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Abstract 

   An adamantyl (ADM)-functionalized monolithic stationary phase was newly 

synthesized by a single-step copolymerization of 1-adamantyl-(- trifluoromethyl) acry- 

-late, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid in 

order to prevent the peak tailing of basic solutes in capillary electrochromatography and 

was compared with butyl methacrylate (BMA)-based one.  The ADM structure shields 

the negatively charged groups on the surface of monolith from basic solutes, resulting in 

better peak shapes than BMA-based monolithic stationary phase.  As the monomers 

ratio decreased, the monolithic column had lower retention and higher column 

efficiency which was likely due to lower phase ratio and smaller globule size of 

monolith, respectively.   The ADM-functionalized monolithic columns exhibited a 

good repeatability and reproducibility of column preparation with relative standard 

deviation values below 9% in the studied chromatographic parameters. 
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1. Introduction 

   Organic polymer-based monolithic columns have been successfully used in capillary 

electrochromatography (CEC) [1-8].  Polymer-based monoliths are attractive because 

there are a wide variety of different monomers available and can be used within a broad 

pH-rage where they are chemically stable.  They are prepared by a single-step 

copolymerization with monomer, cross-linker, pore-forming solvent and initiator. 

   Different from the monolithic columns in high performance liquid chromatography 

(HPLC), the introduction of charged moiety into the monolithic network is essential in 

CEC for generation of electroosmotic flow (EOF).  Consequently, moderately or 

strongly ionic monomers, i.e. 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), 

[2-(methacryloyloxy)ethyl]-trimethylammonium chloride, are extensively utilized in the 

preparation of polymer monoliths for CEC [1-5].  In the CEC separation of charged 

solutes, these monoliths work as a mixed-mode stationary phase that combines two 

retentive interaction (i.e. hydrophobic and cationic-exchange or anion-exchange) [9,10].  

However, CEC of charged solutes on such stationary phases often suffers from severe 

peak tailing due to Coulombic attraction between solutes and monolith surface of 

opposite charges. 

In order to juggle production of stable EOF and prevention of peak tailing in CEC, 

new type of capillary monolithic columns have been developed.  One type has a 

positively charged polymer layer on the inner wall of capillary and a neutral monolithic 

packing as the bulk stationary phase [11].  Another type is the shielded stationary 

phase which was prepared via photoinitiated grafting of a covering layer of hydrophobic 
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polymer chain onto the ionizable surface of a porous monolith [12].  However, the 

preparation of these columns requires the multi-step procedure. 

HPLC using the columns packed with silica-gel particles also suffers from peak 

tailing of basic solutes due to the interaction between solutes and silanols of packing 

material.  In this context, some groups proposed the steric exclusion of the solute from 

the surface of silica-gel particles to reduce the interaction.  Hemetsberger et al. 

observed that longer alkyl chains partially prevent solutes from reaching the underlying 

surface and play an important role in blocking the silanols [13].  Gilpin et al. and 

Guiochon et al. demonstrated improved peak symmetry for basic solutes by the bulky 

rigid structure of adamantane shielding the unreacted silanols from even small solutes 

[14,15]. 

   With the idea to use adamantane as a shield to reduce the peak tailing of charged 

solutes in CEC, we newly synthesized adamantyl (ADM)-functionalized polymer 

monolith by a single-step copolymerization with the monomer containing ADM 

structure and a cross-linker.  In the present study, small basic solutes were used to 

evaluate the peak symmetry on ADM-functionalized and butyl methacrylate 

(BMA)-based monolithic columns.  To use the ADM-functionalized monolithic 

column in CEC, some fundamental properties of it were also investigated.  To the best 

of our knowledge, this is the first attempt to develop the polymer-based monolith by a 

single-step copolymerization for prevention of peak tailing of ionic analytes in CEC. 
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2. Materials and methods 

2.1. Chemicals 

   Butyl methacrylate (BMA), ethylene dimethacrylate (EDMA), 

2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS), ,’-azobisisobutyronitrile 

(AIBN), 1,4-butanediol and 3-(trimethoxysilyl)propyl methacrylate were obtained from 

Nacalai Tesque (Kyoto, Japan).  1-Adamantyl-(-trifluoromethyl)acrylate (MAF-ADE, 

Fig. 1) was kindly gifted from Tosoh Organic Chemical (Yamaguchi, Japan).  

1-Propanol, acetic acid, sodium acetate, potassium dihydrogenphosphate, dipotassium 

hydrogenphosphate, aniline, N-methylaniline, N,N-dimethylaniline, benzene, 

naphthalene and anthracene were from Wako (Osaka, Japan).  Thiourea was obtained 

from Kishida Chemical (Osaka).  HPLC grade of acetonitrile (ACN) was purchased 

from Kanto Chemical (Tokyo, Japan). 

 

2.2. Instrumentation 

   All the CEC experiments were performed on a CAPI-3200 system equipped with a 

photodiode array UV detector (Otsuka Electronics, Osaka).  Fused-silica capillaries 

(375 m o.d. x 75 m i.d.) were obtained from Polymicro Technologies (Phoenix, AZ, 

USA).  Total, packed and effective lengths of capillary columns used here were 42.0 

cm, 30.0 cm and 30.5 cm, respectively.  The mobile phase, prepared by mixing ACN 

and the buffer (phosphate or acetate buffer), was degassed thoroughly prior to use.  At 

the beginning of each day’s work, the capillary column was conditioned with a mobile 

phase for 1 h and equilibrated by applying voltage 1, 5, 10 kV for 5 min each.  Instead 
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of pressuring at both ends of the capillary column, the CEC system was thermostatically 

maintained at 18 °C throughout the analysis in order to avoid bubble formation within 

the capillary column.  The separation voltage was set at 10 kV and the injections were 

made by applying a voltage of 10 kV for 8 sec. 

 

2.3. Column preparation 

   Monoliths were prepared by in situ polymerization in fused-silica capillary.  To 

ensure covalent attachment of monolith to the inner capillary wall, surface modification 

of the wall was performed with 3-(trimethoxysilyl)propyl methacrylate prior to the 

polymerization reaction [16].  Monoliths were prepared by thermally initiated 

free-radical polymerization of the bulk monomer (MAF-ADE), a cross-linker (EDMA) 

and a monomer with a sulfonic acid group (AMPS) for the generation of EOF.  A 

mixture of water, 1-propanol and 1,4-butanediol were used as pore-forming solvents 

following a recipe developed for BMA-based monolith [1,4].  Each material in a 

solution was bubbled with nitrogen for 20 min before mixing and after mixing, the 

mixture was sonicated for 10 min.  From one end, 50-cm long surface-modified 

capillaries were filled with the polymerization mixture up to a length of 45 cm and both 

ends were plugged with a piece of septum.  Both the capillary and the vial containing 

the reminder mixture were kept at 60 °C in an oven for 20 h.  The resulting columns 

were flushed first with water-ACN mixture (20/80, v/v) to remove pore-forming 

solvents and unreacted monomers and then with mobile phase by an HPLC pump.  A 

detection window was made adjacent to the monolithic material by burning the 
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polyimide coating away.  The capillary columns were equilibrated by successively 

applying 1, 5, 10 kV for 10 min each. 

   The polymer monolith in the vial was cut into small pieces and Soxhlet extracted 

with methanol for 20 h to remove any soluble compounds and then vacuum-dried at 

60 °C for 6 h.  This polymer was used for the determination of pore size distribution 

by mercury-intrusion porosimeter (PoreMaster 60GT, Sysmex, Hyogo, Japan). 

 

3. Results and discussion 

   The retention factor (k) was determined by: 

k = (tr - to) / to 

in which tr and to were retention time of analytes and an EOF marker, respectively. 

   The EOF mobility (EOF) was calculated by: 

EOF = u/E 

where E = 10 kV/420 mm; u = 300 mm/ to. 

   A measure of the symmetry of a peak, given by the following equation: 

S = W0.05/2f 

where S is symmetry factor, W0.05 is the peak width at 5% height and f is the distance 

from peak front to apex point at 5% height. 

   The column efficiency (N) was calculated from the number of theoretical plates per 

meter: 

N = 5.55 x (tr / W0.5)
2 

where W0.5 is peak width at half height. 
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   Height equivalent to a theoretical plate (H) was determined by: 

H = L/N 

where L is the capillary length packed with monolithic material (i.e. 300 mm). 

 

3.1. Chromatographic property of ADM-functionalized monolithic stationary phase 

   Chromatographic characterization was performed using aromatic hydrocarbons as a 

neutral model compound and thiourea as an EOF marker.  A typical 

electrochromatogram of a separation of a mixture (benzene, naphthalene and 

anthracene) at 10 kV is shown in Fig. 2.  Based on the hydrophobic nature of 

adamantane, the elution order of model compounds were according to their 

hydrophobicity, indicating reversed-phase mode retention.  The EOF mobilities (x10-8 

mm/Vs) on the ADM-functionalized and BMA-based monolithic columns were 4.79 

and 3.83, respectively.  The ADM groups shielding of sulfonic acid groups never 

brings about a decrease in EOF. 

 

3.2. Peak shapes of basic compounds 

   Using a mobile phase of 5 mM acetate buffer (pH 4.0) and ACN mixture, the test 

solutes (aniline, N-methylaniline and N,N-dimethylaniline) were analyzed on 

ADM-functionalized and BMA-based monolithic columns made from the 

polymerization mixture consisting 23.6% MAF-ADE or BMA, 16.0% EDMA, 0.4% 

AMPS, 6.0% water, 35.1% 1-propanol and 18.9% 1,4-butanediol.  Table 1 shows 

retention factor and symmetry factor for the test solutes on both columns. 
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On BMA-based monolithic column, the peaks were apparently tailing.  The solutes 

(pKa 4.6~5.1 [17]) are partially or fully positively charged, but they eluted slower than 

thiourea, which indicates the stronger effect of the interaction between the basic solutes 

and stationary phase than that of the electrophoretic mobility.  Increased peak 

asymmetry on BMA-based monolith was observed in accordance with the increased 

basicity of the solutes.  Elevating ACN content from 80 to 85% (v/v) increased 

symmetry factor of the peaks.  From these results, the poor peak shapes are most likely 

due to the binding of solutes to the sulfonic acid groups of the monolithic stationary 

phase. 

   On the other hand, the peak shapes were obviously better on ADM-functionalized 

monolithic column.  The peaks of test solutes eluted slower than thiourea, indicating 

that the CEC separation is still mainly based on a chromatographic partition rather than 

electrophoretic principles.  The better peak shapes on ADM-functionalized monolithic 

column should be due to the reduction of the accessibility of basic solutes to sulfonic 

acid groups.  This shielding effect of adamantane observed in polymer-based monolith 

conforms with that in the ADM-modified silica used for HPLC [18].  Additionally, as 

shown in Table 1, the retention factor for basic solutes on ADM-functionalized 

monolithic column were lower than those on BMA-based one under the mobile phase 

conditions.  This also supports the existence of the shielding effects which provides a 

decrease in Coulombic interaction between basic solutes and solfonic acid groups. 
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3.3. Influence of the composition of the polymerization mixture 

   The morphology of monoliths is a direct consequence of the ratio between the 

monomer and pore-forming solvent phases, which is closely related to their 

chromatographic performance [4,19].  In this study, three monolithic stationary phases 

were prepared with different ratio between the monomer and pore-forming solvent 

phases in order to evaluate the influence of the ratio on retention and efficiency.  The 

high-density polymer monolith was prepared with 40 wt% monomers and 60 wt% 

pore-forming solvents in the mixture.  The medium- and low-density ones were 

prepared with monomers to pore-forming solvents ratios of 30:70 and 20:80, 

respectively.  During this experiment, the content of AMPS, the ratio of MAF-ADE 

and EDMA and the composition of pore-forming solvents were kept constant. 

For BMA-based monolith, it was reported that while a unimodal pore size 

distribution was observed for high-density material, pore size of low-density material 

was much broader and in some cases truly bimodal [4].  The broad pore size 

distribution of low-density material might lead to low column-to-column reproducibility 

of preparation.  In our experiments, contrastingly, a unimodal distribution was obtained 

on all the ADM-functionalized monoliths including low-density monolith (Fig. 3).  

The preparation conditions (i.e. the ratio of monomers to pore-forming solvents, the 

composition of pore-forming solvents and polymerization temperature) for each 

monolithic material are similar to those of BMA-based monolith [4, 20]; therefore, the 

difference in the pore size distribution could be attributed to the nature of MAF-ADE.  

Large pore size (around 5000 nm) of ADM-functionalized monoliths was obtained, 
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while the pore size of high density BMA monolith prepared in this study was 1030 nm 

(Fig. 3).  The timing of the phase separation in the polymerization process determines 

the pore size and in general, earlier phase separation provides larger macropores.  

Therefore, the larger pore size of ADM-functionalized monolith seemed to be due to 

early phase separation. 

   As the density was decreased by decreasing the contents of monomers, the k values 

of aromatic hydrocarbons became lower due to a decrease in the phase ratio.  This is 

consistent with the previous study using BMA-based stationary phase [20].  Medium- 

and low-density monoliths were found to have 2-fold and 3-fold higher column 

efficiency, respectively, in comparison to high-density one.  The pore sizes of three 

monoliths were within similar range from 4290 nm to 5560 nm; therefore, the higher 

efficiency on lower density monolithic column should be attributed to the smaller 

globule size [4].  In the present state, ADM-functionaliozed monolithic columns 

exhibited low efficiency for benzene (k = 0.45, 19600 N/m), naphthalene (k = 0.80, 

9600 N/m) and anthracene (k = 1.45, 4300 N/m).  On the other hand, the efficiency on 

BMA-based monolithic columns prepared in this study for benzene (k = 0.43, 29300 

N/m), naphthalene (k = 0.79, 9600 N/m) and anthracene (k = 1.37, 2800 N/m) is also 

lower than those in the other literatures [1,4,20].  This means that the low efficiency on 

ADM-functionalozed monolithic columns was not due to the MAF-ADE monomer but 

due to unknown reason in our preparation procedure.  Hence, the effect of degassing 

method in column preparation on improving the efficiency is now under the 

examination. 
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3.4. Effect of mobile phase composition and buffer concentration 

   The effect of the ACN content in the mobile phase on the retention factors of the 

aromatic hydrocarbons was studied, using 5 mM phosphate buffer (pH 7.0).  The 

retention decreased with an increase in ACN content, in accordance with a 

reversed-phase mechanism.  A linear relationship between log k versus ACN content 

was obtained and the slopes were almost equal for all the different hydrocarbons.  No 

significant change in EOF mobility was observed with the change in ACN content at a 

constant buffer concentration. 

   The effect of buffer concentration on EOF mobility in the range of 5-15 mM was 

examined with the mobile phase of phosphate buffer (pH 7.0) and 80% ACN.  At the 

ionic strength used in this experiment, double-layer overlap which results in a decrease 

in the EOF mobility was expected to be negligible for the pores with -meter size.  A 

constant EOF mobility across ionic concentration range investigated was observed. 

 

3.5 Repeatability and reproducibility of monolithic column 

   There are a few data on the reproducibility of preparation of acrylate monolithic 

columns in the literatures [20-24].  In accordance with previous work [21], the 

repeatability and reproducibility of preparation of ADM-functionalized monoliths were 

studied with five monolithic columns synthesized from a polymerization mixture 

(10.0% MAF-ADE, 10.0% EDMA, 0.4% AMPS, 8.0% water, 53.6% 1-propanol, 18.0% 

1,4-butanediol).  The three columns (No.1-3) were prepared from one polymerization 

mixture and the others (No.4-5) were prepared from another polymerization mixture but 
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both of the same composition.  The repeatability and reproducibility were expressed as 

relative standard deviations (RSD) of the chromatographic parameters, i.e. EOF 

mobility, retention times, retention factors and plate height, measured with the same set 

of aromatic hydrocarbons (Table 2).  The run-to-run repeatability was evaluated with 

the No. 1 column for six measurements.  The column-to-column repeatability was 

calculated within the first set of three columns (No. 1-3).  The run-to-run repeatability 

was lower than 6% and the column-to-column one was below 8% for EOF mobility and 

all other parameters about the aromatic hydrocarbons.  The reproducibility of five 

columns was also less than 9% for all the parameters.  The repeatability and 

reproducibility obtained here permits the application of ADM-functionalized monolith 

for practical use in CEC. 

 

4. Conclusion 

   It is demonstrated that CEC with ADM-functionalized monolithic stationary phase 

can provide good peak shape of basic solutes.  The chromatographic retention was 

found to be based on a mixed-mode retention mechanism (hydrophobic interaction and 

Coulombic interaction).  However, Coulombic interaction for positively charged 

solutes should be attenuated compared with BMA-based monolithic column by the 

shielding effect of adamantyl groups.  Preparing three monolithic columns with 

different ratio between the monomer and pore-forming solvent phases, the monolith 

with lower density of monomers was observed to give lower retention and higher 

efficiency.  For low-density monolithic column, satisfactory run-to-run and 
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column-to-column repeatability and mixture-to-mixture reproducibility for 

electrochromatographic parameters were observed.  Since the mechanism of 

preventing the peak tailing is likely based on shielding of the ionic groups on monolith 

surface from ionic solutes, ADM-functionalized monolith will be useful for CEC 

separation of acidic and basic solutes in both of anodic and cathodic EOF modes. 
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Figure captions 

 

Fig. 1  Structure of 1-adamantyl-(-trifluoromethyl)acrylate (MAF-ADE). 

 

Fig. 2  CEC separation of aromatic hydrocarbons on ADM-functionalized monolithic 

column.  Monolith (wt%): 23.9% MAF-ADE, 15.9% EDMA, 0.4% AMPS, 6.0% water, 

35.0% 1-propanol, 18.8% 1,4-butanediol.  CEC conditions: mobile phase, 5 mM 

phosphate buffer (pH 7.0) / ACN = 20/80, v/v; voltage, 10 kV; injection, 10 kV for 8 s; 

UV detection, 210 and 250 nm.  Peaks: 1, thiourea; 2, benzene; 3, naphthalene; 4, 

anthracene. 

 

Fig. 3  Pore size distributions of ADM-functionalized and BMA-based monoliths as 

obtained with different ratio of monomers and pore-forming solvents.  High-density 

monolith (wt%): 23.9% MAF-ADE, 15.9% EDMA, 0.4% AMPS, 6.0% water, 35.0% 

1-propanol, 18.8% 1,4-butanediol.  Medium-density monolith (wt%): 18.0% 

MAF-ADE, 12.0% EDMA, 0.4% AMPS, 7% water, 40.7% 1-propanol, 21.9% 

1,4-butanediol.  Low-density monolith (wt%): 12.0% MAF-ADE, 8.0% EDMA, 0.4% 

AMPS, 8% water, 46.6% 1-propanol, 25.0% 1,4-butanediol.
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Table 1  Peak shapes of basic solutes on ADM-functionalized and BMA-based monolithic columnsc) 

RT (min) k S RT (min) k S RT (min) k S

ADM-functionalized monolith
a) 7.04 0.29 1.1 7.46 0.50 1.2 7.92 0.76 1.3

BMA-based monolith
a) 9.60 0.44 1.2 11.7 0.79 2.4 13.2 1.10 2.7

BMA-based monolith
b) 9.40 0.36 1.3 12.6 0.76 3.9 14.4 0.96 5.8

a)
 5 mM acetate buffer (pH 4.0)/acetonitrile = 20/80 (v/v)

b)
 5 mM acetate buffer (pH 4.0)/acetonitrile = 15/85 (v/v)

c)
 Monolith (wt%): 23.6% MAF-ADE, 16.0% EDMA, 0.4% AMPS, 6.0% water, 35.1% 1-propanol, 18.9% 1,4-butanediol.

  Separation condition: voltage, 10 kV; injection, 10 kV for 8 s; UV detection, 210  nm.  Other conditions as mentioned in Sec. 2.2.

Aniline N -Methylaniline N ,N -Dimethylaniline
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Table 2  Repeatability and reproducibility of preparation of ADM-functionalized 

monolithic columns expressed as RSD % of EOF mobility, retention time, retention 

factor and plate heighta) 

 

Parameter Repeatability (RSD %) Reproducibility (RSD %)

Run-to-run Column-to-column Mixture-to-mixture

Column No.1 (n=6) Columns No.1-3 Columns No.1-5

 EOF ≤ 1.8 ≤ 3.5 ≤ 3.4

t r ≤ 2.5 ≤ 3.6 ≤ 3.9

k ≤ 2.8 ≤ 2.4 ≤ 5.2

H ≤ 5.9 ≤ 7.5 ≤ 8.5
a)
 Monolith (wt%): 10.0% MAF-ADE, 10.0% EDMA, 0.4% AMPS, 8.0% water, 53.6%

1-propanol, 18.0% 1,4-butanediol.  Separation condition: voltage, 10 kV; injection, 10 kV for
8 s; UV detection, 210  nm.  Other conditions as mentioned in Sec. 2.2.  Test solutes:
benzene, naphthalene and anthracene  
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Fig. 1 
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Fig. 2 
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Fig. 3 

 

 

 


