin (cadherin-associated protein),  1 1.51 

38639 Ctnnd1 Catenin (cadherin-associated protein),  1 1.94 

7368 Ctnnbip1 Catenin  interacting protein 1 0.91 

188 Cdh1 Cadherin 1 0.78 

4370 Cdh1 Cadherin 1 0.78 

14130 Cdh1 Cadherin 1 0.82 

20989 Cdh1 Cadherin 1 0.81 

24570 Cdh1 Cadherin 1 0.81 

28517 Cdh1 Cadherin 1 0.8 

29329 Cdh1 Cadherin 1 0.8 

33419 Cdh1 Cadherin 1 0.8 
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36281 Cdh1 Cadherin 1 0.81 

41601 Cdh1 Cadherin 1 0.79 

28937 Cdh3 Cadherin 3 0.08 

13122 Cdh10 Cadherin 10 4.33 

16804 Cdh11 Cadherin 11 0.55 

14183 Cdh13 Cadherin 13 0.75 

36584 Cdh17 Cadherin 17 2.89 

9301 Itga2 Integrin  2 0.98 

7422 Itga2b Integrin  2b 0.41 

11996 Itga3 Integrin  3 0.38 

28548 Itga3 Integrin  3 0.34 

40224 Itga3 Integrin  3 0.39 

32206 Itga4 Integrin  4 1.85 

16783 Itga5 Integrin  5 (fibronectin receptor ) 1.72 

5434 Itga6 Integrin  6 1.82 

9756 Itga6 Integrin  6 1.55 

28298 Itga6 Integrin  6 1.4 

1470 Itga7 Integrin  7 0.36 

20492 Itga7 Integrin  7 0.31 
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36562 Itgae Integrin,  E, epithelial associated 1.09 

1127 Itgal Integrin  L 1.25 

15941 Itgav Integrin  V 1.13 

30803 Itgav Integrin  V 1.18 

3878 Itgb1 Integrin  1 (fibronectin receptor ) 0.69 

5038 Itgb1 Integrin  1 (fibronectin receptor ) 0.8 

6517 Itgb1 Integrin  1 (fibronectin receptor ) 0.68 

7627 Itgb1 Integrin  1 (fibronectin receptor ) 0.71 

15484 Itgb1 Integrin  1 (fibronectin receptor ) 0.7 

15683 Itgb1 Integrin  1 (fibronectin receptor ) 0.69 

25292 Itgb1 Integrin  1 (fibronectin receptor ) 0.71 

26331 Itgb1 Integrin  1 (fibronectin receptor ) 0.72 

29211 Itgb1 Integrin  1 (fibronectin receptor ) 0.71 

33166 Itgb1 Integrin  1 (fibronectin receptor ) 0.69 

33758 Itgb1 Integrin  1 (fibronectin receptor ) 0.69 

17200 Itgb1bp1 Integrin  1-binding protein 1 0.73 

34448 Itgb1bp1 Integrin  1-binding protein 1 1.23 

33120 Itgb2 Integrin  2 0.32 
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5839 Itgb3 Integrin  3 4.26 

35332 Itgb3 Integrin  3 1.42 

6271 Itgb3bp Integrin  3-binding protein (3-endonexin) 2.12 

6449 Itgb4 Integrin  4 0.23 

12964 Itgb4 Integrin  4 0.23 

28162 Itgb4 Integrin  4 1.23 

16065 Itgb4bp Integrin  4-binding protein 0.8 

17137 Itgb4bp Integrin  4-binding protein 0.9 

26110 Itgb4bp Integrin  4-binding protein 0.8 

36438 Itgb5 Integrin  5 2.61 

8658 Itgb6 Integrin  6 1.07 

22943 Itgb6 Integrin  6 1.55 

39766 Itgb6 Integrin  6 1.64 

12531 Itgb7 Integrin  7 0.35 

42875 Crb3 Crumbs homolog 3 (Drosophila) 0.16 

33819 Crb1 Crumbs homolog 1 (Drosophila) 1.37 

24656 Jam4 Junctional adhesion molecule 4 0.99 

28942 Jam2 Junctional adhesion molecule 2 19.84 
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40749 Jam4 Junctional adhesion molecule 4 0.97 

32468 L1cam L1 cell adhesion molecule 0.17 

38348 Vezt 
Vezatin, adherens junctions transmembrane 

protein 
0.86 

10279 Cdc42 
Cell division cycle 42 homolog 

(Saccharomyces cerevisiae) 
1.07 

15744 Cdc42 
Cell division cycle 42 homolog      

(S cerevisiae) 
0.79 

33085 Cdc42 
Cell division cycle 42 homolog      

(S cerevisiae) 
1.12 

6306 Cgn Cingulin 0.91 

22246 Cgn Cingulin 0.64 

34374 Cgn Cingulin 0.64 

32668 Dlg7 Discs, large homolog 7 (Drosophila) 0.66 

33705 Dlg7 Discs, large homolog 7 (Drosophila) 0.56 

35046 Dlg5 Discs, large homolog 5 (Drosophila) 0.66 

35772 Dlgh1 Discs, large homolog 1 (Drosophila) 0.56 

36439 Dlgh3 Discs, large homolog 3 (Drosophila) 0.34 

770 Dlgh1 Discs, large homolog 1 (Drosophila) 0.43 

7348 Dlg5 Discs, large homolog 5 (Drosophila) 0.58 

34455 Rab13 RAB13, member RAS oncogene family 0.58 
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17836 Dsp Desmoplakin 0.83 

23455 Dsp Desmoplakin 0.82 

36611 Dsp Desmoplakin 0.87 

21804 Vcl Vinculin 0.41 

25846 Vcl Vinculin 0.56 

5744 Tln1 Talin 1 0.85 

10197 Tln1 Talin 1 0.74 

12934 Tln2 Talin 2 0.44 

14973 Tln2 Talin 2 0.47 

27311 Tln1 Talin 1 0.94 

40914 Ilk Integrin-linked kinase 0.7 

15769 Flna Filamin,  0.42 

25062 Flna Filamin,  0.62 

38232 Flna Filamin,  0.37 

406 Flnb Filamin,  0.68 

2498 Flnb Filamin,  0.53 

11971 Flnb Filamin,  0.57 

13550 Flnb Filamin,  0.59 

40558 Flnb Filamin,  0.6 
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2262 Flnc Filamin c,  (actin-binding protein 280) 2.12 

27334 Flnc Filamin c,  (actin-binding protein 280) 2.07 

30827 Flnc Filamin c,  (actin-binding protein 280) 2.32 

    

NOTE. Agilent Technologies (Santa Clara, CA) equipment was used for oligonucleotide 

microarray analysis. 

 


