Haplotypes of *PADI4* susceptible to rheumatoid arthritis are also associated with ulcerative colitis in the Japanese population

Chen Chun Chuan¹, Hajime Isomoto¹, Yukiko Narumi², Kayoko Sato², Yuuki Oishi², Tsutomu Kobayashi², Katsunori Yanagihara¹, Yohei Mizuta¹, Shigeru Kohno¹, Kazuhiro Tsukamoto^{2,3}

¹Second Department of Internal Medicine, Nagasaki University School of Medicine,

Sakamoto 1-7-1, Nagasaki 852-8501, Japan

²Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

³AVSS, Co., Ltd., 1-22 Wakaba-machi, Nagasaki 852-8137, Japan

Corresponding to:

Kazuhiro Tsukamoto, M.D., Ph.D., Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan Tel: +81-95-819-2447, Fax: +81-95-819-2895

E-mail: ktsuka@nagasaki-u.ac.jp

or

Hajime Isomoto, M.D., Second Department of Internal Medicine, Nagasaki University School

of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan

Tel: +81-95-849-7273, Fax: +81-95-849-7285

E-mail: hajimei2002@yahoo.co.jp

Conflict of Interest-Financial Disclosure Clause: none

Abstract

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disorder characterized by intractable inflammation specific to the gastrointestinal tract. The precise etiology of IBD remains unknown. Recently, haplotypes of peptidylarginine deiminase type 4 (PADI4) have been identified as the rheumatoid arthritis (RA)-susceptible gene. PADI4 is located at 1p36, which is one of chromosomal loci susceptible for IBD. Then, we examined whether haplotypes and diplotypes of PADI4 are associated with IBD in the Japanese population. We studied haplotypes of PADI4 in 114 patients with UC, 83 patients with CD, and 200 gender-matched healthy controls by PCR-restriction fragment length polymorphism. Frequencies and distributions of haplotypes and diplotypes were compared statistically between patients and controls by logistic regression analysis. The frequency of haplotype 1 was significantly decreased in patients with UC, compared to that in controls (P = 0.037; odds ratio (OR) = 0.702). In contrast, the frequency of haplotype 2 in patients with UC was significantly higher than that in controls (P = 0.003; OR = 1.722). Moreover, of a total of 114 patients with UC, 15 (13.2%) had a diplotype homozygous for haplotype 2, the frequency being significantly higher than in controls (9/200, 4.5%; P = 0.008, OR = 3.215). Our results indicate that

haplotype 1 of *PADI4* is associated with non-susceptibility to UC, whereas haplotype 2 is susceptible to UC. Thus, it is likely that *PADI4* is one of genetic determinants of UC in the Japanese population.

Key words

Ulcerative colitis, PADI4, haplotype, polymorphism, disease-susceptible gene, Japanese

population

Chronic inflammatory bowel disease (IBD) is a multifactorial disorder that is characterized by inflammation specific to the gastrointestinal tract, which results in intestinal malabsorption, immune defense abnormalities, and an exaggerated inflammatory response (1,2). Various immune and inflammatory cells, such as lymphocytes, macrophages, and dendritic cells, play important roles in the development and progression of IBD (3-5). In addition, bacterial antigens have been implied in the pathological inflammation and may mediate both innate and adaptive responses underlying chronic inflammation (6-8). IBD consists of two main subtypes: ulcerative colitis (UC) and Crohn's disease (CD) (1,2). Although the precise etiology of IBD remains unknown, both several environmental factors, such as dietary components and microorganisms, and genetic factors may contribute to the occurrence of IBD (6-8). In order to identify the genes underlying the etiology of IBD, genome-wide linkage analyses and candidate gene-based association studies have launched and shown possible IBD-susceptibility loci at 16q12 (IBD1), 12q13 (IBD2), 6p13 (IBD3), 14q11 (IBD4), 5q31-q33 (IBD5), 19p13 (IBD6), 1p36 (IBD7), 16q11 (IBD8), 3p21 (IBD9), and other loci (8,9).

Recently, peptidylarginine deiminase type 4 (PADI4) located at 1p36 is identified as

the rheumatoid arthritis (RA)-susceptible gene (10). RA is involved in autoimmune diseases, of which pathoetiology is probably similar to UC in a number of respects with not only mechanisms of immune defense abnormalities, such as the elevated production of autoantibody (1,2), but also arthritic manifestations, e.g. ankylosing spondylitis and sacroiliitis (11). Although RA complicated by UC is uncommon, recent report has described the development of UC in patients with RA (12). More importantly, *PAD14* also lies within the IBD-susceptibility locus (IBD7)(8-10).

Based on the above findings, we hypothesized that *PADI4* could play a role in the pathogenesis of IBD as well as RA. Thus, in this study, we have examined whether haplotypes and diplotypes of *PADI4* are associated with IBD in the Japanese population.

Subjects and Methods

Subjects

The study subjects comprised unrelated 114 patients with UC, unrelated 83 patients with CD, and 200 gender-matched, unrelated, healthy volunteers as control. The characteristics of subjects are shown in Table 1. Age at onset is indicated as the mean ± standard deviation (SD). All participants were Japanese who were randomly recruited from 8 general health clinics in the Nagasaki district of Japan. The study protocol was approved by the Committee for Ethical Issues dealing with the Human Genome and Gene Analysis at Nagasaki University, and written informed consent was obtained from each participant.

The diagnosis of IBD was made on the basis of the endoscopic, radiological, histological, and clinical criteria provided by the WHO Council for International Organizations of Medical Sciences and the International Organization for the Study of Inflammatory Bowel Disease (13-15). Patients with indeterminate colitis and autoimmune diseases, such as RA, multiple sclerosis, and systemic lupus erythematosus, were excluded from the subjects in this study.

Patients with UC were classified into subgroups according to age at onset (<40 or \geq 40 years), extension of lesions (proctitis, left-sided colitis, or pancolitis), disease severity (mild, moderate, or severe) and activity (active or inactive) (Table 1). Likewise, patient with CD were divided into subgroups according to age at onset (<40 or \geq 40 years), localization of lesions (ileal, ileocolonic, colonic, or isolated upper disease), behavior of disease (structuring and penetrating), and disease severity (mild, moderate, or severe) and activity (active or inactive) (Table 1). The extension and location of UC and CD, disease severity of UC and CD, and behavior of CD were stratified in accordance with Montreal classification (16) with

slight modification. A high clinical activity index (CAI>5) for UC (17) and a high Crohn's disease activity index (CDAI>150) (18) were regarded as active phase patients.

The source of polymorphisms studied

With regard to haplotypes of *PADI4* (GenBank accession number: NT_030584), three single nucleotide polymorphisms (SNPs), padi4_92, padi4_96, and padi4_102, were selected and analyzed, as reported by Caponi *et al.* (19). Subsequently, haplotypes were determined to be based on combinations of their three SNPs (10), as shown in Tables 2 and 3, because SNPs in *PADI4* lie in a strong linkage disequilibrium block.

Preparation of genomic DNA

Genomic DNA was extracted from whole blood of each subject using the DNA Extractor WB-Rapid Kit (Wako Pure Chemical Industries, Osaka, Japan), according to the manufacturer's protocol.

Determination of three SNPs in PADI4

The three SNPs, padi4_92, padi4_96, and padi4_102, were detected by the polymerase chain

reaction-based restriction fragment length polymorphism method. Polymorphic regions were amplified by PCR with a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems, Foster City, CA) using 25 ng of genomic DNA in a 25-µl reaction mixture containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl₂, 200 µM dNTPs, using 15 pmol each of forward primer: 5'-TCCAGTGGGTGTTTGTTGAA-3' and reverse primer: 5'-CATCCTGCAGGGATTAGGAG-3' for padi4_92; forward primer: 5'-AAACGACCTGCCCATTC-3' and reverse primer:

5'-GGAAATACATAAGCCAAAAT-3' for padi4_96 (19); forward primer:

5'-CTGGCCCAGGCACCACCAG-3' and reverse primer:

5'-AGGGTTTCGGCAGCTGTGCC-3' for padi4_102 (19), and 1 U Taq DNA polymerase (Invitrogen Co., Carlsbad, CA). The amplification protocol comprised initial denaturation at 94°C for 5 min, followed by 35 cycles of denaturation at 94°C for 30 sec, annealing at 60°C for padi4_92, at 52°C for padi4_96, and at 68°C for padi4_102 for 30 sec, extension at 72°C for 30 sec, and final extension at 72°C for 5 min. The 192-base pair (bp) PCR products for padi4_92, 316-bp PCR products for padi4_96, and 400-bp PCR products for padi4_102 were digested at 37°C overnight by restriction enzymes, *Msp* I (Takara Bio, Shiga, Japan), *Hae* III (Toyobo, Osaka, Japan), and *Rsa* I (Toyobo), respectively (19). The digests were subjected to electrophoresis on a 6% polyacrylamide gel (Nacalai Tesque, Kyoto, Japan) for padi4_92, or on a 2% agarose gel (Nacalai Tesque) for padi4_96 and padi4_102, then stained with ethidium bromide (Nacalai Tesque) and visualized with UV transilluminator (Alpha Innotech, San Leandro, CA).

Statistical analysis

Gender and age values between patients and control subjects were evaluated by chi-square test and unpaired Student's *t*-test, respectively. Expected allele frequencies were calculated from respective single allele frequencies according to the Hardy-Weinberg equilibrium. The observed and expected allele frequencies were compared by chi-square test with Yates' correction using SNP Alyze 6.01 standard (Dynacom Inc., Yokohama, Japan). The frequencies and distributions of haplotype and diplotype were compared between patients and control subjects by logistic regression analysis. SPSS 15.0 program package (SPSS Japan Inc., Tokyo, Japan) was used for all statistical analyses including calculation of odds ratio (OR) with 95% confidence interval (95% CI). A *P* value of 0.05 or less than was considered statistically significant.

Results and Discussion

The distributions of genotypes of each SNP on *PADI4* in each group corresponded to the Hardy-Weinberg equilibrium (Data not shown). We identified 7 haplotypes composed of 3 SNPs among the subjects in this study (Tables 2 and 3). However, the rare frequent haplotypes, Hap 5, Hap 6, and Hap 7, were excluded in Tables 2 and 3. The frequencies and distributions of haplotypes in our study population corresponded to that in previous studies on association with RA in other Japanese populations (10,20). These results imply that the population studied had a homogeneous genetic background.

The frequency of haplotype 1 was significantly decreased in patients with UC, compared to that in control subjects (P = 0.037; OR = 0.702) (Table 2). While, the frequency of haplotype 2 was significantly increased in patients with UC, compared to that in control subjects (P = 0.003; OR = 1.722) (Table 2). However, there were no differences in the frequency of haplotypes between patients with CD and control subjects (Tables 3).

With regard to genotype, referred to as diplotype, of *PADI4*, 12 diplotypes composed of 7 haplotypes were identified (Tables 4 and 5). However, the rare frequent diplotypes, Hap 2/Hap 6, Hap 3/Hap 3, Hap 3/Hap 3, Hap 3/Hap 6, and Hap 4/Hap 4, were excluded in Tables 4 and 5. Of a total of 114 patients with UC, 15 (13.2%) had a diplotype homozygous for

haplotype 2 (Hap 2/2 in Table 4), the frequency being significantly higher than in control subjects (9/200, 4.5%; P = 0.008, OR = 3.215) (Table 4). In contrast, although statistical analysis did not show to be significant, it was a tendency that the frequency of UC patients possessing haplotype 1 homozygosity (Hap 1/1 in Table 4) was lower than that of control subjects (34/114, 29.8% vs. 81/200, 40.5%; P = 0.060, OR = 0.624)(Table 4). Thus, this is the first report on the association of *PADI4* haplotypes as well as diplotypes with IBD.

Moreover, the frequency of another diplotype heterozygous for haplotype 1 and haplotype 4 (Hap 1/4 in Table 5) in CD was significantly lower than that in Control (3/83, 3.6% vs. 23/200, 11.5%; P = 0.048, OR = 0.289) (Table 5). With respect to CD, it remains to be confirmed why the diplotype, Hap 1/Hap 4 is associated with non-susceptibility to CD. It is one of the possibilities that these CD patients might become complicated by UC in the future, since pathoetiology of certain CD patients would be closely similar to that of UC patients in spite of unknown molecular mechanisms (21).

Again, we analyzed the distributions of haplotypes and diplotypes of *PADI4* among UC and CD subgroups (Tables 6 and 7). There were no significant differences in frequencies of the haplotypes and diplotypes among the subgroups of each IBD subtype.

PDAI enzymes post-translationally catalyze the conversion of arginine residues into

citrulline (22). Citrullinated epitopes are involved in a peptide linkage and are the most specific targets of RA-related autoantibodies (23-25). In fact, anti-cyclic citrullinated peptides (anti-CCPs) antibody has been specifically observed in the sera of RA patients and their presence is a useful diagnostic marker for RA (26). Suzuki and colleagues have identified that a haplotype (haplotype 2) of PADI4 on IBD locus at 1p36 was closely associated with susceptibility to RA (10). PADI4 mRNA from the susceptible haplotype 2 was significantly more stable than that from non-susceptible alleles (10), linking to more enhanced production of the citrullinated peptides including CCPs. With respect to a possible mechanism for the extra cellular immune sampling for PADIs of a cytoplasmic enzymatic activity, Ireland et al. demonstrated that when mice were immunized with hen egg-white lysozyme (HEL), a unique cohort of T cells selectively responded to its citrullinated epitopes. That is, dendritic cells and macrophages sampled the extra cellular antigen (HEL), presented the citrullinated ones of HEL bound to the MHC molecule and stimulated modification-specific T cells (27). Thus, the citrullinated proteins are antigenic and presentation of the citrullinated peptides-MHC complex is a feature of immune response to the It has been reported that PDAIs are exclusively expressed in synovial protein antigens. tissues, neutrophils and mononuclear cells infiltrating into arthritic joints, where the

citrullinated peptides can be overproduced, especially in the subjects with haplotype 2 of PADI4 (25, 29), and, then processed into the CCP-MHC complex in such antigen-presenting cells and may serve as autoanti-antigens. Although serologic examinations including anti-CCPs antibody and anti-neutrophil cytoplasmic antibody (ANCA) were not performed in this study and ANCA antibody is associated with UC (30), there are no reports on a correlation between circulating anti-CCPs antibody and IBD. Furthermore, it is well known that autoimmune phenomena are involved in the pathogenesis of IBD (1,2,31). For example, serum and mucosal autoantibodies against intestinal epithelial cells, human tropomyosin fraction V, and human neutrophil cytoplasm are present in UC (30, 31); this implies that PADI4 haplotypes may be associated with the onset and/or development of UC through an autoimmune reaction against citrullinated self-peptides.

The present study has several limitations. Enzyme activities of PADI4 and other PADI4 isoforms, serologic examinations including anti-CCPs and ANCA antibodies, and polymorphisms of other PADI4 isoforms should be elucidated. The number of subjects was relatively small. Therefore, the association observed here needs to be confirmed in a larger sample of Japanese patients, as well as in other populations. With regard to other populations, Asian studies in Japan and Korea (10,20,32) have shown a close correlation between the *PADI4* haplotypes and RA, but not in Caucasian RA patients (33-35). Inversely, mutations of the caspase activating recruitment domain 15/nucleotide oligomerization domain 2 gene *(CARD15/NOD2)* at 16q12 (IBD1 locus) were associated with Crohn's disease in the Caucasian, but not in the Japanese (36-39). These findings may be due to different genetic background between the races. Even if there is a difference in the molecular mechanism of the pathogenesis of UC between Caucasian and Japanese patients, our results suggest that *PADI4* may be one of genetic determinants of UC in the Japanese population, or that another new UC-determinant gene except *PADI4* may exist near the *PADI4* locus at 1p36 (IBD7 locus).

Acknowledgements

We are grateful to physicians, patients, and volunteers for participating in this study.

References

- Fiocchi C, Inflammatory bowel disease: etiology and pathogenesis, Gastroenterol. 115 (1998) 182-205.
- 2. Farrell RJ, Peppercorn MA, Ulcerative colitis, Lancet. 359 (2002) 331-340.
- 3. Cho JH, Nicolae DL, Ramos R, Fields CT, Rabenau K, Corradino S, Brant SR,

Espinosa R, LeBeau M, Hanauer SB, Bodzin J, Bonen DK, Linkage and linkage disequilibrium in chromosome band 1p36 in American Chaldeans with inflammatory bowel disease, Hum Mol Genet. 9 (2000) 1425-1432.

- 4. Taylor KD, Yang H, Rotter JI, Inflammatory bowel disease, II, Gene mapping, Mol Genet Metab. 74 (2001) 22-44.
- 5. Mizoguchi A, Mizoguchi E, Bhan AK, Immune networks in animal models of inflammatory bowel disease, Inflamm Bowel Dis. 9 (2003) 246-259.
- Yang H, Taylor KD, Rotter JI, Inflammatory bowel disease, I, Genetic epidemiology, Mol Genet Metab. 74 (2001) 1-21.
- Watts DA, Satsangi J, The genetic jigsaw of inflammatory bowel disease, Gut. 50
 Suppl 3 (2002) iii31-iii36.
- 8. Bonen DK, Cho JH, The Genetics of Inflammatory Bowel Disease, Gastroenterol. 124

(2003) 521-536.

- 9. Ahmad T, Tamboli CP, Jewell D, Colombel JF, Clinical relevance of advances in genetics and pharmacogenetics of IBD, Gastroenterol. 126 (2004) 1533-1549.
- Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M, Nagasaki M, Nakayama-Hamada M, Kawaida R, Ono M, Ohtsuki M, Furukawa H, Yoshino S, Yukioka M, Tohma S, Matsubara T, Wakitani S, Teshima R, Nishioka Y, Sekine A, Iida A, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K, Functional haplotypes of *PADI4*, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis, Nat Genet. 34 (2003) 395-402.
- Gran JT, Husby G, Joint manifestations in gastrointestinal diseases. 1.
 Pathophysiological aspects, ulcerative colitis and Crohn's disease, Dig Dis. 10 (1992) 274-294.
- 12. Asada Y, Isomoto H, Shikuwa S, Wen CY, Fukuda E, Miyazato M, Okamoto K, Nakamura T, Nishiyama H, Mizuta Y, Migita K, Ito M, Kohno S, Development of ulcerative colitis during the course of rheumatoid arthritis: Association with selective IgA deficiency, World J Gastroenterol. 12 (2006) 5240-5243.
- 13. Lennard-Jones JE, Classification of inflammatory bowel disease, Scand J Gastroenterol.

Suppl 170 (1989) 2-6.

- 14. Podolsky DK, Inflammatory bowel disease (1), N Eng J Med. 325 (1991) 928-937.
- 15. Podolsky DK, Inflammatory bowel disease (2), N Eng J Med. 325 (1991) 1008-1016.
- Satsangi J, Silverberg MS, Vermeire S, Colombel JF, The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications, Gut. 55 (2006) 749-753.
- 17. Rachmilewitz D, Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial, BMJ. 14 (1989) 82-86.
- Best WR, Becktel JM, Singleton JW, Kern F Jr, Development of a Crohn's disease activity index. National Cooperative Crohn's Disease Study, Gastroenterology. 70 (1976) 439-444.
- 19. Caponi L, Petit-Teixeira E, Sebbag M, Bongiorni F, Moscato S, Pratesi F, Pierlot C, Osorio J, Chapuy-Regaud S, Guerrin M, Cornelis F, Serre G, Migliorini P, A family based study shows no association between rheumatoid arthritis and the *PADI4* gene in a white French population, Ann Rheum Dis. 64 (2005) 587-593.
- 20. Ikari K, Kuwahara M, Nakamura T, Momohara S, Hara M, Yamanaka H, Tomatsu T, Kamatani N, Association between *PADI4* and rheumatoid arthritis: a replication study,

Arthritis Rheum. 52 (2005) 3054-3057.

- Yantiss RK, Odze RD, Diagnostic difficulties in inflammatory bowel disease pathology, Histopathology. 48 (2006):116-132.
- Vossenaar ER, Zendman AJW, van Venrooij WJ, Pruijn GJM, PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease, BioEssays. 25 (2003) 1106-1118.
- 23. Schellekens GA, de Jong BAW, van den Hoogen FHJ, van de Putte LBA, van Venrooij WJ, Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies, J Clin Invest. 101 (1998) 273-281.
- 24. Ménard HA, Lapointe E, Rochdi MD, Zhou ZJ, Insights into rheumatoid arthritis derived from the Sa immune system, Arthritis Res. 2000 2 (2000) 429-432.
- 25. Suzuki A, Yamada R, Ohtake-Yamanaka M, Okazaki Y, Sawada T, Yamamoto K, Anti-citrullinated collagen type I antibody is a target of autoimmunity in rheumatoid arthritis, Biochem Biophys Res Commun. 333 (2005) 418-426.
- 26. Schellekens GA, Visser H, de Jong BAW, van den Hoogen FHJ, Hazes JMW, Breedveld FC, van Venrooij WJ, The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide, Arthritis Rheum. 43 (2000)

155-163.

- 27. Ireland J, Herzog J, Unanue ER, Unique T cells that recognize citrullinated peptides are a feature of protein immunization, J Immunol. 177 (2006) 1421-1425.
- 28. Lundberg K, Nijenhuis S, Vossenaar ER, Palmblad K, van Venrooji WJ, Klareskog L, Zendman AJ, Harris HE, Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity, Arthritis Res Ther. 7 (2003) R458-R467.
- 29. Cantaert T, Coucke P, De Rycke L, Veys EM, De Keyser F, Baeten D, Functional haplotypes of PADI4: relevance for rheumatoid arthritis specific synovial intracellular citrullinated proteins and anticitrullinated protein antibodies, Ann Rheum Dis. 64 (2005) 1316-1320.
- Bossuyt X, Serologic markers in inflammatory bowel disease, Clin Chem. 52 (2006)
 171-181.
- 31. Wen Z, Fiocchi C, Inflammatory bowel disease: autoimmune or immune-mediated pathogenesis? Clin Dev Immunol. 11 (2004) 195-204.
- 32. Kang CP, Lee H-S, Ju H, Cho H, Kang C, Bae S-C, A functional haplotype of the *PADI4* gene associated with increased rheumatoid arthritis susceptibility in Koreans,

Arthritis Rheum. 54 (2006) 90-96.

- 33. Barton A, Bowes J, Eyre S, Spreckley K, Hinks A, John S, Worthington J, A functional haplotype of the *PADI4* gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population, Arthritis Rheum. 50 (2004) 1117-1121.
- Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K, Ethnic differences in allele frequency of autoimmune-disease-associated SNPs, J Hum Genet. 50 (2005) 264-266.
- 35. Martinez A, Valdivia A, Pascual-Salcedo D, Lamas JR, Fernández-Arquero M, Balsa A, Fernández-Gutiérrez B, de la Concha EG, Urcelay E, PADI4 polymorphisms are not associated with rheumatoid arthritis in the Spanish population, Rheumatol. 44 (2005) 1263-1266.
- 36. Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard J-P, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel J-F, Sahbatou M, Thomas G, Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature. 411 (2001) 599-603.

- 37. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar J-P, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH, A frameshift mutation in *NOD2* associated with susceptibility to Crohn's disease, Nature. 411 (2001) 603-606.
- 38. Inoue N, Tamura K, Kinouchi Y, Fukuda Y, Takahashi S, Ogura Y, Inohara N, Núñez G, Kishi Y, Koike Y, Shimosegawa T, Shimoyama T, Hibi T, Lack of common NOD2 variants in Japanese patients with Crohn's disease, Gastroenterol. 123 (2002) 86-91.
- 39. Yamazaki K, Takazoe M, Tanaka T, Kazumori T, Nakamura U, Absence of mutation in the *NOD2/CARD15* gene among 483 Japanese patients with Crohn's disease, J Hum Genet. 47 (2002) 469-472.

Tables

Characteristics	Patient	Control	
Characteristics —	UC	CD	Control
Number	114	83	200
Age (yrs)	$44.2 \pm 16.7*$	34.3 ± 12.5	32.5 ± 11.2
Age range (yrs)	14-83	17-75	20-60
Male/female (%)	59/55 (51.7/48.3)	50/33 (60.2/39.8)	125/75 (62.5/37.5)
Age at onset			
<40 y	39**	11	
≥40 y	75	72	
Extent of UC			
Proctitis	14		
Left sided UC	43		
Pancolitis	57		
Location of CD			
Ileal		16	
Colonic		11	
Ileocolonic		55	
Upper		1	
Disease severity			
Mild	51	17	
Moderate	38	45	
Severe	21	9	
Unknown	4	12	
Disease activity			
Active	63	54	
Inactive	48	17	
Unknown	3	12	
Behavior of CD***			
Stricturing		44	
Penetrating		40	
Perianal diseases		36	

Table 1: The characteristics of subjects studied

P < 0.01, as compared with controls* and CD**, ***, number of the affected patients.

Haplotype	SNP	ID (padi	i4_X)	Number (%) o	f haplotypes in*	Haplotype comparison*		
(Ref 10)	92	96	102	UC	UC Control		Р	
Hap 1	С	Т	С	126 (55.3)	255 (63.8)	0.702 (0.504-0.978)	0.037	
Hap 2	G	С	С	76 (33.3)	90 (22.5)	1.722 (1.199-2.473)	0.003	
Hap 3	G	С	Т	14 (6.2)	22 (5.5)	1.124 (0.563-2.243)	0.740	
Hap 4	G	Т	С	11 (4.8)	30 (7.5)	0.625 (0.307-1.273)	0.195	
Others				1 (0.4)	3 (0.7)	_	_	
Total number of haplotypes		228	400					

Table 2: The distributions and association of haplotypes of *PDAI4* between UC patients

*Each haplotype was compared with other haplotypes combined by logistic regression analysis.

Haplotype	SNP	ID (padi	i4_X)	Number (%) o	f haplotypes in	Haplotype comparison*		
(Ref 10)	92	96	102	CD Control		OR (95% CI)	Р	
Hap 1	С	Т	С	100 (60.3)	255 (63.8)	0.862 (0.594-1.249)	0.432	
Hap 2	G	С	С	47 (28.3)	90 (22.5)	1.360 (0.594-1.249)	0.142	
Hap 3	G	С	Т	10 (6.0)	22 (5.5)	1.101 (0.510-2.380)	0.806	
Hap 4	G	Т	С	8 (4.8)	30 (7.5)	0.624 (0.280-1.392)	0.250	
Others				1 (0.6)	3 (0.7)	_	_	
Total number of haplotypes		166	400					

Table 3: The distributions and association of haplotypes of *PDAI4* between CD patients

*Each haplotype was compared with other haplotypes combined by logistic regression analysis.

	Number (%) o	f diplotypes in	diplotype comparison*		
Diplotype -	UC	Control	OR (95% CI)	Р	
Hap 1/1	34 (29.8)	81 (40.5)	0.624 (0.382-1.020)	0.060	
Hap 1/2	41 (36.0)	57 (28.5)	1.409 (0.863-2.301)	0.171	
Hap 1/3	8 (7.0)	13 (6.5)	1.086 (0.436-2.704)	0.860	
Hap 1/4	9 (7.9)	23 (11.5)	0.660 (0.294-1.479)	0.313	
Hap 2/2	15 (13.2)	9 (4.5)	3.215 (1.359-7.609)	0.008	
Hap 2/3	3 (2.6)	7 (3.5)	0.745 (0.189-2.940)	0.674	
Hap 2/4	2 (1.7)	5 (2.5)	0.696 (0.133-3.649)	0.669	
Others	2 (1.7)	5 (2.5)	_	_	
Total number	114	200			

Table 4: The distributions and association of diplotypes of *PDAI4* between UC patients

*Each diplotype was compared with other diplotypes combined by logistic regression analysis.

	Number (%) o	f diplotypes in	diplotype comparison*		
Diplotype -	CD	Control	OR (95% CI)	Р	
Hap 1/1	33 (39.8)	81 (40.5)	0.970 (0.575-1.635)	0.908	
Hap 1/2	26 (31.3)	57 (28.5)	1.144 (0.656-1.996)	0.635	
Hap 1/3	5 (6.0)	13 (6.5)	0.922 (0.318-2.674)	0.881	
Hap 1/4	3 (3.6)	23 (11.5)	0.289 (0.084-0.989)	0.048	
Hap 2/2	7 (8.4)	9 (4.5)	1.955 (0.703-5.436)	0.199	
Hap 2/3	4 (4.8)	7 (3.5)	1.396 (0.398-4.902)	0.603	
Hap 2/4	3 (3.6)	5 (2.5)	1.463 (0.341-6.265)	0.609	
Others	2 (2.4)	5 (2.5)	_	_	
Total number	83	200			

Table 5: The distributions and association of diplotypes of *PDAI4* between CD patients

*Each diplotype was compared with other diplotypes combined by logistic regression analysis.

Table 6: The distributions of haplotypes of PDAI4 with respect to subtypes of UC and

CD	patients.
----	-----------

			Number (%) of haplotypes in					
		Hap1	Hap2	Hap3	Hap4	Others	Total	
	Extent							
	Proctitis	16 (57.1)	9 (32.1)	2 (7.1)	1 (3.6)	0 (0)	28	
	Left sided UC	47 (54.7)	30 (34.9)	2 (2.3)	7 (8.1)	0 (0)	86	
	Pancolitis	63 (55.3)	37 (32.5)	10 (8.8)	3 (2.6)	1 (0.9)	114	
	Disease severity							
	Mild	56 (54.9)	38 (37.3)	4 (3.9)	4 (3.9)	0 (0)	102	
UC	Moderate	39 (51.3)	24 (31.6)	9 (11.8)	4 (5.3)	0 (0)	76	
	Severe	24 (57.1)	13 (31.0)	1 (2.4)	3 (7.1)	1 (2.4)	42	
	Unknown	7 (87.5)	1 (12.5)	0 (0)	0 (0)	0 (0)	8	
	Disease activity							
	Active	70 (55.6)	41 (32.5)	6 (4.8)	8 (6.3)	1 (0.8)	126	
	Inactive	51 (53.1)	34 (35.4)	8 (8.3)	3 (3.1)	0 (0)	96	
	Unknown	5 (83.3)	1 (16.7)	0 (0)	0 (0)	0 (0)	6	
	Location							
	Ileal	17 (53.1)	11 (34.4)	0 (0)	4 (12.5)	0 (0)	32	
	Colic	13 (59.1)	7 (31.8)	1 (4.5)	1 (4.5)	0 (0)	22	
	Ileocolic	69 (62.7)	29 (26.4)	8 (7.3)	3 (2.7)	1 (0.9)	110	
	Upper	1 (50.0)	0 (0)	1 (50.0)	0 (0)	0 (0)	2	
	Disease severity							
	Mild	16 (47.1)	13 (38.2)	1 (2.9)	4 (11.8)	0 (0)	34	
	Moderate	54 (60.0)	26 (28.9)	7 (7.8)	3 (3.3)	0 (0)	90	
	Severe	13 (72.2)	2 (11.1)	2 (11.1)	0 (0)	1 (5.6)	18	
	Unknown	17 (70.8)	6 (25.0)	0 (0)	1 (4.2)	0 (0)	24	
	Disease activity							
CD	Active	67 (62.0)	28 (25.9)	9 (8.3)	3 (2.8)	1 (0.9)	108	
CD	Inactive	16 (47.1)	13 (38.2)	1 (2.9)	4 (11.8)	0 (0)	34	
	Unknown	17 (70.8)	6 (25.0)	0 (0)	1 (4.2)	0 (0)	24	
	Stricturing							
	Present	55 (62.5)	23 (26.1)	5 (5.7)	4 (4.5)	1 (1.1)	88	
	Absent	45 (57.7)	24 (30.8)	5 (6.4)	4 (5.1)	0 (0)	78	
	Penetrating							
	Present	49 (61.3)	23 (28.8)	5 (6.3)	2 (2.5)	1 (1.3)	80	
	Absent	51 (59.3)	24 (27.9)	5 (5.8)	6 (7.0)	0 (0)	86	
	Perianal diseases							
	Present	43 (59.7)	19 (26.4)	6 (8.3)	4 (5.6)	0 (0)	72	
	Absent	57 (62.0)	26 (28.3)	4 (4.3)	4 (4.3)	1 (1.1)	92	
	Unknown	0 (0.0)	2 (100.0)	0 (0)	0 (0)	0 (0)	2	

		Number (%) of diplotypes in								
	-	Hap 1/1	Hap 1/2	Hap 1/3	Hap 1/4	Hap 2/2	Hap 2/3	Hap 2/4	Others	Total
	Extent									
	Proctitis	6 (42.9)	2 (14.3)	2 (14.3)	0 (0)	3 (21.4)	0 (0)	1 (7.1)	0 (0)	14
	Left sided UC	11 (25.6)	18 (41.9)	1 (2.3)	6 (14.0)	5 (11.6)	1 (2.3)	1 (2.3)	0 (0)	43
	Pancolitis	17 (29.8)	21 (36.8)	5 (8.8)	3 (5.3)	7 (12.3)	2 (3.5)	0 (0)	2 (3.5)	57
	Disease severity									
	Mild	17 (33.3)	16 (31.4)	3 (5.9)	3 (5.9)	10 (19.6)	1 (2.0)	1 (2.0)	0 (0)	51
UC	Moderate	8 (21.5)	15 (39.5)	5 (13.2)	3 (7.9)	3 (7.9)	2 (5.3)	1 (2.6)	1 (2.6)	38
	Severe	6 (28.6)	9 (42.9)	0 (0)	3 (14.3)	2 (9.5)	0 (0)	0 (0)	1 (4.8)	21
	Unknown	3 (75.0)	1 (25.0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	4
	Disease activity									
	Active	19 (30.2)	20 (31.7)	5 (7.9)	7 (11.1)	10 (15.9)	0 (0)	1 (1.6)	1 (1.6)	63
	Inactive	13 (27.1)	20 (41.7)	3 (6.3)	2 (4.2)	5 (10.4)	3 (6.3)	1 (2.1)	1 (2.1)	48
	Unknown	2 (66.7)	1 (33.3)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3
	Location									
	Ileal	5 (31.3)	7 (43.8)	0 (0)	0 (0)	1 (6.3)	0 (0)	2 (12.5)	1 (6.3)	16
	Colic	4 (36.4)	3 (27.3)	1 (9.1)	1 (9.1)	2 (18.2)	0 (0)	0 (0)	0 (0)	11
	Ileocolic	24 (43.6)	16 (29.1)	3 (5.5)	2 (3.6)	4 (7.3)	4 (7.3)	1 (1.8)	1 (1.8)	55
	Upper	0 (0)	0 (0)	1 (100.0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	1
	Disease severity									
	Mild	2 (11.8)	9 (52.9)	1 (5.9)	2 (11.8)	2 (11.8)	0 (0)	0 (0)	1 (5.9)	17
	Moderate	19 (42.2)	12 (26.7)	3 (6.7)	1 (2.2)	4 (8.9)	4 (8.9)	2 (4.4)	0 (0)	45
	Severe	5 (55.6)	2 (22.2)	1 (11.1)	0 (0)	0 (0)	0 (0)	0 (0)	1 (11.1)	9
	Unknown	7 (58.3)	3 (25.0)	0 (0)	0 (0)	1 (8.3)	0 (0)	1 (8.3)	0 (0)	12
	Disease activity									
CD	Active	24 (44.4)	14 (25.9)	4 (7.4)	1 (1.9)	4 (7.4)	4 (7.4)	2 (3.7)	1 (1.9)	54
CD	Inactive	2 (11.8)	9 (52.9)	1 (5.9)	2 (11.8)	2 (11.8)	0 (0)	0 (0)	1 (5.9)	17
	Unknown	7 (58.3)	3 (25.0)	0 (0)	0 (0)	1 (8.3)	0 (0)	1 (8.3)	0 (0)	12
	Stricturing									
	Present	19 (43.2)	13 (29.5)	2 (4.5)	2 (4.5)	3 (6.8)	2 (4.5)	2 (4.5)	1 (2.3)	44
	Absent	14 (35.9)	13 (33.3)	3 (7.7)	1 (2.6)	4 (10.3)	2 (5.1)	1 (2.6)	1 (2.6)	39
	Penetrating									
	Present	16 (40.0)	13 (32.5)	2 (5.0)	2 (5.0)	4 (10.0)	2 (5.0)	0 (0)	1 (2.5)	40
	Absent	17 (39.5)	13 (30.2)	3 (7.0)	1 (2.3)	3 (7.0)	2 (4.7)	3 (7.0)	1 (2.3)	43
	Perianal diseases									
	Present	15 (41.7)	9 (25.0)	3 (8.3)	1 (2.8)	3 (8.3)	3 (8.3)	1 (2.8)	1 (2.8)	36
	Absent	18 (39.1)	17 (37.0)	2 (4.3)	2 (4.3)	3 (6.5)	1 (2.2)	2 (4.3)	1 (2.2)	46
	Unknown	0 (0)	0 (0)	0 (0)	0 (0)	1 (100.0)	0 (0)	0 (0)	0 (0)	1

Table 7: The distributions of diplotypes of PDAI4 with respect to subtypes of UC and CD patients.