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Abstract – A divergent synthesis of three sulfate derivatives of lamellarin , 

namely, lamellarin  13-sulfate (2), 20-sulfate (1), and 13,20-disulfate (4) has 

been achieved via a common intermediate (6) in which 13-OH and 20-OH of the 

lamellarin core are differentially protected by MOM and benzyl groups, 

respectively.  Compound (6) in turn was prepared using sequential 

Suzuki-Miyaura coupling of 3,4-dihydroxypyrrole bistriflate (7) as a key reaction.  

Lamellarins and the related marine pyrrole alkaloids have attracted considerable attention due to their 

unique structures and highly useful biological activities.1  Lamellarin  20-sulfate (1) was isolated from 

the unidentified ascidian collected from the Arabian Sea near Trivandrum, India, by Faulkner and 

co-workers.2  They demonstrated that 1 inhibits HIV-1 integrase selectively and growth of the HIV-1 

virus in cell culture.2  Because cytotoxicity of 1 is quite low, this natural product has been regarded as a 

new type of lead compound for development of anti-HIV agents.  An attempted synthesis of lamellarin 

 20-sulfate (1) and 13-sulfate (2) from lamellarin  (3) by titration with DMF-SO3 complex was 

reported by Faulkner and coworkers in 2002. 3  Unfortunately, however, they obtained only lamellarin 

13,20-disulfate (4) in low yield.  Recently, we reported the first total synthesis of lamellarin  20-sulfate 

(1) from the differentially protected lamellarin  (5).4  The selective introduction of sulfate group at 
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20-OH was effected by a sequence involving selective debenzylation of 20-OBn, 

2,2,2-trichloroethylsulfonation of the resulting 20-OH, deprotection of 13-Oi-Pr, and final reductive 

cleavage of the 2,2,2-trichloroethyl ester moiety.5,6  For the structure-activity relationship studies 

concerning integrase inhibition and anti-HIV activity, we needed to prepare lamellarin  13-sulfate (2) 

and 13,20-disulfate (4) also.  It was revealed, however, the synthesis of 2 from 5 was difficult because 

debenzylation at 20-OBn occurred simultaneously during deprotection at 13-Oi-Pr under the standard 

BCl3 conditions.  Thus, we designed a new lamellarin  derivative (6) in which 13-OH was protected by 

a more labile methoxymethyl (MOM) group.  In this communication, we report a divergent synthesis of 

lamellarin  sulfate derivatives (1), (2), and (4) from the common intermediate (6) which in turn can be 

obtained from 3,4-dihydroxypyrrole bistriflate (7) and arylboronic acids (8), (9) using the previously 

established procedure developed in our laboratories (Scheme 1).4,5   
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Scheme 1 

 

The synthesis of arylboronic acid (8) is shown in Scheme 2.  Isovanillin (10) was benzylated with benzyl 

bromide to give O-benzylisovanillin (11) in 86% yield.7  Baeyer-Villiger oxidation of 11 with 

m-chloroperbenzoic acid (mCPBA) followed by methanolysis afforded the phenol (12) in 90% yield.  

After MOM protection of the phenolic hydroxy group, the resulting 13 was regioselectively brominated 

by N-bromosuccinimide (NBS) to give 14 in 97% yield.  Bromine–lithium exchange of 14 with 

tert-butyllithium followed by treatment with trimethyl borate afforded the desired arylboronic acid (8). 

Another arylboronic acid (9) was prepared according to the procedure shown in Scheme 3.  C-2- 
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Scheme 2. Reagents and conditions: (a) BnBr (1.1 equiv), K2CO3, acetone, reflux, 4.5 h (86%); (b) (1) 
mCPBA (1.5 equiv), CH2Cl2, 0 °C, 3 h, (2) K2CO3, MeOH, rt, 1.5 h (90%); (c) MOM-Cl (1.5 
equiv), i-Pr2NEt, CH2Cl2, 0 °C, 1 h then rt, 48 h (87%); (d) NBS (1.0 equiv), DMF, 0 °C, 1 h 
(97%); (e) (1) tert-BuLi (2.1 equiv), THF, –78 °C, 1 h, (2) B(OMe)3 (1.5 equiv), –78 °C, 1 h 
then rt, 1 h (99%). 
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selective bromine–lithium exchange of commercially available 2,4-dibromoanisole (15) followed by 

boration and oxidation gave the phenol (16) in 78% yield.8  After MOM protection of the phenolic 

hydroxy group, the resulting 17 was converted into the arylboronic acid (9) via bromine–lithium 

exchange with tert-butyllithium followed by treatment with trimethyl borate.   
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Scheme 3. Reagents and conditions: (a) (1) n-BuLi (1.1 equiv), THF, –78 °C, 1 h, (2) B(OMe)3 (1.5 
equiv), –78 °C, 1 h then rt, 1 h, (3) AcOH, H2O2, rt, 16 h (78%); (b) MOM-Cl (1.5 equiv), 
K2CO3, acetone, 0 °C, 1 h then reflux, 19 h (96%); (c) (1) tert-BuLi (2.1 equiv), THF, –78 °C, 
1 h, (2) B(OMe)3 (1.5 equiv), –78 °C, 1 h then rt, 1 h (72%). 

 

The synthesis of lamellarin  13-sulfate (3) was shown in Scheme 4.  Suzuki-Miyaura coupling of the 
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Scheme 4. Reagents and conditions: (a) 8 (1.2 equiv), Pd(PPh3)4 (2 mol%), Na2CO3, water, THF, reflux, 
3 h (74%); (b) (1) concd HCl, MeOH, reflux, 1 h, (2) p-TsOH, CH2Cl2, reflux, 2 h (93%); (c) 
9 (2.0 equiv), Pd(PPh3)4 (8 mol%), Na2CO3, water, THF, reflux, 8 h (95%); (d) (1) 40% 
aqueous KOH, EtOH, reflux, 2 h, (2) PPTS, CH2Cl2, reflux, 24 h (61%); (e) Cu2O (1.0 equiv), 
quinoline, 220 °C, 10 min (83%); (f) PIFA (1.2 equiv), BF3·OEt2, CH2Cl2, –40 °C, 1.5 h 
(62%); (g) DDQ (1.0 equiv), CH2Cl2, reflux, 30 h (87%); (h) concd HCl, MeOH-CH2Cl2 (1:2), 
45 °C, 2 h (99%); (i) CCl3CH2OSO2Cl (2.0 equiv), Et3N, DMAP, CH2Cl2, rt, 5 h (89%); (j) H2, 
10% Pd-C, EtOAc, rt, 4 h (61%); (k) (1) Zn powder (3.0 equiv), HCO2NH4 (6.0 equiv), 
THF-MeOH (1:1), rt, 2 h, (2) Amberlite IRC-50 (Na+ form), MeOH, (3) Sephadex LH-20, 
MeOH–CH2Cl2 (1:1) (61%).   
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bistriflate (7) with 1.2 equiv of an arylboronic acid (8) under the standard conditions [Pd(PPh3)4 (2 mol%), 

Na2CO3, water, THF, reflux, 3 h]9 gave the mono-arylated pyrrole (18) in 74% yield.  Compound (18) 

was converted into the lactone (19) by treatment with hydrochloric acid in methanol followed by 

acid-catalyzed lactonization in 93% yield.  The second cross-coupling of 19 with an arylboronic acid (9) 

(2.0 equiv) using 8 mol% of Pd(PPh3)4 afforded 20 in 95% yield.  Compound (20) was converted into 

the acid (21) by alkaline hydrolysis followed by acid-catalyzed relactonization in 61% yield.  

Decarboxylation of 21 in hot quinoline in the presence of copper(I) oxide produced 22.10  Intramolecular 

oxidative biaryl coupling of 22 under Kita’s conditions11 using phenyliodine bis(trifluoroacetate) 

(PIFA)-boron trifluoride etherate afforded the cyclized product (23) in 62% yield.  Treatment of 23 with 

2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in refluxing dichloromethane produced the common 

intermediate (6).  Deprotection of the MOM group by treatment with hydrochloric acid in methanol 

afforded 24, which was reacted with 2,2,2-trichloroethyl chlorosulfate in dichloromethane to give the 

mixed sulfate (25) in 89% yield.6  Hydrogenolysis of 25 over palladium on charcoal for 4 h at room 

temperature afforded debenzylated 26 in 61% yield.  Final reductive deprotection of the 

2,2,2-trichloroethyl ester with Zn/HCO2NH4 followed by ion exchange over Amberlite IRC-50 (Na+ form) 

and Sephadex purification produced lamellarin  13-sulfate (2)12 in 61% yield.   

The syntheses of lamellarin  20-sulfate (1) and lamellarin  13,20-disulfate (4) are shown in Scheme 5. 

Compound (6) was debenzylated by hydrogenolysis over palladium on charcoal to give 27 in 99% yield.  

2,2,2-Trichloroethylsulfonation of 27 in a similar manner as described above provided 28 in 69% yield.  

Selective removal of MOM protecting group provided 29 in 81% yield.  Treatment of 29 with 

Zn/HCO2NH4 followed by ion exchange over Amberlite IRC-50 (Na+ form) and Sephadex purification 

produced lamellarin  20-sulfate (1)13 in 85% yield.  Deprotection of MOM group from 27 with 
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Scheme 5. Reagents and conditions: (a) H2, 10% Pd-C, EtOAc, rt, 2 h (99%); (b) CCl3CH2OSO2Cl (2.0 
equiv), Et3N, DMAP, CH2Cl2, rt, 2.5 h (69%); (c) concd HCl, MeOH-CH2Cl2 (1:2), 45 °C, 5 h 
(29, 81%; 3, 99%); (d) (1) Zn powder (3.0 equiv), HCO2NH4 (6.0 equiv), THF-MeOH (1:1), 
rt, 4 h, (2) Amberlite IRC-50 (Na+ form), MeOH, (3) Sephadex LH-20, MeOH–CH2Cl2 (1:1) 
(85%); (e) (1) pyridine-SO3, DMF-pyridine (4:1), 65 °C, 2 h, (2) Amberlite IRC-50 (Na+ 
form), MeOH, (3) Sephadex LH-20, MeOH–CH2Cl2 (1:1) (69%).   
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hydrochloric acid in methanol produced lamellarin  (3) in 99% yield.  Treatment of 3 with 

pyridine-SO3 complex in DMF-pyridine followed by ion exchange over Amberlite IRC-50 (Na+ form) 

and Sephadex purification afforded lamellarin  13,20-disulfate (4)14 in 69% yield.  The spectroscopic 

data of 1 and 4 are identical with those previously reported.3,4 

In conclusion, we have succeeded in a divergent synthesis of lamellarin  20-sulfate (1), 13-sulfate (2), 

and 13,20-disulfate (4) using 6 as a common intermediate.  The synthesis of the other lamellarin sulfate 

derivatives and their structure-activity relationship studies are in progress. 
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