Genetic association between the *IL2RA* and mode of onset of type 1 diabetes in the Japanese population

Authors: Eiji Kawasaki ¹, Takuya Awata ², Hiroshi Ikegami ³, Tetsuro Kobayashi ⁴, Taro Maruyama ⁵, Koji Nakanishi ⁶, Akira Shimada ⁷, Miho Uga ¹, Susumu Kurihara ², Yumiko Kawabata ³, Shoichiro Tanaka ⁴, Yasuhiko Kanazawa ⁷, Katsumi Eguchi ⁸, Japanese Study Group on Type 1 Diabetes Genetics*

¹Department of Metabolism/ Diabetes and Clinical Nutrition, Nagasaki University Hospital of Medicine and Dentistry, Nagasaki, Japan, ²Division of Endocrinology and Diabetes, Department of Medicine, Saitama Medical School, Saitama, Japan, ³Department of Endocrinology, Metabolism, and Diabetes, Kinki University School of Medicine, Osaka, Japan, ⁴Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan, ⁵Department of Internal Medicine, Saitama Social Insurance Hospital, Saitama, Japan, ⁶Department of General Internal Medicine and Metabolism, Toranomon Hospital, Tokyo, Japan, ⁷Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan, ⁸The First Department of Internal Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

Abbreviated title: IL2RA and type 1 diabetes in Japanese population

Key terms: IL2RA, Genetics, Japanese, Type 1 diabetes, Mode of onset, HLA, CTLA4

Word count: main text 2,226, abstract 230, 24 references, 4 tables, no figure

Address for correspondence and reprint requests:

Eiji Kawasaki, M.D., Ph.D. Department of Metabolism/ Diabetes and Clinical Nutrition, Nagasaki University Hospital of Medicine and Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan TEL: +81-95-819-7550 FAX: +81-95-819-7552 E-mail: eijikawa@nagasaki-u.ac.jp

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports and Technology of Japan.

Disclosure statement: All authors have nothing to disclose.

* Members of the Japanese Study Group on Type 1 Diabetes Genetics are: Takuya Awata, Hiroshi Ikegami, Eiji Kawasaki, Tetsuro Kobayashi, Taro Maruyama, Koji Nakanishi, Akira Shimada.

Precis: Genetic association of the *IL2RA* with Japanese type 1 diabetes is different according to the mode of disease onset.

Abstract

Context/Objective: The interleukin-2 receptor α (IL2RA), also known as CD25, is expressed on the regulatory T cells which play an important role in the control of immune responses and the maintenance of immune homeostasis. Our objective was to determine whether variants in the *IL2RA* gene are associated with type 1 diabetes in the Japanese population.

Design/Patients: We genotyped the four single-nucleotide polymorphisms (SNPs) (rs706778, rs3118470, ss52580101 and rs11594656) of the *IL2RA* in 885 patients with type 1 diabetes and 606 control subjects of Japanese origin. The allele and genotype frequencies were examined in the patient groups stratified by their mode of onset in a case-control study.

Results: We found evidence of association with acute-onset, but not slow-onset and fulminant, type 1 diabetes for two of the 4 SNPs genotyped (rs706778 and rs3118470). The rs706778 A allele and the rs3118470 G allele were associated with an increased disease risk (Odds ratio [OR] for rs706778 AA genotype 1.54, $P = 4.2 \times 10^{-4}$ and OR for rs3118470 GG genotype 1.50, P = 0.0019, respectively). Furthermore, the A-G haplotype was associated with increased type 1 diabetes risk in acute-onset form (OR 1.30, P = 0.002).

Conclusions: The present data confirmed the type 1 diabetes association with *IL2RA* and provide evidence that the different contributions of the *IL2RA* in the susceptibility to acute-onset and other forms of type 1 diabetes in the Japanese population.

Introduction

Type 1 diabetes is known as a multigenic organ-specific autoimmune disease characterized by T-cell-dependent destruction of the insulin-producing pancreatic β -cells, resulting in absolute dependence on insulin for survival and maintenance of health (1). Clinical features of Japanese type 1 diabetes are heterogeneous and there are at least three subtypes of type 1 diabetes in Japan, 'classical', acute-onset slow-onset, and fulminant type 1 diabetes (2). However, the underlying pathogenesis of β-cell destruction, including the genetic or environmental factors for each subtype of type 1 diabetes is largely unknown.

Recent first-stage results of genome-wide association (GWA) studies identified several loci other than the HLA on chromosome 6p21, the insulin gene (INS-VNTR) on 11p15, the CTLA4 locus on 2q33, and the PTPN22 on 1p13 include IL2RA locus on 10p15, IFIH1 on 2q24 recently, CLEC16A and. most (KIAA0350) on 16p13, and PTPN2 on 18p11 (3-5). The *IL2RA* encodes the α -chain of the IL-2 receptor (IL-2R) complex (also known as CD25) which is central to immune regulation as an important modulator of self-tolerance and immunity (6) and the IL2RA association with type 1 diabetes was originally identified by Vella and coworkers (7). IL2RA expression on CD4⁺ CD25⁺ regulatory T cells is essential for their function in suppressing T cell immune responses to autoantigens, alloantigens, tumor antigens, and pathogen-derived antigens. As direct evidence of the importance of CD4⁺ CD25⁺ regulatory T cells in human type 1 diabetes (8, 9), depletion of regulatory T cells by anti-CD25 antibody hastened development of diabetes in non-obese diabetic mice, an animal model of spontaneous type 1 diabetes (10). Furthermore, it has been evidenced that the type 1 diabetes-associated polymorphisms in the IL2RA region regulate the circulating concentration of soluble form of IL2RA (11). These findings implicate that the genetic associations of IL2RA polymorphisms to the

rate of β -cell destruction in type 1 diabetes. In this study, we demonstrated the differences in the contribution of *IL2RA* polymorphisms to susceptibility to acute-onset, slow-onset, and fulminant type 1 diabetes in the Japanese population.

Subjects and Methods

Subjects

We examined 885 patients with type 1 diabetes (56% female) and 606 healthy control subjects of Japanese origin. Patients with type 1 diabetes include 627 patients with acute-onset (57% female), 222 with slow-onset (56% female) and 25 with fulminant type 1 diabetes (28% female). The remaining 11 patients were unclassified type 1 diabetes. The criterion for the recruitment of acute-onset type 1 diabetes were 1) presence of diabetic at onset, 2) the duration ketosis of hyperglycemic symptoms before starting insulin therapy was < 3 months, 3) positive for at least one of the anti-islet autoantibodies. Diagnosis of slow-onset type 1 diabetes were done by the following criteria: 1) originally diagnosed as type 2 diabetic and no sign of ketosis at diabetes onset; 2) proven anti-islet positivity; and 3) insulin autoantibody treatment started >12 months after the diagnosis. Diagnostic criteria for fulminant type 1 diabetes were described elsewhere (2). The median age-at-onset and serum C-peptide concentration of acute-onset, slow-onset and fulminant type 1 diabetes was 21.0, 40.0, and 44.0 years and 0.14, 0.45, and 0.005 ng/ml, respectively. The associations of clinical and genetic parameters such as age-at-onset, gender, co-occurrence of autoimmune thyroid disease (AITD), glutamic acid decarboxylase 65 (GAD65) autoantibody titer, CTLA4 and class II HLA with IL2RA risk haplotype were also examined. AITD was defined as Graves' disease, Hashimoto's thyroiditis which were diagnosed based on the finding of palpable goiter or the presence of chronic thyroiditis with ultrasonography examination in the absence of goiter, abnormal levels of thyroid hormones, and positivity for autoantibodies to thyroid peroxidase, thyroglobulin and/or thyrotropin receptor. The healthy control subjects had normal glucose tolerance and no family history of type 1 diabetes or other diseases. autoimmune This study was appropriate approved by the ethical and informed consent committees was obtained from all subjects.

Genotyping

Two SNPs in intron 1 of the *IL2RA*, rs706778 A>G and rs3118470 A>G, and two SNPs in the 5' regions of the *IL2RA* and *RBM17*, ss52580101 (rs41295061) C>A and rs11594656 T>A, were genotyped. Genotyping of the rs706778 A>G was performed by PCR-restriction fragment length polymorphism (RFLP) method (1.5 mM MgCl₂, T_{anneal} 58°C) with forward primer (rs706778F2);

5'-TCCCCTTTCTCTCTCTCAG-3' and primer (rs706778R3); reverse 5'-GAGCCCTGAGGGACTAGTAAATTTCC ACCA-3' followed by digestion with Bsr I (New England Biolabs, Ipswich, MA). The rs3118470 A>G was genotyped by PCR-RFLP (1.0 mM MgCl₂, T_{anneal} 58°C) with forward primer (rs3118470F2); 5'-CTCTTTCTGACCACATCCCA-3' and reverse primer (rs3118470R3); 5'-AGCCCCAAGGGATCAGTAAATTTCCA CCA-3' followed by digestion with Bsr I. The ss52580101 C>A was genotyped by PCR-RFLP (2.0 mM MgCl₂, T_{anneal} 62°C) with forward primer (rs41295061F); 5'-CACCCTCATCCATAAAGACC-3' and (rs41295061R); reverse primer 5'-ATTCATCCCACACCCACCAG-3' followed by digestion with Mwo I. Finally, the rs11594656 T>A was genotyped by PCR-RFLP (2.0 mM MgCl₂, T_{anneal} 58°C) with forward primer (rs11594656F); 5'-CTCCCCAGTCATTCACCAAA-3' and primer (rs11594656R); reverse 5'-TCTTTTGGCTTTTCTCACTATGATGCC GTC-3' followed by digestion with BsmA I. The digested products were resolved on a 3.5% agarose gel and stained with ethidium bromide. The number of cases and controls we were able to genotype were 877 and 602 for rs706778, 872 and 592 for rs3118470, 881 and 606 for ss52580101, and 882 and 606 for rs11594656, respectively. No deviations from Hardy-Weinberg equilibrium were observed for all genotypes in control subjects. The HLA-DR and +6230G>A (CT60, rs3087243) in the CTLA4 were also genotyped as reported previously (12). The data on HLA-DR CTLA4 +6230G>A and polymorphism were available in 587 and 798 patients with type 1 diabetes, respectively.

Anti-islet autoantibody assays

acid Autoantibodies to glutamic decarboxylase 65 (GAD65), insulinoma associated antigen-2 (IA-2), insulin, and zinc transporter-8 (ZnT8) were measured by radioimmunoassay and islet cell antibodies (ICA) were determined by immunoenzymatic staining of human pancreas sections, as described previously (13, 14). Subjects positive for at least one of autoantibodies to GAD65, IA-2, ZnT8, insulin and/or ICA were defined positive for as anti-islet autoantibodies.

Statistical analysis

A χ^2 test was used for statistical analysis unless otherwise indicated. Odds ratio and its 95% confidence interval (95% CI) was also calculated. Haplotype frequencies were estimated based on the HPlus v2.5 software program (http://qge.fhcrc.org/hplus/) (15). Linkage disequilibrium, evaluated by D' coefficients, was calculated to evaluate linkage disequilibrium by Haploview v4.0 software (http://www.broad.mit.edu/mpg/haploview).

Deviations from Hardy-Weinberg equilibrium were tested by comparison of observed and expected genotype frequencies. Patient-only logistic regression analysis was performed to test for the association of the IL2RA risk haplotype with age at onset, gender, co-occurrence of AITD, log-transformed GAD65 autoantibody titer, class II HLA and CTLA-4 CT60 genotype as variables. StatView Ver.5.0 (SAS Institute, Cary, NC) were used for these tests. A *P* value less than 0.05 was considered statistically significant.

Results

IL2RA variants and type 1 diabetes

First, we compared *IL2RA* genotype and allele frequencies between the overall type 1 diabetes and control subjects. Among the four SNPs genotyped in this study, two SNPs (rs706778 and rs3118470) had statistically significant type 1 diabetes association. As shown in Table 1, the AA genotype at rs706778 SNP and the GG genotype at rs3118470 SNP were significantly associated with type 1 diabetes (OR 1.37, 95%CI: 1.09-1.71, P = 0.0062 for rs706778 and OR 1.28, 95%CI: 1.00-1.63, P = 0.048 for rs3118470).

Association of IL2RA variants with mode of diabetes onset and class II HLA

Then we divided these patients into three groups (acute-onset, slow-onset, and fulminant) according to the mode of diabetes onset and examined the genetic contribution of the two significant IL2RA SNPs in each group (Table 2). We found a significant genetic association between the IL2RA and acute-onset type 1 diabetes (OR 1.54, 95%CI: 1.21-1.96, P $= 4.2 \times 10^{-4}$ for rs706778 and OR 1.50, 95%CI: 1.16-1.94, P = 0.0019 for rs3118470), whereas no significant difference was observed between slow-onset type 1 diabetes, fulminant type 1 diabetes and control subjects (Table 2). Furthermore, the stratification of acute-onset patients by the presence or absence of high diabetes risk class II HLA (DR4/4, 4/X, 9/9, but not DQB1*0601/*0602) showed that the disease association of IL2RA polymorphisms was observed only in patients carrying high diabetes risk HLA (OR 1.52, 95%CI: 1.13-2.04, $P = 5.5 \times 10^{-4}$ for rs706778 and OR 1.48, 95%CI: 1.08-2.02, P = 0.015 for rs3118470). Therefore, the association of IL2RA with Japanese type 1 diabetes originates in the association with acute-onset patients, especially with patients carrying high risk class II HLA. However, neither the ss52580101 nor rs11594656 were associated with mode of diabetes onset and class II HLA (data not shown).

IL2RA haplotype analysis

Two significant *IL2RA* SNPs are in high linkage disequilibrium (D' = 0.953, $r^2 = 0.69$) and rs706778A;rs3118470G haplotype (frequency 52.3%) was associated with increased risk in acute-onset type 1 diabetes (OR 1.30, 95%CI 1.10-1.53, P = 0.002) (Table 3).

Association with clinical and genetic parameters of type 1 diabetes

We evaluated the relationship of the disease associated *IL2RA* haplotype with clinical and genetic parameters in acute-onset patients by logistic regression analysis (Table 4). There were no associations of *IL2RA* risk haplotype with age-at-onset, gender, GAD65 autoantibody titer or presence of established genetic risk factors for Japanese type 1 diabetes such as the carriage of the CTLA4 CT60GG genotype and high risk HLA-DR genotype. However, the IL2RA risk haplotype was associated with the co-occurrence of thyroid autoimmunity (OR 1.66, 95%CI 1.00-2.75, P = 0.048). In patients with slow-onset type 1 diabetes, any clinical and genetic parameters were not associated with IL2RA risk haplotype (data not shown).

Discussion

We demonstrated 1) the type 1 diabetes association of the SNPs in the *IL2RA* and 2) the differences in the contribution of *IL2RA* to susceptibility of type 1 diabetes depending on the mode of diabetes onset in the Japanese Furthermore, it was suggested population. that the class II HLA have influence on the association of type 1 diabetes with the IL2RA. The association of IL2RA variants with acute-onset, but not with slow-onset and fulminant, type 1 diabetes suggests that IL2RA might relate to the rate of autoimmune β -cell destruction. The different contributions of type 1 diabetes susceptibility gene in the mode of diabetes onset have been also documented in class II HLA, CTLA4, PTPN22, and NeuroD the Japanese population (16-19). in Therefore, the underlying immune process primed β -cell injury might be distinct between subtypes of type 1 diabetes (acute, slow, and

fulminant).

The **IL2R-signaling** complex is composed of three distinct subunits, the α -chain (CD25), β -chain (CD122), and γ -chain (CD132) each of which have unique roles in facilitating IL2-dependent signal transduction Among these IL2Ra acts to confer (6). high-affinity binding of IL2 to the IL2R complex highly expressed by activated T-cells and $CD4^+$ $CD25^+$ regulatory T cells. The IL2RA gene has also been associated with Graves' disease (20), rheumatoid arthritis (4) and multiple sclerosis (21) which imply that this locus may have a general effect on predisposition to autoimmunity. Since the involvement of IL2R complex on the regulation of immune function is not limited to the specific-organs (6), the current observation showing the much stronger association between IL2RA polymorphisms and type 1 diabetes with AITD is consistent with this hypothesis.

Two SNPs associated with Japanese type 1 diabetes in this study (rs706778 and rs3118470) are located in intron 1 and have been reported the type 1 diabetes association in two independent studies in subjects of British and Canadian descent (11, 22). Furthermore, recent WGA study reported that other SNPs close to these two SNPs (< 300bp distance), rs12722489 and rs2104286, had a significant association with multiple sclerosis (21). Taken together, these results implicate that causal variants for multiple autoimmune diseases localize in the IL2RA intron 1. Of note, the two most associated markers with European patients (11),ss52580101 (rs41295061) and rs11594656, were less polymorphic in Japanese population compared to white populations and were not associated with Japanese type 1 diabetes, suggesting that there is an allelic heterogeneity between Japanese and white populations.

To date, at least six positive regulatory regions have been identified in the regulation of *IL2RA* expression in the promoter region and intron 1 (6). Although it is unknown how rs706778 and rs3118470 SNPs in intron 1 act to influence the expression of *IL2RA*, searching the TFSEARCH transcription factor

binding site data base with the DNA sequence surrounding the SNPs sites identified the binding site for the Cut-like repressor protein (CR3HD) on the antisense strand of both SNPs. The polymorphic nucleotide in rs706778 A>G and rs3118470 A>G is located at the critical region of the core motif of the CR3HD binding consensus sequence (cATTGATgga; core motif is shown in uppercase, the position at site bold) polymorphic is in (23).Furthermore, it is reported that single nucleotide substitution in the Cut-like protein binding site of the TGF- β type II receptor gene $(T\beta R-II)$ promoter increase the CR3HD binding affinity which induce the reduction of $T\beta R$ -II transcription (24). Thus, it is possible that these SNPs may be involved in regulating the *IL2RA* transcription or altering the splicing of the IL2RA transcript, which could affect the regulatory T cell functions. Further studies of expression of IL2RA transcripts in different together blood cell subsets, with the CR3HD transfection experiment with transcription factor are required to characterize the functional role of these SNPs. In conclusion, the present study indicated that IL2RA is associated with Japanese type 1 diabetes and its contribution to susceptibility to type 1 diabetes is different according to the mode of diabetes onset.

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports and Technology of Japan. We thank Miyuki Moritani and Masaki Miwa for their excellent technical assistance.

References

- Kawasaki E, Gill RG, Eisenbarth GS 1999 Type 1 diabetes mellitus. In: Eisenbarth GS (ed) Molecular Mechanisms of Endocrine and Organ Specific Autoimmunity. R.G. Landes Company, Austin, Texas; pp 149-182
- 2. Kawasaki E, Matsuura N, Eguchi K 2006 Type 1 diabetes in Japan. Diabetologia 49:828-836
- 3. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC, Lawson ML, Robinson LJ, Skraban R, Lu Y, Chiavacci RM, Stanley CA, Kirsch SE, Rappaport EF, Orange JS, Monos DS, Devoto M, Qu HQ, Polychronakos C 2007 A genome-wide association study identifies *KIAA0350* as a type 1 diabetes gene. Nature 448:591-594
- 4. **Wellcome Trust Case Control Consortium** 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661-678
- 5. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey R, Nejentsev S, Field SF, Payne F, Lowe CE, Szeszko JS, Hafler JP, Zeitels L, Yang JH, Vella A, Nutland S, Stevens HE, Schuilenburg H, Coleman G, Maisuria M, Meadows W, Smink LJ, Healy B, Burren OS, Lam AA, Ovington NR, Allen J, Adlem E, Leung HT, Wallace C, Howson JM, Guja C, Ionescu-Tirgoviste C, Simmonds MJ, Heward JM, Gough SC, Dunger DB, Wicker LS, Clayton DG 2007 Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857-864
- 6. **Kim HP, Imbert J, Leonard WJ** 2006 Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17:349-366
- Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B, Jones R, Ring SM, McArdle W, Pembrey ME, Strachan DP, Dunger DB, Twells RC, Clayton DG, Todd JA 2005 Localization of a type 1 diabetes locus in the *IL2RA/CD25* region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 76:773-779
- 8. **Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI** 2005 Defective suppressor function in CD4⁺CD25⁺ T-cells from patients with type 1 diabetes. Diabetes 54:92-99
- Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA 2005 Functional defects and the influence of age on the frequency of CD4⁺ CD25⁺ T-cells in type 1 diabetes. Diabetes 54:1407-1414
- 10. Kobayashi M, Abiru N, Arakawa T, Fukushima K, Zhou H, Kawasaki E, Yamasaki H, Liu E, Miao D, Wong FS, Eisenbarth GS, Eguchi K 2007 Altered B:9-23 insulin, when administered intranasally with cholera toxin adjuvant, suppresses the expression of insulin autoantibodies and prevents diabetes. J Immunol 179:2082-2088
- 11. Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, Bourget K, Plagnol V, Field S, Atkinson M, Clayton DG, Wicker LS, Todd JA 2007 Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the *IL2RA* region in type 1 diabetes. Nat Genet 39:1074-1082
- 12. Ikegami H, Awata T, Kawasaki E, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Amemiya S, Kawabata Y, Kurihara S, Tanaka S, Kanazawa Y, Mochizuki M, Ogihara T 2006 The association of *CTLA4* polymorphism with type 1 diabetes is concentrated in patients complicated with autoimmune thyroid disease: a multicenter collaborative study in Japan. J Clin Endocrinol Metab 91:1087-1092
- 13. Sera Y, Kawasaki E, Abiru N, Ozaki M, Abe T, Takino H, Kondo H, Yamasaki H, Yamaguchi Y, Akazawa S, Nagataki S, Uchigata Y, Matsuura N, Eguchi K 1999 Autoantibodies to multiple islet autoantigens in patients with abrupt onset type 1 diabetes and

diabetes diagnosed with urinary glucose screening. J Autoimmun 13:257-265

- 14. Kawasaki E, Uga M, Nakamura K, Kuriya G, Satoh T, Fujishima K, Ozaki M, Abiru N, Yamasaki H, Wenzlau JM, Davidson HW, Hutton JC, Eguchi K 2008 Association between anti-ZnT8 autoantibody specificities and SLC30A8 Arg325Trp variant in Japanese patients with type 1 diabetes. Diabetologia [Epub ahead of print] PMID: 18850084
- 15. Li SS, Khalid N, Carlson C, Zhao LP 2003 Estimating haplotype frequencies and standard errors for multiple single nucleotide polymorphisms. Biostatistics 4:513-522
- 16. **Nakanishi K, Inoko H** 2006 Combination of HLA-A24, -DQA1*03, and -DR9 contributes to acute-onset and early complete beta-cell destruction in type 1 diabetes: longitudinal study of residual beta-cell function. Diabetes 55:1862-1868
- 17. Abe T, Yamaguchi Y, Takino H, Fujita N, Yamauchi DM, Ozaki M, Yamakawa K, Sera Y, Sakamaki H, Uotani S, Kawasaki E, Awata T, Yamasaki H, Eguchi K 2001 CTLA4 gene polymorphism contributes to the mode of onset of diabetes with antiglutamic acid decarboxylase antibody in Japanese patients: genetic analysis of diabetic patients with antiglutamic acid decarboxylase antibody. Diabet Med 18:726-731
- 18. Kawasaki E, Awata T, Ikegami H, Kobayashi T, Maruyama T, Nakanishi K, Shimada A, Uga M, Kurihara S, Kawabata Y, Tanaka S, Kanazawa Y, Lee I, Eguchi K 2006 Systematic search for single nucleotide polymorphisms in a lymphoid tyrosine phosphatase gene (*PTPN22*): association between a promoter polymorphism and type 1 diabetes in Asian populations. Am J Med Genet A 140:586-593
- 19. Yamada S, Motohashi Y, Yanagawa T, Maruyama T, Kasuga A, Hirose H, Matsubara K, Shimada A, Saruta T 2001 NeuroD/beta2 gene G>A polymorphism may affect onset pattern of type 1 diabetes in Japanese. Diabetes Care 24:1438-1441
- Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, Gough SC 2007 Association of the interleukin-2 receptor alpha (IL-2Rα)/CD25 gene region with Graves' disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf) 66:508-512
- 21. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL 2007 Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357:851-862
- 22. Qu HQ, Montpetit A, Ge B, Hudson TJ, Polychronakos C 2007 Toward further mapping of the association between the *IL2RA* locus and type 1 diabetes. Diabetes 56:1174-1176
- 23. Harada R, Berube G, Tamplin OJ, Denis-Larose C, Nepveu A 1995 DNA-binding specificity of the cut repeats from the human cut-like protein. Mol Cell Biol 15:129-140
- 24. Jackson RJ, Antonia SJ, Wright KL, Moon NS, Nepveu A, Munoz-Antonia T 1999 Human cut-like repressor protein binds TGFbeta type II receptor gene promoter. Arch Biochem Biophys 371:290-300

		Genotypes				Alleles			
	n	AA	Aa	aa	OR * (95%CI)	P value *	A allele	OR (95%CI)	P value
rs706778 A>G									
Controls	602	170 (28.2)	309 (51.3)	123 (20.4)			649 (53.9)		
Type 1 diabetes	877	307 (35.0)	421 (48.0)	149 (17.0)	1.37 (1.09-1.71)	0.0062	1035 (59.0)	1.23 (1.06-1.43)	0.0059
rs3118470 A>G									
Controls	592	159 (26.9)	298 (50.3)	135 (22.8)			616 (52.0)		
Type 1 diabetes	872	206 (23.6)	427 (49.0)	239 (27.4)	1.28 (1.00-1.63)	0.048	839 (48.1)	0.85 (0.74-0.99)	0.037
ss52580101 C>A									
Controls	606	605 (99.8)	1 (0.2)	0 (0.0)			1211 (99.9)		
Type 1 diabetes	881	881 (100)	0 (0.0)	0 (0.0)	NA		1762 (100)	NA	
rs11594656 T>A									
Controls	606	570 (94.1)	35 (5.8)	1 (0.2)			1175 (96.9)		
Type 1 diabetes	882	836 (94.8)	43 (4.9)	2 (0.3)	1.15 (0.73-1.80)	NS	1715 (97.3)	1.10 (0.71-1.70)	NS

 Table 1
 IL2RA polymorphisms in patients with type 1 diabetes and healthy control subjects

Data are n (%) unless otherwise indicated. A, major allele; a, minor allele. * AA vs. Aa+aa for rs706778 and rs11595656, aa vs. AA+Aa for rs3118470 NS, not significant. NA, not applicable

	Acute-onset	Slow-onset	Fulminant	Controls
rs706778 A>G				
n	623	219	24	602
Genotype frequencies				
AA	235 (37.7)	63 (28.8)	7 (29.2)	170 (28.2)
AG	281 (45.1)	122 (55.7)	12 (50.0)	309 (51.3)
GG	107 (17.2)	34 (15.5)	5 (20.8)	123 (20.4)
OR (95%CI) *	1.54 (1.21-1.96)	1.03 (0.73-1.44)	1.05 (0.43-2.57)	
P value *	0.00042	NS	NS	
Allele frequencies				
A	751 (60.3)	248 (56.6)	26 (54.2)	649 (53.9)
G	495 (39.7)	190 (43.4)	22 (45.8)	555 (46.1)
OR (95%CI)	1.30 (1.11-1.52)	1.12 (0.90-1.39)	1.01 (0.57-1.80)	
P value	0.0014	NS	NS	
rs3118470 A>G				
n	622	221	25	592
Genotype frequencies				
AA	145 (23.3)	51 (23.1)	8 (32.0)	159 (26.9)
AG	286 (46.0)	128 (57.9)	12 (48.0)	298 (50.3)
GG	191 (30.7)	42 (19.0)	5 (20.0)	135 (22.8)
OR (95%CI) *	1.50 (1.16-1.94)	0.79 (0.54-1.17)	0.85 (0.31-2.30)	
P value *	0.0019	NS	NS	
Allele frequencies				
A	576 (46.3)	230 (52.0)	28 (56.0)	616 (52.0)
G	668 (53.7)	212 (48.0)	22 (44.0)	568 (48.0)
OR (95%CI)	0.80 (0.68-0.93)	1.00 (0.80-1.24)	1.17 (0.66-2.08)	
P value	0.0048	NS	NS	

Table 2 IL2RA polymorphisms in patients with type 1 diabetes classified by mode of diabetes onset

Data are n (%) unless otherwise indicated. Genotype and allele frequencies were compared between type 1 diabetes and control subjects. * AA vs. AG+GG for rs706778, GG vs. AG+AA for rs3118470. NS, not significant

Haplotypes (rs706778: rs3118470)	Acute-onset type 1 diabetes (n=613) (%)	Controls (n=588) (%)	OR (95%CI)	P value
G:A	38.2	45.1	1.00 (reference)	
A:G	52.3	46.8	1.30 (1.10-1.53)	0.002
A:A	8.0	7.2	1.27 (0.93-1.74)	NS
G:G	1.5	0.9	1.69 (0.76-3.75)	NS

 Table 3
 IL2RA haplotype frequencies in acute-onset patients with type 1 diabetes and healthy control subjects

Haplotypes were estimated by an EM algorithm using Hplus (version 2.5). NS, not significant

	rs706778: rs3118470 A:G haploype (+) vs A:G haploype (-)			
Variable	OR	95% CI	P value	
Age at onset (year)	0.99	0.98-1.01	NS	
Male	0.87	0.60-1.29	NS	
With AITD	1.66	1.00-2.75	0.048	
GAD65 autoantibody titer	1.14	0.74-1.75	NS	
CTLA4 CT60GG present	1.01	0.69-1.50	NS	
High-risk HLA-DR present	1.31	0.78-2.20	NS	

Table 4Logistic regression analysis for the association of clinical and genetic parameters with *IL2RA*risk haplotype among acute-onset patients with type 1 diabetes

AITD, autoimmune thyroid disease. CT60, *CTLA4* +6230G>A. High-risk HLA-*DR*, *DR*4/4, 4/X, 9/9, but not *DQB1**0601/*0602. NS, Not significant