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Summary 1 

PGAM5 is a unique type of protein phosphatase that exists in mitochondria. It has been 2 

shown to exist in the inner mitochondrial membrane through its transmembrane domain and 3 

to be cleaved within the transmembrane domain upon mitochondrial dysfunction. However, 4 

its submitochondrial localization remains controversial; many researchers claim that 5 

PGAM5 localizes to the outer mitochondrial membrane based on the findings that PGAM5 6 

associates with many cytoplasmic proteins. Here, we found that cleaved PGAM5 was 7 

released from mitochondria during mitophagy, a selective form of autophagy specific for 8 

mitochondria, and that the release was inhibited by proteasome inhibitors in HeLa cells 9 

stably expressing the E3 ubiquitin ligase Parkin. However, treatment of parental HeLa cells 10 

lacking Parkin with mitophagy-inducing agents caused PGAM5 cleavage but did not cause 11 

its release from mitochondria. Thus, cleaved PGAM5 appears to be released from 12 

mitochondria depending on proteasome-mediated rupture of the outer membrane during 13 

mitophagy, which has been previously shown to precede autophagy-mediated degradation of 14 

whole mitochondria. This study suggests that PGAM5 senses mitochondrial dysfunction in 15 

the inner mitochondrial membrane and serves as a signaling intermediate that regulates the 16 

cellular response to mitochondrial stress upon its cleavage and release from mitochondria. 17 

 18 
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Introduction 1 

Mitophagy is the autophagy-based degradation machinery selective for mitochondria and 2 

constitutes a major part of the mitochondrial quality control system (1, 2). A large body of 3 

evidence has revealed that the E3 ubiquitin ligase Parkin and mitochondrial serine/threonine 4 

kinase PINK1 play crucial roles in mitophagy induction. In damaged mitochondria with loss 5 

of membrane potential (Δψm), PINK1 accumulates on the outer mitochondrial membrane 6 

(OMM) and recruits Parkin to mitochondria where Parkin is activated. Parkin then 7 

ubiquitinates and degrades various OMM proteins, triggering proteasome-mediated OMM 8 

rupture prior to complete degradation of mitochondria through autophagy machinery (3, 4). 9 

 Phosphoglycerate mutase family member 5 (PGAM5) is a unique type of protein 10 

phosphatase that exists in mitochondria and is proposed to be involved in various biological 11 

processes such as apoptosis, necroptosis, lipid metabolism, inflammation, and immune 12 

responses (5-10). We have previously shown that PGAM5 exists in the inner mitochondrial 13 

membrane (IMM) through its N-terminal transmembrane (TM) domain (11) . However, its 14 

submitochondrial localization remains controversial; several reports have shown that 15 

PGAM5 functions through binding to cytoplasmic proteins, such as Drp1, FUNDC1, 16 

nucleoside diphosphate kinase B, KEAP1, Nrf2, and RIPK1, suggesting that PGAM5 exists 17 

in the OMM (6, 12-15). 18 

 A strong piece of evidence of the existence of PGAM5 in the IMM at least in 19 

unstressed cells is that PGAM5 is cleaved within the TM domain in response to loss of 20 

mitochondrial Δψm and that the responsible proteases that cleave PGAM5 are the 21 

IMM-resident proteases, presenilin-associated rhomboid-like protein (PARL) and OMA1 22 

(overlapping activity with m-AAA protease) (11, 16). These findings strongly suggest that 23 

PGAM5 is integrated into the IMM, rather than the OMM, through its N-terminal TM 24 
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domain, and intramembrane cleavage of PGAM5 may be an important component of the 1 

sensing system of loss of mitochondrial Δψm. 2 

PGAM5 has recently been proposed to be involved in regulation of mitophagy (12, 3 

15, 17). Because recent reports have shown that the cleaved form of PGAM5 is released 4 

from mitochondria under certain conditions by a mechanism that is not fully understood (8, 5 

18, 19), we examined whether PGAM5 is cleaved and released from mitochondria during 6 

mitophagy. 7 

 8 
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Materials and Methods 1 

 2 

Reagents 3 

Antimycin A, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and oligomycin A were 4 

purchased from Wako Chemical (Osaka, Japan). Oligomycin A was also purchased from 5 

Cayman Chemical (Ann Arbor, MI). MG132 and epoxomicin were purchased from Enzo Life 6 

Sciences (Farmingdale, NY) and Peptide Institute (Osaka, Japan), respectively. 7 

 8 

Cell culture 9 

HeLa cells stably expressing HA-tagged Parkin (Parkin-HeLa cells) were established 10 

previously (20) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) (high 11 

glucose; Wako Chemical) containing 8% fetal bovine serum (FBS), 100 U/ml penicillin G, 12 

0.1 mg/ml streptomycin, 1 mM sodium pyruvate, 1× MEM non-essential amino acids 13 

(Thermo Fisher Scientific, Waltham, MA), and 5 μg/ml puromycin under a 5% CO2 14 

atmosphere at 37°C. HeLa cells were cultured in DMEM (high glucose) containing 8% FBS, 15 

100 U/ml penicillin G and 0.1 mg/ml streptomycin under a 5% CO2 atmosphere at 37°C. 16 

 17 

Immunofluorescence microscopy 18 

Cells grown on glass coverslips were fixed with 3.7% paraformaldehyde and permeabilized 19 

with 0.25% Triton X-100. After blocking with 2.5% BSA, the cells were stained with a 20 

1:100- or 1:200-diluted anti-PGAM5 rat monoclonal antibody (clone K1B6) (11) and 21 

1:200-diluted anti-Tom20 antibody (FL-145; Santa Cruz Biotechnology, Dallas, TX). 22 

Immune complexes were detected with 1:200-diluted anti-rat IgG Alexa Fluor 488 and 23 

1:200-diluted anti-rabbit IgG Alexa Fluor 546 (Thermo Fisher Scientific). Nuclei were 24 
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counterstained with 20 µM Hoechst 33342 (bisbenzimide; Sigma-Aldrich, St. Louis, MO). 1 

Images were acquired by a confocal microscopy (LSM710; Zeiss, Jena, Germany). 2 

 3 

Subcellular fractionation 4 

Parkin-HeLa cells were collected in ice-old PBS and centrifuged at 2,400 g for 2 min. The 5 

cells were suspended in 800 µl homogenization buffer [20 mM HEPES buffer (pH 7.9) 6 

containing 0.22 M mannitol, 0.08 M sucrose, 5 µg/ml aprotinin, and 1 mM 7 

phenylmethylsulfonyl fluoride]. After centrifugation at 2,400 g for 2 min, the cells were 8 

resuspended in 800 µl homogenization buffer. After centrifugation at 2,400 g for 2 min, the 9 

cells were resuspended in 400 µl homogenization buffer and homogenized using a syringe 10 

with a 27-G needle. The homogenate was centrifuged at 310 g for 5 min, and the resulting 11 

supernatant was transferred to a new tube as the post-nuclear supernatant (PNS). After a 12 

sample (22 µl) of the PNS was set aside for immunoblot analysis, the residual PNS was 13 

centrifuged at 5,000 g for 5 min. Approximately 300 µl supernatant was obtained as the 14 

cytosolic fraction. The mitochondria-enriched pellet was suspended in 300 µl 15 

homogenization buffer. An equal volume of cytosol and mitochondrial fractions together 16 

with the PNS were subjected to immunoblot analysis.  17 

 18 

Immunoblot analysis 19 

Cells were lysed in buffer containing 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EGTA, 20 

1% Triton X-100, 5 µg/ml aprotinin, and 1 mM phenylmethylsulfonyl fluoride. After 21 

centrifugation at 21,500 g for 15 min, the supernatants were collected as cell lysates. Cell 22 

lysates were then fractionated by SDS-polyacrylamide gel electrophoresis and electroblotted 23 

onto polyvinylidene difluoride membranes. The membranes were probed with primary 24 



 7

antibodies and horseradish peroxidase (HRP)-conjugated secondary antibodies. Protein 1 

bands were visualized using the enhanced chemiluminescence system and analyzed with an 2 

ImageQuant LAS4000 (GE Healthcare, Piscataway, NJ) or ChemiDoc Touch (Bio-Rad, 3 

Hercules, CA). The following primary antibodies were used in this study: anti-PGAM5 4 

antibody (RTL) (5), anti-Tom20 antibody (F-10 or FL-145; Santa Cruz Biotechnology), 5 

anti-ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) (clone 16D10AD9AH5; 6 

Thermo Fisher Scientific), and anti-α-tubulin antibody (clone 11H10; Cell Signaling, 7 

Danvers, MA). HRP-conjugated anti-mouse IgG (GE Healthcare) and HRP-conjugated 8 

anti-rabbit IgG (Cell Signaling) were used as secondary antibodies. 9 

  10 
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Results and Discussion 1 

As shown in many studies, PGAM5 was confined to mitochondria that were stained with an 2 

antibody against the OMM protein Tom20 in unstimulated HeLa cells stably expressing 3 

HA-tagged Parkin (Parkin-HeLa cells) (Fig. 1A and B). When the cells were treated with 4 

CCCP, an uncoupler (protonophore) that effectively induces mitophagy, for 12 h, 5 

mitochondria accumulated in perinuclear regions. However, in approximately 30% of cells, 6 

PGAM5 was diffusely distributed in the cytosol and no longer co-localized with Tom20 (Fig. 7 

1A-C). In immunoblotting, a doublet band of PGAM5 observed in unstimulated cells 8 

converged with a lower band that corresponded to the cleaved molecule in response to CCCP 9 

(Fig. 1D). Subcellular fractionation data showed that the proportion of cleaved PGAM5 in 10 

the cytosol to that in mitochondria was much higher in CCCP-treated cells than in untreated 11 

cells (Fig. 1E). However, CCCP induced cleavage of PGAM5, but did not induce the release 12 

of PGAM5 from mitochondria in parental HeLa cells that are known not to express 13 

endogenous Parkin (Fig. 2). These results suggest that the cleaved form of PGAM5 is 14 

released from mitochondria during Parkin-dependent mitophagy. 15 

We next examined whether the release of PGAM5 from mitochondria depended on 16 

Parkin-induced OMM rupture through the ubiquitin-proteasome system. We found that the 17 

CCCP-induced dynamic changes in the location of PGAM5 were clearly inhibited by 18 

treatment of the cells with proteasome inhibitors MG132 or epoxomicin (Fig. 1A and C), 19 

although PGAM5 cleavage was not inhibited (Fig. 1D). Subcellular fractionation data also 20 

showed that the proportion of cleaved PGAM5 in the cytosol to that in mitochondria 21 

decreased in response to the proteasome inhibitors (Fig. 1F). However, the effects of the 22 

inhibitors on the release of PGAM5 from mitochondria was much weaker in subcellular 23 

fractionation than in immunofluorescence. The proteasome inhibitors may prevent 24 
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proteasome-dependent OMM rupture but may not be enough to maintain the integrity of the 1 

OMM in CCCP-treated cells. Thus, a substantial amount of cleaved PGAM5 might be 2 

artificially released from mitochondria during homogenization of cells in subcellular 3 

fractionation. These results suggest that cleaved PGAM5 is released from mitochondria upon 4 

proteasome-dependent OMM rupture triggered by Parkin. 5 

Although CCCP effectively induces mitophagy, it affects various biological 6 

processes other than those in mitochondria as a protonophore. Thus, we employed 7 

simultaneous treatment of cells with oligomycin A and antimycin A (OA), which inhibit 8 

mitochondrial electron transport chain complex III and ATP synthase, respectively, and have 9 

been previously shown to induce mitophagy (21). We initially tested various doses of OA 10 

and found that the combination of 500 nM oligomycin A and 50 nM antimycin A induced a 11 

time-dependent decrease of Tom20 in a manner similar to that induced by 10 µM CCCP (Fig. 12 

3A). Subcellular fractionation demonstrated that OA treatment also induced the release of 13 

cleaved PGAM5 from mitochondria to the cytosol (Fig. 3B). However, it was difficult to 14 

determine the proportion of cells with cytosolic PGAM5 in OA-treated cells using 15 

immunofluorescence because the immunofluorescence signal of cytosolic PGAM5 in 16 

OA-treated cells was generally low and difficult to distinguish from a background signal. 17 

This appeared to be caused by the lower efficiency of PGAM5 cleavage in OA-treated cells 18 

than in CCCP-treated cells (Fig. 3A). The OA-induced release of cleaved PGAM5 from 19 

mitochondria was also inhibited by treatment of the cells with the proteasome inhibitors (Fig. 20 

3C), although cleavage of PGAM5 was not inhibited (Fig. 3D). Taken together, PGAM5 21 

appears to be cleaved in the initial step of mitophagy and released from mitochondria 22 

depending on proteasome-dependent rupture of the OMM during mitophagy (Fig. 4). 23 

In this study, we employed CCCP or OA as stimuli to induce robust mitophagy in 24 
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which most mitochondria within a cell lose their function in a synchronized manner. 1 

However, under more physiological settings, PGAM5 may be released from a fraction of 2 

mitochondria that reduce their Δψm and therefore lose their intact OMM structure even under 3 

mildly stressed conditions. Thus, there is the possibility that cytoplasmic proteins, which 4 

have been reported as binding proteins of PGAM5, function together with PGAM5 that is 5 

cleaved and released from the IMM upon mitochondrial dysfunction. It has been recently 6 

reported that cleaved PGAM5 dephosphorylates and thus stabilizes β-catenin in the cytosol, 7 

leading to cell-intrinsic activation of Wnt signaling (19). In this report, an interesting 8 

outcome of this activation was proposed to be biogenesis of mitochondria. Thus, PGAM5 9 

might regulate the balance between degradation and biogenesis of mitochondria during 10 

mitophagy. Further elucidation of the role of PGAM5 outside mitochondria will shed light 11 

on its importance as a signaling intermediate that coordinates cellular response to 12 

mitochondrial stress. 13 
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Figure legends   1 

 2 

Figure 1. CCCP induces the release of PGAM5 from mitochondria depending on 3 

proteasome activity in Parkin-HeLa cells. 4 

(A) Parkin-HeLa cells were pretreated with 1 µM MG132 or epoxomicin for 30 min and then 5 

treated with 10 µM CCCP for 12 h. The cells were stained with antibodies against PGAM5 6 

and Tom20 (OMM marker). Yellow arrowheads indicate cells with PGAM5 released from 7 

mitochondria. Scale bar, 20 µm. The experiments were done three times with similar results. 8 

(B) Magnified cells in the highlighted boxes in (A). Scale bar, 10 µm. (C) The proportion of 9 

cells with cytosolic PGAM5. At least 120 cells were determined in each condition in (A). 10 

Data are shown as the mean ± SD (n = 3). Epox, epoxomicin. (D) Parkin-HeLa cells were 11 

pretreated with 1 µM MG132 or epoxomicin for 30 min and then treated with 10 µM CCCP 12 

for the indicated times. The cells were subjected to immunoblot analysis using antibodies 13 

against PGAM5, Tom20, and α-tubulin (cytosol marker). FL and CL indicate full length and 14 

cleaved PGAM5, respectively. The experiments were done three times with similar results. 15 

(E, F) Parkin-HeLa cells were treated with 10 µM CCCP for 10 h and then subjected to 16 

subcellular fractionation. In (F), cells were pretreated with 5 µM MG132 or epoxomicin 17 

(Epox) for 1 h prior to CCCP treatment. The post-nuclear supernatant (P), mitochondrial 18 

fraction (Mt), and cytosolic fraction (Cy) were subjected to immunoblot analysis using 19 

antibodies against PGAM5, Tom20, UQCRC1 (matrix marker), and α-tubulin. The 20 

experiments were done three times with similar results. 21 

 22 

Figure 2. CCCP does not induce the release of PGAM5 from mitochondria in HeLa 23 

cells. 24 
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(A) HeLa cells were treated with 10 µM CCCP for 12 h. The cells were stained with 1 

antibodies against PGAM5 and Tom20. Scale bar, 20 µm. The experiments were done three 2 

times with similar results. (B) HeLa cells were treated with 10 µM CCCP for the indicated 3 

times. The cells were subjected to immunoblot analysis using the indicated antibodies. FL 4 

and CL indicate full length and cleaved PGAM5, respectively. The experiments were done 5 

three times with similar results. 6 

 7 

Figure 3. Simultaneous treatment of Parkin-HeLa cells with oligomycin A and 8 

antimycin A induces the release of PGAM5 from mitochondria depending on 9 

proteasome activity. 10 

(A) Parkin-HeLa cells were treated with the indicated doses of oligomycin A, antimycin A, 11 

and CCCP for the indicated times. The cells were subjected to immunoblot analysis using the 12 

indicated antibodies. FL and CL indicate full length and cleaved PGAM5, respectively. The 13 

experiments were done two times with similar results. (B, C) Parkin-HeLa cells were treated 14 

with 500 nM oligomycin A and 50 nM antimycin A (OA) for 10 h and then subjected to 15 

subcellular fractionation. In (C), cells were pretreated with 5 µM MG132 or epoxomicin 16 

(Epox) for 1 h prior to OA treatment. The post-nuclear supernatant (P), mitochondrial 17 

fraction (Mt), and cytosolic fraction (Cy) were subjected to immunoblot analysis using the 18 

indicated antibodies. The experiment was repeated three times with similar results. (D) 19 

Parkin-HeLa cells were pretreated with 1 µM MG132 or epoxomicin for 30 min and then 20 

treated with 500 nM oligomycin A and 50 nM antimycin A for the indicated times. The cells 21 

were subjected to immunoblot analysis using the indicated antibodies. The experiment was 22 

repeated three times with similar results.  23 

 24 
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Figure 4. A proposed model of release of cleaved PGAM5 from mitochondria during 1 

mitophagy 2 

PGAM5 is cleaved within the TM domain in response to loss of mitochondrial membrane 3 

potential (Δψm) in the initial step of PINK1-Parkin-dependent mitophagy and released from 4 

mitochondria depending on proteasome-mediated rupture of the OMM.  5 
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