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ABSTRACT 

Clarithromycin is a 14-member lactone ring macrolide with potent activity against 

Haemophilus influenzae, including ampicillin-resistant strains. We evaluated the in vivo 

efficacy of clarithromycin at 40 mg/day and 100 mg/day for 3 days in the treatment of a murine 

model of pneumonia using a macrolide-resistant H. influenzae strain, which was also ampicillin 

resistant. The MIC of clarithromicin was 64 µg/ml. The viable bacterial counts in infected 

tissues after treatment with 100 mg/kg clarithromycin were lower than the counts obtained in 

control and 40 mg/kg clarithromycin-treated mice. Concentrations of macrophage inflammatory 

protein (MIP)-2 and interleukin (IL)-1 in bronchoalveolar lavage fluid (BALF) samples of 

mice treated at both concentrations were lower than in the control group. Pathologically, 

following infection, clarithromycin-treated mice, particularly at a dose of 100 mg/kg, showed 

lower numbers of neutrophils in alveolar walls, and inflammatory changes had apparently 

improved, whereas large aggregates of inflammatory cells were observed within alveoli of 

control mice. In addition, we demonstrated that clarithromycin has bacteriological effects 

against intracellular bacteria at levels below the MIC. Our results indicate that clarithromycin 

may be useful in vivo for macrolide-resistant H. influenzae, and this phenomenon may related 

the good penetration of clarithromycin into bronchoepitherial cells. We also believe that 

conventional drug susceptibility tests may not reflect the in vivo effects of clarithromycin.  



INTRODUCTION 

Haemophilus influenzae is a gram-negative bacillus that is a commensal inhabitant of the human 

nasopharynx, and that may be isolated from most of the human population. 

Non-typeable H. influenzae (NTHi) strains cause a variety of infections, including otitis media, 

and acute exacerbation of chronic bronchitis, pneumonia and meningitis, primarily in pediatrics 

(7, 10, 18). The incidence of beta-lactamase-negative ampicillin (AMP)-resistant (BLNAR) 

strains of H. influenzae has recently exhibited a marked increase in some countries, particularly 

Japan (13, 28, 34). Macrolides are increasingly used for the treatment of respiratory tract 

infections, and in the 1990s, the “new” macrolides clarithromycin (CAM) and azithromycin 

(AZM) were made available (30). The new macrolides have an expanded spectrum of activity, 

including fastidious gram-negative bacilli, such as H. influenzae and Neisseria spp (20, 23). 

CAM is a 14-member lactone ring macrolide antibiotic that has been used for the treatment of 

various infectious diseases. The antimicrobial activity of macrolides is generally considered to 

be through the inhibition of microbial protein synthesis by acting on the 50S subunit of the 70S 

ribosome (36). In addition, macrolide antibiotics exert anti-inflammatory effects by inhibiting of 

the production of proinflammatory cytokines (22, 33, 35). Moreover, the pharmacokinetics (PK) 

of macrolides is characterized by a combination of low serum concentrations, and high tissue 



concentrations (40), with advanced-generation macrolides being highly concentrated within 

polymorphonuclear leucocytes. Following phagocytosis of pathogens at the infection site, these 

cells are exposed to very high intracellular concentrations of antibacterial agent. 

Macrolide resistance in several pathogens was recently evaluated because of increases in 

worldwide macrolide consumption (14, 27). However, pharmacodynamic (PD) models and 

susceptibility breakpoints derived from studies with other classes of drugs, such as the 

beta-lactams and aminoglycosides, do not adequately explain the clinical utility of antibacterial 

agents that achieve high intracellular concentrations, such as macrolides and fluoroquinolones 

(1). Some authors have suggested that in vitro resistance is less useful for guiding clinical 

decisions. In addition, the mechanisms of airway epithelium invasion by H. influenzae have 

been reported (11, 16, 29), and the characteristics are thought to contribute to escape from 

antibiotics and to long-term persistence in the airway. We believe that macrolides also have 

good clinical effects in vivo against these intracellular bacteria due to their excellent tissue 

penetration and intracellular penetration. 

The focus of this study was to investigate the in vivo efficacies of CAM in an experimental 

pneumonia model using CAM-resistant H. influenzae.  

 

 



MATERIALS AND METHODS 

Bacteria 

Clinically isolated NTHi strain 4437, which had been stored in tripticase soy broth with 10% 

glycerol stocks maintained at -80°C at Nagasaki University Hospital, was spread on chocolate 

agar plates (Nissui Pharmaceutical, Tokyo, Japan) and incubated overnight (18-24 h) at 37°C in 

5% CO2.  

 

Laboratory animals 

Six-week-old male ddY-specific pathogen-free mice (body weight, 16-20 g) were purchased 

from SLC Japan (Tokyo, Japan). All animals were housed in a pathogen-free environment and 

received sterile food and water in the Laboratory Animal Center for Biomedical Science at 

Nagasaki University (Nagasaki, Japan). Experimental protocols were approved by the Ethics 

Review Committee for Animal Experimentation at Nagasaki University. 

 

 



Murine model of H. influenzae respiratory infection 

We used the intubation model of NTHi pneumonia in mice, as reported previously (26). Briefly, 

disposable, sterile, plastic cut-down intravenous catheters (3-Fr, 1.0-mm diameter; Atom, Tokyo, 

Japan) were used for tracheal intubation. The intubation procedure was performed under 

pentobarbital anesthesia. The blunted end of the inner needle of an intravenous catheter 

(Angiocath; Becton Dickinson Vascular Access, Sandy, UT, USA) was inserted through the oral 

cavity, with the outer sheath and attached tube at the tip. The tube was advanced through the 

vocal cords into the trachea. The inner needle was then removed, and the outer sheath was 

gently pushed to place the plastic tube into the main bronchus. Organisms were instilled at 7 

days after intubation. H. influenzae were cultured on chocolate  agar plates (Nissui 

Pharmaceutical) and incubated overnight (18-24 h) at 37°C in 5% CO2, and the organisms were 

then suspended in normal saline. Final numbers of bacteria were approximately 2×109 

colony-forming units (CFU)/ml, as determined by the optical density method. Infection was 

induced by intratracheal inoculation of 0.05 ml of a bacterial suspension under anesthesia with 

pentobarbital sodium. 

 

 



Bacteriological and histopathological examination 

Mice were divided into 3 groups: control mice (no therapy); mice treated with 40 mg/kg 

clarithromycin twice a day (12, 25); and mice treated with 100 mg/kg clarithromycin twice a 

day (39). Mice were treated for 3 days, and then sacrificed at 12 h after the final treatment. 

Tubes were removed and the lungs were excised under aseptic conditions. Lungs were 

homogenized in 1.0 ml of phosphate-buffered saline and cultured quantitatively by serial 

dilution on chocolate  agar plates (Nissui Pharmaceutical), followed by incubation overnight 

(18-24 h) at 37°C in 5% CO2. For histopathological examination, lung specimens were fixed in 

10% formalin-buffered solution.  

 

Bronchoalveolar lavage (BAL) and cytokine enzyme-linked immunosorbent assay 

(ELISA) 

BAL was performed as described previously (38). Briefly, mice were treated for 3 days, and 

sacrificed at 12 h after the final antibiotic administration. The chest was opened to expose the 

lungs and trachea, and a disposable sterile plastic cutdown intravenous catheter was inserted 

into the trachea. BAL was performed 3 times sequentially using 1.0 ml of saline each time. 

Recovered fluid fractions were pooled for each animal. Total cell counts were performed by 



Turk staining. For differential cell counts, cells were centrifuged at 850 rpm for 2 min onto 

slides, which were then stained with Diff-Quick stain. Differential cell counts were performed 

by counting 100 cells. Concentrations of macrophage inflammatory protein (MIP)-2 and 

interleukin (IL)-1 in BAL fluid (BALF) were assayed using mouse cytokine ELISA test kits 

(R&D Systems, Minneapolis, MN, USA). 

 

Antimicrobial agents 

CAM was kindly provided by Taisyotoyama Pharmaceutical Co., Ltd. (Tokyo, Japan). CAM 

was dissolved in dimethyl sulfoxide, prepared according to the manufacturer’s instructions and 

frozen at -80°C until use. 

 

Antibiotic susceptibility testing 

Susceptibility of H. influenzae to CAM was tested in duplicate for each isolate at 105 CFU/ml, 

and was determined using the broth dilution method with Haemophilus Test Medium, according 

to Clinical and Laboratory Standards Institute (CLSI) recommendations (6). Production of 

β-lactamase was confirmed by nitrocefin test (Showa Chemical, Tokyo, Japan). Strains were 



classified according to CLSI AMP susceptibility criteria: susceptible strain (AMP minimum 

inhibitory concentration (MIC) 1 µg/ml), intermediate strain (AMP MIC=2 µg/ml), and 

resistant strain (AMP MIC4 µg/ml). 

Antibiotic examination 

At 24 h after challenge with H. influenzae, CAMwas administered orally twice a day. Individual 

doses were either 40 mg/kg or 100 mg/kg, and treatment was administered for 3 days. Each 

group of mice was killed by cervical dislocation at 12 h after the final drug administration. 

Bacteriological examination and BALF analysis was performed using the methods described 

above. 

 

Three-hour invasion assay with NCI-H292 cells 

The NCI-H292 epithelial cell line was obtained from the American Type Culture Collection 

(Manassas, VA). Cells were cultured in RPMI 1640 medium with 10% fetal bovine serum, 100 

U/ml penicillin, and 100 μg/ml streptomycin. Cells were grown at 37°C under 5% CO2 in fully 

humidified air and were subcultured twice weekly. Cells were seeded in a 12-well plate at 5 × 

105 cells/well. When confluent, cells were incubated in RPMI 1640 medium containing 0.5% 



fetal bovine serum for 24 h. Cells were then rinsed with serum-free RPMI 1640 medium and 

exposed to bacteria. Bacterial suspensions at about 6×106CFU/ml were inoculated at 10 μl/well. 

Invasion assay was performed as reported previously (17, 32). Briefly, cell monolayers were 

infected and incubated at 37°C under 5% CO2 for 3 h, washed 3 times with phosphate buffer 

solution (PBS), and treated with gentamicin (Sigma, Tokyo, Japan) at a concentration of 200 

μg/ml for 2 h in order to kill extracellular bacteria. CAM at concentrations below the MIC (2 

µg/ml to 64 µg/ml) was mixed with gentamicin. Cell monolayers were washed 3 additional 

times with PBS, and viable intracellular bacteria were released by incubation with 0.5 ml of 1% 

Triton X-100 (Sigma-Aldrich) in PBS for 15 min. Samples were harvested and vortex agitated 

for 1 min in order to lyse cells. Viable bacteria were serially diluted and plated onto chocolate 

agar (Nissui, Tokyo, Japan) for colony counting.  

 

Statistical analysis 

Data are expressed as means ± standard error of the mean (SEM). Differences between the 

numbers of viable bacteria in the lungs were evaluated by analysis of variance. Values of 

P<0.05 were considered to be statistically significant. 

 



RESULTS 

In vitro susceptibility 

For H. influenzae clinical strain 4437, the MIC of CAM was 64 µg/ml. This strain was a 

BLNAR strain, and the AMP MIC was 16 µg/ml.  

Changes in viable bacterial numbers over time (Figure1) 

Respiratory infection occurred in all intubated mice with inoculation. The number of viable 

bacteria increased to 6.0±1.2 (log10 CFU/ml) 3 days after inoculation in the control group, and 

there were no significant differences between the control group and the 40 mg/kg treatment 

group (5.8±0.8 (log10 CFU/ml)). Conversely, the number of viable bacteria decreased 

significantly in the 100 mg/kg treatment group (4.6.±1.0 (log10 CFU/ml)). These results indicate 

that CAM has in vivo bacteriological effects against the macrolide-resistant strain, as 

determined by conventional in vitro drug susceptibility tests. 

 

BALF analysis 

Total cell counts (Figure 2A) and neutrophil counts (Figure 2B) were significantly lower in both 

the 40 mg/kg treatment group and 100 mg/kg treatment group, particularly in the 100 mg/kg 

treatment group. To estimate further effects of CAM, inflammatory cytokine levels in BALF 



were analyzed. IL-1 (Figure 3A) and MIP-2 (Figure 3B) were significantly decreased in both 

treatment groups, particularly in the 100 mg/kg treatment group. These data indicate that CAM 

has dose-dependent anti-inflammatory effects against the acute inflammation induced by 

macrolide-resistant H. influenzae. 

 

Histopathological examination 

In non-treated mice, bronchioles and adjacent alveoli were filled with neutrophils, epithelial 

cells and inflammatory cells (Figure 4A). Conversely, in treated mice, although mild 

inflammatory changes were evident in the 40 mg/kg treatment group (Figure 4B), inflammation 

had improved after 3 treatment days, particularly in the 100 mg/kg treatment group (Figure 4C). 

 

Intracellular bacteriological effects at various CAM concentrations  

In conventional drug susceptibility tests, such as the microdilution method, PK and PD are not 

reflected in the antimicrobial effects against the pathogen that has invaded the bronchoepithelial 

cells. We performed 3 h invasion assay to investigate the intracellular bacteriological effects of 

CAM against macrolide-resistant H. influenzae, which was determined to be a highly resistant 

strain based on the CLSI judgment criteria. The number of intracellular H. influenzae in the 



control group (non-treatment group) was 4.8±1.2 (log10 CFU/ml). We hypothesized that CAM 

shows bacteriorogical effects against macrolide-resistant H. influenzae at concentrations below 

MIC, as CAM attains higher concentrations in lung tissue than in serum. As shown in Figure 5, 

CAM reduced the number of viable bacteria at less than half the MIC. This data indicates that 

CAM can eradicate macrolide-resistant H. influenzae at levels below the MIC, and may be able 

to prevent persistent and recurrent infection by this pathogen. In addition, the difference 

between our results and conventional drug susceptibility test results may be due to the good 

penetration of CAM into bronchoepithelial cells.  

 

DISCUSSION 

Macrolides and beta-lactams are the most commonly prescribed antimicrobials to treat infection 

by H. influenzae. Antimicrobial resistance is a growing problem among H. influenzae. BLNAR 

was first observed in the 1980s (8, 21, 24) at very low frequency in United States (3, 9, 13), but 

has rapidly become more common to account for 25 to 30% of isolates in Japan and the other 

Asian countries (13, 28, 34). As safe and well-tolerated antibiotics, macrolides play a key role in 

the treatment of community-acquired respiratory tract infections (RTIs) against not only 

beta-lactam-susceptible strains, but also resistant strains such as BLNAR. Their broad spectrum 

of activity against gram-positive, gram-negative and atypical pathogens, has led to the 



widespread use of macrolides for empiric treatment of RTIs. 

CAM is a 14-member lactone ring macrolide antibiotic, and although its increased utility has 

been compromised by intrinsic and acquired resistance to CAM, treatment failures are 

uncommon. Generally, in vitro resistance is based on the results of using susceptibility 

breakpoints developed by the CLSI. This susceptibility data is considered useful for determining 

epidemiological trends of resistance, but in vitro resistance is less useful for guiding clinical 

decisions, and does not necessarily indicate a lack of clinical efficacy. 

The discrepancy may be based on the characteristic features of macrolides. It is known that 

macrolides are able to transfer and accumulate intracellularly, and show intracellular 

bactericidal effects. Moreover, macrolides are readily taken up by phagocytes, lymphocytes and 

epithelial cells (4, 30). The concentration of macrolides in respiratory tract tissues and fluids has 

thus been shown to be higher than serum concentrations, resulting in the possibility of increased 

activity against organisms localized to these extra-plasma sites. The PD parameter of CAM has 

not yet been fully studied. CAM is considered concentration dependent by some investigators 

and concentration independent by others (5). Tessier et al (37) demonstrated AUC/MIC was the 

most reasonable predictor of CAM efficacy by using experimental S. pneumoniae pneumonia 

model. But they also showed that time above MIC and Cmax/MIC was also important parameter 

correlated with the change of bacterial load. In the present study, although we did not 



demonstrate which way is better 1 dose or twice a day in CAM administration, 100mg/kg 

treatment group showed improvement both in pathology and the inflammatory mediators, 

indicating that CAM may be able to show the dose, and concentration dependent efficacy 

against H. influenzae pneumonia. 

Moreover, macrolides also have anti-inflammatory properties that improve clinical outcomes via 

extramicrobial mechanisms, leading to improvements in symptoms and overall quality of life 

among patients with a variety of respiratory conditions. None of these benefits are reflected by 

in vitro drug susceptibility testing.  

Drug concentration of both in epithelial lining fluid (ELF) and alveolar macrophages (AM) is 

important to treat extracellular and intracellular bacteria. CAM is extensively concentrated in 

both ELF and respiratory phagocytes, reaching levels that are between one and three orders of 

magnitude higher than in plasma (2, 23). Antibacterial potency is driven by the concentration of 

active agents at the site of infection, and thus in the case of macrolides, efficacy may be 

increased substantially by the tissue penetration described previously. This aspect of macrolide 

pharmacology is not taken into account by traditional drug susceptibility tests, such as the 

microdilution method. Thus, the most likely rationale is that in vitro resistance MICs are 

misleading, leading to underestimation of the clinical efficacy of these therapeutic agents. 

In the present study, to investigate the differences between the in vivo effects and the results of 



conventional drug susceptibility of CAM against macrolide-resistant H. influenzae, as 

determined by in vitro susceptibility test, we demonstrated experimentally lower respiratory 

tract infection. The viable bacterial number was reduced significantly in the 100 mg/kg 

treatment group. In addition, CAM showed dose-dependent effects on improving the number of 

inflammatory cells and levels of inflammatory cytokines. Interestingly, however, CAM did not 

decrease viable bacterial number in the 40 mg/kg treatment group. CAM may be able to 

suppress the accumulation of neutrophils and other inflammatory cells through its 

immunomodulatory effects, thereby contributing to inflammatory improvement.  

It has been shown that antimicrobial drug therapy based on PK and PD is necessary for the 

treatment of infectious diseases (7). β-lactams, the most common antibiotics to treat respiratory 

infections, cannot eradicate bacteria that have invaded airway epithelial cells. Considering the 

pathology of airway infection by highly invasive H. influenzae strains, antimicrobial agents that 

readily penetrate airway epithelium to which bacteria show susceptibility is necessary. We 

performed cell invasive assay to estimate the effects of CAM against intracellular H. influenzae 

using a macrolide-resistant strain. Our data indicate that CAM can reduce intracellular viable 

bacterial number at concentrations lower than MIC, which was determined by the microdilution 

method. However, in this study, we did not measure intracellular CAM concentrations, and this 

effect may indicate intracellular concentrations higher than MIC, thus contributing to the good 



in vivo effects against H. influenzae, even in macrolide-resistant strains. Some authors were 

reported that CAM achieves high concentration not only in ELF but also intracellular space. 

Rodvold et al. reported that the steady-state concentrations of CAM in ELF and AM obtained in 

intrapulmonary samples during bronchoscopy and bronchoalveolar lavage from 40 healthy of 

nonsmoking adult volunteers were analyzed, and CAM was extensively concentrated in ELF 

(34.4µg/ml at 4 h to 4.6µg/ml at 24 h) and AM (480µ/ml at 4 h to 99µg/ml at 24 h) (31). 

However we did not measure the intracellular concentration of CAM in this time, our result may 

reflect the high penetration into the bronchial epithelial cell of CAM, from the viewpoint of PK. 

We also consider that it may be useful information clinically because H. influenzae is known to 

invade into the respiratory epithelial cells and tend to escape the antibiotics effect. 

Unfortunately, in vitro resistance data has a strong impact on the drug selection process, as 

macrolide therapy is largely empirical. This issue is not easy to resolve, as existing PD data use 

serum or plasma as an index for microbiological efficacy, which may not be appropriate for 

macrolides when they are used against organisms with higher MICs that reside in bodily fluids 

with drug concentration profiles that differ from those of serum. As time passes and more 

organisms become resistant, and therefore have higher MICs, this situation will become more 

confused, and one can predict that the macrolide class of antibiotics will probably be replaced 

by the ‘‘respiratory’’ quinolones for empirical therapy of respiratory tract infections. This may 



relegate the macrolides to the role of adjunctive agent in the treatment or prophylaxis of 

infections believed to be caused by intracellular pathogens. This would be unfortunate if it is 

based upon erroneous resistance data, and could deprive patients of an acceptable and somewhat 

unique (due to its high tissue penetration and immunological properties) class of agents; of 

course, the entire situation is further complicated by host immune function. 

In conclusion, macrolide therapy remains a reasonable treatment for respiratory infection, even 

when macrolide-resistant H. influenzae is the causative pathogen. Advanced macrolides 

penetrate extensively within the respiratory tract and alveolar cells, and have anti-inflammatory 

properties that improve clinical outcomes via extramicrobial mechanisms. None of these 

benefits are reflected by in vitro testing. Thus, conventional drug susceptibility tests do not 

sufficiently reflect the in vivo efficacy of macrolides.  

Although we demonstrated the efficacies of CAM against CAM resistant H. influenzae, the 

data is limited because we did not analyze PK/PD and these results based on only experimental 

H. influenzae pneumonia model. In fact, some papers which reported the clinical treatment 

failure of macrolide resistant S. pneumoniae were published recently (15, 19). A randomized, 

prospective trial is needed to establish a causal relationship between in vitro resistance and 

clinical treatment in macrolide. We should treat macrolide resistant H. influenzae carefully, and 

continuous monitoring of macrolide resistant pathogen will also important. 
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FIGURE LEGENDS 

Figure 1: Number of viable organisms in lower respiratory organs. Mice were inoculated with 

1108 CFU/ml of H. influenzae strain 4437. At days 3 after infection, control mice, and mice 

treated at 40 mg/kg and 100 mg/kg (oral administration, twice/day) were compared. Numbers of 

viable bacteria were significantly lower in the 100 mg/kg treatment group. Data are expressed as 

means  SD for four experiments. *P < 0.05 vs. control.  

 

Figure 2: Changes in the total cell counts in BALF, total cell counts (A) and neutrophils (B) 

between control mice, and mice treated with 40 mg/kg and 100 mg/kg treatment (oral 

administration, twice/day). Cells were stained with Turk. Data are expressed as means  SD for 

four experiments. *P < 0.05, **P < 0.001 vs. control. 

 

Figure 3: Changes in inflammatory cytokine levels in BALF, IL-1β (A) and MIP-2 (B) between 

control mice, and mice treated with 40 mg/kg and 100 mg/kg treatment (oral administration, 

twice/day). Data are expressed as means  SD for four experiments. *P < 0.05, **P < 0.001 vs. 

control.  

 



Figure 4: High-power magnification of the lung after 3 days of treatment (×200, hematoxylin 

and eosin). (A) Control group, untreated; (B) 40 mg/kg treatment group (oral administration, 

twice/day); (C) 100 mg/kg treatment group (oral administration, twice/day). Inflammatory 

changes improved in both treatment groups, particularly in the 100 mg/kg treatment group. 

 

Figure 5: Intracellular bactericidal effects of various CAM concentrations against strain 4437. 

Intracellular viable bacterial number decreased significantly when the strain was treated CAM at 

1×MIC, 0.5×MIC and 0.25×MIC. 

Data are expressed as mean  SD for three times experiments. *P < 0.05, **P < 0.001 vs. 

control. 
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