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Abstract 

During earthquake excitations, axial forces fluctuate together with bending moment fluctuations, 

especially in portal frame bridge piers and the arch-ribs of arch bridges. Conventionally, however, the axial 

force is treated as constant when evaluating the capacity of structures under seismic loading. In this paper, the 

influence of axial force fluctuations on the maximum strength and ductility of short steel cylinders is 

considered in an effort to establish practical formulations for the seismic design of steel bridge members with 

pipe sections. Elastoplastic large-displacement analysis is carried out on parametric models generated by 

setting the radius-thickness ratio as the main structural parameter. Bending behavior under constant and 

fluctuating axial force is compared, where the final value of considered axial force fluctuation is the same as 

the axial force magnitude in the constant axial force case. It is found that the moment and ductile capacity 

corresponding to the post-peak region of bending behavior are significantly improved when the axial force 

fluctuation is considered. Design formulae for failure strain taking into account this capacity improvement are 

proposed for different limit states. The validity of the proposed formulae is demonstrated through numerical 

analysis. 

Keywords: Short cylinders, axial force fluctuation, elastoplastic large displacement analysis, seismic design, 

steel bridges. 

1. Introduction 

Steel pipe sections are widely employed in bridges on Japan's road network, especially in cantilever 

bridge piers. They are susceptible to loss of capacity with the occurrence of local buckling, since such sections 

are generally characterized by a large ratio of radius to component plate thickness. This kind of damage was 

observed extensively during the Hyogo-ken Nanbu Earthquake in the shape of so-called ‘elephant-foot’ 

buckling [1]. 

In the latest Japanese design code for highway bridges (JRA code) [2], published after the Hyogo-ken 
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Nanbu Earthquake, a performance-based seismic design method is specified in which the structural seismic 

demand is compared with the capacity of the members. The capacity of the steel components must be 

determined based on the results of cyclic loading tests using specimens or through analysis capable of 

considering local buckling effects. In practice, the results of investigations that include loading tests or 

numerical evaluations of similar structure are used instead of time-consuming cyclic loading tests or 

elastoplastic large-displacement analysis. But there is a great need for simplified calculation methods able to 

express the ultimate strength and deformation of structural members. In particular, ductile capacity is very 

important since deformation-based design is a more rational approach to seismic design for extreme ground 

motions. 

Some previous investigations have involved the study of the ductility of cylinders subjected to pure 

compression or bending [3- 6]. As for steel bridge piers subjected to combined compression and bending, a 

number of experiments and numerical analyses have shown that local buckling of thin-walled steel structures 

always happens in the compressive flange within the effective failure range [7-10] and that maximum 

structural ductility is governed by the capacity of this critical local part. The ductility of this part was 

investigated by Gao et al. [11] through numerical analysis of short cylinders subjected to monotonic loading. 

The results were compared with earlier loading test results [12] and empirical ductility equations for 

stub-columns, which are expected to simulate the behavior of the local buckling part, were presented. These 

equations were modified by Ge et al. [13] to extend their applicability to a wider range of axial force 

magnitudes. Their formulation is very reliable for use under constant axial force considerations. However, in 

many structures the axial force fluctuates considerably along with the bending moment during an earthquake. 

This fluctuation is significant and may have some influence on capacity, especially in portal frame bridge piers 

and arch bridges. Aoki et al. [14] conducted cyclic loading tests using a varying axial load on individual 

column specimens from portal frames. They found that ductility was slightly improved compared to the 

constant axial load case under a loading condition where a small amount of variation at a moderate axial force 

magnitude is considered. This finding suggests that different degrees of improvement may be obtained under 

different loading conditions. For this reason, it is necessary to evaluate the influence of axial force fluctuation 

on the ductility of steel members under a variety of structural and loading conditions and establish formulae 

that take this influence into account. Such formulae would contribute to the rationalization of seismic design 

taking improved ductility into account. 

The main aim of this study is to develop design formulae for predicting the failure strain of short steel 
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cylinders under a bending load with axial force fluctuation. First, elastoplastic large-displacement analysis of 

parametric short steel cylinder models is carried out. Then, bending behavior in various constant and 

fluctuating axial force cases is compared in order to evaluate the effect of axial force fluctuation on ductility 

and strength. Finally, design formulae for failure strain with different limit state definitions are proposed on the 

basis of these results. 

2. Numerical Analysis Method 

2.1 Analyzed Models 

The influence of axial force fluctuation on the bending behavior of short steel cylinders is examined 

numerically for nine models with the structural parameters listed in Table 1. 

The radius-thickness ratio parameter (Rt) is adopted as the main structural parameter. It is defined by 

 t
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where, E = Young`s modulus,  = Poisson`s ratio, y = yield stress, D = Diameter of the cylinder and t = 

thickness of cylinder wall. Cylinders with Rt values ranging from 0.05 to 0.5 are generated by changing the 

diameter of the cylinder only, keeping an identical thickness of 20mm. 

For a thin-walled cylinder subjected to compressive loading or a bending moment, buckling occurs 

symmetrically with respect to the axis of the cylinder in the shape of several half sine waves [15]. In this study 

short cylindrical segments equal in length to the critical wavelength, i.e. the length which provides the 

minimum ultimate strength, are adopted. The empirical formula (2) proposed by Gao et al.[11] is employed. 

This agrees well with Timoshenko`s elastic shell theory for obtaining critical cylinder length. 
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The short cylinders are modeled and analyzed using general purpose MARC [16] nonlinear FE analysis 

software. Because of the symmetry about the midsurface in the longitudinal direction, only half of each 

cylinder needs to be modeled, since the buckling localization phenomenon does not take place for cylinders 

where the length/radius ratio is less than 1 [17, 18]. A type of four-node doubly curved shell element (No. 75) 

included in the MARC element library is adopted for cylinder modeling. The finite element mesh of a cylinder 

model is shown in Fig. 1. The numbers of divisions in the circumferential and longitudinal directions are 90 

and 10, respectively. 

A type of steel stress-strain relation that includes a strain-hardening component, as proposed by Usami et 

al. [19], is utilized (Fig 2). Here y and y denote the yield stress and strain, respectively. st is the strain at the 
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onset of strain hardening. Est is the initial strain-hardening modulus and E` is the strain-hardening modulus 

assumed as 
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where  = material coefficient. In this study, mild steel SS400 is utilized with y = 235 MPa, E = 206 GPa,  = 

0.3, st = 10y  Est = E/40 and  = 0.06. 

A simply supported boundary condition is assumed for the edges of the short cylinder to ensure that local 

buckling takes the form of a half sine wave. The deformed configuration of an analyzed cylinder is shown in 

Fig. 3. It can be observed that the outward displacement takes the form of a single half wave when the 

symmetrical displacement in the lower part of the cylinder is taken into account.  

Two kinds of initial imperfection are considered in the analyses: initial geometrical deflection due to 

manufacturing and residual stress due to welding. An initial imperfection in the shape of a single half wave in 

the outward displacement is assumed according to equation (4) since a deflection pattern having the same 

shape as the buckled geometry will lead to the most unfavorable bending behavior. 
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Here, w is the outward displacement at coordinate z starting from the bottom of the half cylinder and wmax is 

the maximum outward displacement. Both the moment capacity and ductility decreases with increasing wmax. 

Here, wmax is taken as 0.0025L, a realistic value that is the average of the measured maximum deflections of 

test specimens in a prior experimental study [12]. Geometrical imperfections in the circumferential direction 

are not considered as they have been observed to have no significant influence on the maximum strength and 

ductility of short cylinders [11]. 

In this analysis, an idealized form of the residual stress distribution due to welding is employed, as 

illustrated in Fig. 4. The welding point is arranged to be on the compression side so as to obtain a conservative 

estimate of capacity. 

2.2 Loading Conditions 

In many structures, axial force fluctuates significantly together with the bending moment during an earthquake. 

A typical fluctuation pattern is given in Fig. 5, which shows the relationships between axial force and bending 

moment for a portal frame bridge pier and for the arch-rib of a deck-type steel arch bridge under in-plane excitations. 

It can be seen that both relations have a linear form, although the one for the arch bridge is more complicated 

because of the complexity of the structure.  
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In this study, the monotonic loading shown in Fig. 6 is adopted as an idealization of this kind of cyclic 

fluctuation. During loading, the axial force and bending moment increase together in a linear manner. They reach 

their maximum values at the same instant and start decreasing together after that. Although the axial force and 

bending moment relationship tends to be more complicated in arch bridges due to the contribution of the higher 

modes to the overall response, the loading condition used here is considered to be sufficient, as it will lead to 

conservative capacity estimations. 

In order to simulate the axial force fluctuation, an eccentric displacement load (P) that results in linear 

axial force and bending moment increments at upper segment center of the cylinder is applied, as shown in Fig. 

7. The top of this upper segment is constrained as a rigid plane and linked to the center node to impose 

bending of the cylinder. A load (Pi) that accounts for the initial value of the axial force fluctuation is applied to 

this node and the final axial force (Pf) is adjusted to the desired value by adjusting the eccentricity (e). The 

results are compared with the constant axial force case, in which the final axial force of the fluctuating axial 

force case is applied to the center node as a fixed value. In the constant axial force case, bending behavior is 

obtained by applying rotation increments to the center node. 

It should be noted that the moment is assumed to have a uniform distribution in both the fluctuating and 

constant axial force loadings, as shown in the sketch in Fig. 8a, whereas seismic action would cause a moment 

gradient in steel bridge piers. This assumption is based on a study by Zheng at al. [10] who pointed out that 

although the bending moment capacity increases with a decrease in moment gradient (defined as M1/M2 in Fig. 

8b), the ductility changes slightly. Furthermore, the cylinders in this study are quite short compared to their 

diameters, making the influence of the moment gradient quite negligible. 

The main focus in this paper is on evaluating the influence of the axial force fluctuation on ductility. This 

is represented by the failure strain, which is defined as the average strain at the outmost edge on the 

compressive side and is calculated by 

 
L

u2
  (5) 

where u = longitudinal displacement of the upper or lower end of the compressive side (point A in Fig. 8a) and 

L = length of the short cylinder. 

2.3 Axial Force Fluctuation Parameters 

Analyses with different axial force fluctuation patterns are carried out for three different final axial force 

levels, as illustrated in Table 2. The amount of axial force fluctuation () is the ratio of final axial force (Pf) to 
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initial axial force (Pi). Different -values are obtained by changing the initial axial force for a given final axial 

force level. Additionally, analysis with constant axial force, which is represented by  = 1, is carried out for 

each final axial force case. The final axial force values are selected as 20%, 40% and 60% of the squash load 

(Py) of the cylinders and for each case different fluctuation amounts of 1.5, 2 and 3 are employed. These axial 

force fluctuation parameters are considered to represent a wide range of realistic values of axial force 

fluctuations that can take place in the sections of steel bridges under severe earthquake excitations. 

3. Influence of Axial Force Fluctuations 

3.1 Verification of loading conditions 

The various different axial force patterns are illustrated in Fig. 9 together with the corresponding bending 

behavior for Model 4 (Rt = 0.125) with respect to the rotation of the section when the final axial force is 0.6Py. 

All axes are normalized by their values at the yield state. It can be seen that the maximums of axial force and 

bending moment take place at the same rotational instants and that variations in bending moment and axial 

force are similar to the assumed monotonic loading condition shown in Fig. 6. This suggests that simulation by 

eccentric loading is an efficient analogy for considering axial force fluctuations in short cylinder models. 

3.2 Moment-rotation relationship 

In the bending behavior of Model 4 shown in Fig. 9 it can be observed that the ultimate moment 

capacities of constant axial force and different fluctuating axial force cases are the same. However, there is 

significant difference after the maximum moment is reached. In the post-peak region, the moment for 

fluctuating axial force cases is observed to drop more slowly, resulting in higher ductility which is more 

significant for higher amounts of fluctuation. The axial force in the fluctuating axial force case decreases after 

the peak value, whereas it is maintained even after the maximum load in the constant axial force case. This 

induces the difference in moment-rotation relationships in the post-peak region. Although the constant axial 

force case is a more severe loading condition resulting in conservative design, it is more realistic to take the 

axial force fluctuation and the corresponding reduction in the post-peak region into consideration, leading to 

more rational design of steel sections. 

3.3 Ductility 

There are some design codes which allow for post-peak behavior up to 95% [20], 90% [20] and even as 

far as 80% [21] of the moment capacity. In order to study the ductility improvement at different post-peak 

locations, limit states in the present study are selected by defining the failure strain as the strain corresponding 

to the 95%, 90% and 80% of maximum post-peak moment, namely M95, M90, M80 (See Fig. 10). The ductility 
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in constant and fluctuating axial force cases at these limit states is compared for a given final axial force level 

in Table 2. The comparison is illustrated in Fig. 11, where the ratio of failure strain for the axial force 

fluctuation case under consideration to that of the corresponding constant axial force case is plotted with 

respect to the Rt parameter for all final axial force levels. It can be seen that the improvement obtained by 

considering the effect of axial force fluctuation in post-peak ductility is valid for all models. The improvement 

is directly proportional to the final axial force level and the amount of axial force fluctuation. These two 

tendencies are more obvious when further post-peak behavior is considered. It can be also seen that the results 

follow a similar path with respect to the Rt value, although the ratio is larger when Rt is between 0.06 and 0.1. 

Excluding these scattered values, the overall trend of the improvement ratio can be approximated by the curves 

shown in the figure. 

3.4 Comparison with existing numerical results 

To verify the validity of the obtained results, normalized failure strain (u/y) in the constant axial force 

case is compared with values computed using formula (6) given by Ge et al. [13] for 95% of the ultimate 

post-peak strength, treating the axial force as a constant value. 
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Fig. 12 illustrates this comparison for the constant axial forces of 0.1Py, 0.2Py and 0.3Py. Additionally the 

individual normalized failure strains obtained in the present study are compared with those given by Gao et al. 

[11] in Table 3. It is seen that the results show sufficiently good agreement. 

4. Design Formulae 

4.1 Generation of formulae 

Rather than generating a completely new formula, we propose accounting for the influence of axial force 

fluctuation in the design procedure by modifying the existing constant axial force formula with appropriate 

correction functions. 

The correction functions are developed based on curves approximating the relationship shown in Fig. 11. 

These curves are obtained by using the least squares method to approximate all analysis results for one -value 

as a power function of Rt. The individual curve functions are combined into a single function for each limit 

state and given as equations (7-9) using the influence of the amount of axial force fluctuation and the final 

axial force level to position the curves. 
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By using these proposed correction functions (7-9), it is possible to estimate the failure strain in 

consideration of the axial force fluctuation effect for a given Rt value and given axial force fluctuation 

parameters if the corresponding value for the constant axial force case is known. Equation (6) may be utilized 

as the formula for the constant axial force case, but it is available only for the limit state corresponding to M95 

(See Fig. 10.). For the other two limit states, similar equations are generated as shown below:  
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Estimates of failure strain obtained with the newly developed constant axial force case formulae of M90 

and M80 are compared with the results of analysis for various constant axial force magnitudes in Fig. 13. 

Results for the pure bending case (P/Py = 0) are also plotted. The equations result in fairly accurate and 

conservative estimates for axial forces of moderate magnitude, whereas the formulae tend to give inaccurate 

results for axial forces more than 0.6Py. It should be noted that such high axial force levels are not usually 

considered in the design procedure. The upper limit for the estimation of normalized failure strain is set at 20, 

a realistic value similar to equation (6) given by Ge et al., since higher failure strains may cause problems due 

to low cycle fatigue or brittle fracture although there is no risk of local buckling. 

4.2 Estimation of ductility using proposed formulae 

The main steps involved in estimating failure strain using the proposed formulae are summarized below 

and illustrated in Fig. 14. 

1) Calculate the seismic demand of the structure and get the initial (Pi) and maximum (Pf) values of axial 

force occurring in the pipe section under consideration. 

2) With the assumption of monotonic loading, calculate the -value defined as Pf /Pi using the values 
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obtained in 1). 

3) Estimate the failure strain using the constant axial force case formula (equations (6), (10), (11)) for the 

desired limit states by substituting the maximum axial force Pf for P. 

4) Calculate the value of the correction function (equations (7), (8), (9)) for the corresponding limit state 

using the axial force fluctuation parameter in 2). Then multiply the obtained value with the result of 3) to get 

the final estimates. 

4.3 Application range of the estimation 

The range of loading conditions for which estimations with the proposed formulae are applicable is 

investigated by evaluating the accuracy of the estimates for axial force fluctuation patterns not considered 

during the generation of the correction functions. A wide range of realistic cases are studied by adding 

different amounts of axial force fluctuation to the initial axial force levels of 0.1Py, 0.2Py, 0.3Py and 0.4Py, as 

shown in Table 4. Within the range of -values from 1.25 to 4, most of the estimates are found to be on the 

conservative side, with an error of less than 20% if the final axial force does not exceed 0.6Py (the upper 

applicable limit of the constant axial force case formulae). This region is specified as the applicable range of 

the estimation and is marked in Table 4. Outside this region, the accuracy of estimates is low and there are 

many cases for which estimates on the safe side cannot be achieved. In Fig. 15, the accuracy of estimates 

within the applicable range is illustrated by plotting estimates against analysis results. It can be seen that 

conservative and fairly accurate estimations are achieved especially when the failure strain is between 5 and 20, 

which is the preferred ductility range for seismic design considerations. 

Although the proposed formulae cover a wide range of Rt values from 0.05 to 0.5, the requirement for 

high ductility in design limits the practical application range of the proposed formulae in terms of Rt. In 

practice, Rt values between 0.05 and 0.11 find most common application for pipe sections in steel bridge piers. 

On the other hand, Rt = 0.3 can be set as a reliable upper limit since there has been a study [6] in which the 

validity of large-displacement finite element analysis for large-diameter steel cylinders with Rt as much as 0.3 

is verified through comparison with test results. 

Investigations have revealed that the ultimate ductile capacity decreases when the length of the strain 

plateau increases and when the slope of strain hardening diminishes. Since the steel (type SS400) used in this 

numerical analysis has a relatively long yield plateau (st = 10y) and a small strain hardening slope (E/40) 

compared to other types of steel used in Japan, the proposed formulae are considered applicable also for 

conservative estimates of different steel types. 
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4.4 Efficiency of the proposed formulae 

The proposed formulae increase the efficiency of limit state design by magnifying the failure strain 

obtained with the constant axial force assumption using correction functions accounting for the influence of 

axial force fluctuations. This leads to design with a higher radius-thickness ratio for a given ductility demand. 

Table 5 contains limit values of Rt for certain required ductility values for three limit states. For a given 

ductility demand, the limit values of Rt can be obtained from this table. For example, if the normalized failure 

strain is required to be more than 8 under the conditions of Pf/Py=0.2 and =3 for the M95 limit state, the Rt 

value should not exceed 0.097, which is a higher value than the  = 1 case. It is seen that the increase in the 

limit Rt value becomes more noticeable when the amount of axial force fluctuation is larger and when higher 

axial force magnitudes are considered. The table illustrates the limit values only for moderate final axial force 

magnitudes, i.e. less than 0.3Py. The efficiency improvement will be more obvious for higher axial force 

levels between Pf/Py = 0.3 and Pf/Py = 0.6. 

5. Conclusions 

This study involved the elastoplastic large-displacement analysis of short steel cylinders subjected to a 

bending moment together with axial force fluctuations. The bending behavior of the cylinders was compared 

with the conventional constant axial force case and the dominant factors in the observed difference were 

clarified. Based on he results of this examination, design formulae that take into account axial force 

fluctuations were developed for the estimation of steel pipe failure strain under three different limit states. The 

accuracy of the formulae was evaluated through additional numerical analysis. Limit Rt values for a given 

ductility requirement were tabulated for moderate final axial force cases. The findings can be summarized as 

follows. 

1) Ductility and strength corresponding to post-peak behavior are improved when axial force fluctuations are 

considered. 

2) The improvement in ductility is greater for higher axial force magnitudes and for larger axial force 

fluctuations. 

3) The proposed formulae can be used to determine the ductility capacity of pipe section columns in portal 

frames and arch-ribs in arch bridges subjected to bending as well as axial force fluctuations during 

earthquakes. 

4) The consideration of axial force fluctuations using the proposed formulae will result in the use of higher 

ductile capacities as design values compared with conventional practice, making the seismic design more 
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rational. 

Together with pipe sections, hollow boxes are also very widely employed in steel bridges. Similar 

improvements in ductility are thought possible by considering the effects of axial force fluctuations for box 

sections. The scope of future investigations will be extended to stub box columns with and without stiffeners 

and design formulae will be generated for those sections. 
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 Fig. 1. Analytical model.   Fig. 2. Material model. 
 

 

 
Fig. 3. Buckling mode of cylinder. 

 

 
Fig. 4. Distribution of residual stress. 
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Fig. 5. Axial force-bending moment relationship (a) for a portal frame (b) for arch rib of an arch bridge.
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Fig. 6. Assumed monotonic loading condition.    Fig. 7. Loading method for axial force fluctuation. 
 

 

Fig. 8. Sketch of the studied short cylinder and moment gradient.  
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Fig. 9. Bending behavior for different -values (Model 4). 

 

 
Fig. 10. Definition of limit states. 
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(a) Pf= 0.6Py (M95) 
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(g) Pf= 0.6Py (M80) 
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Fig. 11. Comparison of the post-peak ductility. 
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       Fig. 12. Comparison with existing equation. 

 
 

 
(a) M90  (b) M80 

Fig. 13. Comparison of analysis results and the proposed equation for constant axial force case. 

 

 
Fig. 14. Outline of the estimation of ductility capacity. 
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Fig. 15. Estimation accuracy. 
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Table 1  
Structural parameters of the analyzed models 

Model 
Diameter 
(D-mm) 

Thickness 
(t-mm) 

Length 
(L-mm) 

D/t Rt L/D 

1 1062 20 173.6 53.1 0.050 0.163 
2 1328 20 199.4 66.4 0.063 0.150 
3 1988 20 252.5 99.4 0.094 0.127 
4 2656 20 294.5 132.8 0.125 0.111 
5 3980 20 353.5 199.0 0.188 0.089 
6 5308 20 390.6 265.4 0.250 0.074 
7 6636 20 413.1 331.8 0.313 0.062 
8 7962 20 419.8 398.1 0.375 0.053 
9 10616 20 407.2 530.8 0.500 0.038 
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Table 2  
Combination of Pi and Pf 
Pf α Pi 

0.2Py 

1.0 0.20Py 
1.5 0.13Py 
2.0 0.10Py 
3.0 0.07Py 

0.4Py 

1.0 0.40Py 
1.5 0.27Py 
2.0 0.20Py 
3.0 0.13Py 

0.6Py 

1.0 0.60Py 
1.5 0.40Py 
2.0 0.30Py 
3.0 0.20Py 
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Table 3 
Comparison with the numerical results by Gao et al.  
 Results from Gao. et al.(u/y) Current study (u/y) Gao et al./Current study 
Rt P/Py=0.1 P/Py=0.2 P/Py=0.3 P/Py=0.1 P/Py=0.2 P/Py=0.3 P/Py=0.1 P/Py=0.2 P/Py=0.3 
0.050 – 29 22.7 31.11 25.30 22.26 – 1.1 1.0 
0.063 19.3 15.2 12.3 18.80 15.43 13.60 1.0 1.0 0.9 
0.094 9.05 7.4 6.68 9.24 7.85 6.97 1.0 0.9 1.0 
0.125 6.54 5.75 5.24 6.59 5.82 5.33 1.0 1.0 1.0 
0.188 4.78 4.43 4.08 4.83 4.46 4.12 1.0 1.0 1.0 
0.250 4.14 3.83 3.52 4.15 3.86 3.54 1.0 1.0 1.0 
0.313 3.78 3.54 3.09 3.77 3.49 3.14 1.0 1.0 1.0 
0.375 3.61 3.36 2.87 3.52 3.25 2.88 1.0 1.0 1.0 
0.500 3.52 3.17 2.71 3.22 2.94 2.58 1.1 1.1 1.1 
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Table 4  
Applicable range of the proposed method 
 Pi=0.1Py Pi=0.2Py Pi=0.3Py Pi=0.4Py

1.25  
Applicable 

 
1.5 
2 Invalid 
3  Invalid  
4 Invalid   
6 Invalid    
8 Invalid    
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Table 5  
Limit values of Rt for required ductility 
a) M95 
 Pf=0.1Py Pf=0.2Py Pf=0.3Py 
 =1 =1.5 =2 =3 =1 =1.5 =2 =3 =1 =1.5 =2 =3 
u/y=5 0.170  0.171  0.171  0.171 0.146 0.150 0.152 0.154 0.126  0.132  0.134 0.138 
u/y=6 0.137  0.137  0.137  0.137 0.120 0.123 0.124 0.125 0.105  0.110  0.111 0.113 
u/y=8 0.106  0.106  0.106  0.106 0.095 0.096 0.097 0.097 0.085  0.087  0.088 0.089 
u/y=10 0.090  0.090  0.090  0.090 0.082 0.083 0.083 0.083 0.074  0.076  0.076 0.077 
u/y=20 0.062  0.062  0.062  0.062 0.058 0.058 0.058 0.059 0.054  0.055  0.055 0.055 
b) M90 
 Pf=0.1Py Pf=0.2Py Pf=0.3Py 
 =1 =1.5 =2 =3 =1 =1.5 =2 =3 =1 =1.5 =2 =3 
u/y=5 0.269  0.270  0.273  0.279 0.213 0.224 0.229 0.239 0.173  0.188  0.194 0.206 
u/y=6 0.206  0.206  0.207  0.211 0.169 0.176 0.179 0.185 0.142  0.152  0.156 0.163 
u/y=8 0.148  0.148  0.149  0.150 0.127 0.131 0.132 0.136 0.109  0.115  0.118 0.122 
u/y=10 0.121  0.121  0.121  0.122 0.106 0.108 0.109 0.111 0.093  0.097  0.098 0.102 
u/y=20 0.075  0.075  0.075  0.075 0.068 0.069 0.070 0.071 0.062  0.064  0.065 0.066 
c) M80 
 Pf=0.1Py Pf=0.2Py Pf=0.3Py 
 =1 =1.5 =2 =3 =1 =1.5 =2 =3 =1 =1.5 =2 =3 
u/y=5 – – – – 0.396 0.468 0.505 0.595 0.282  0.348  0.379 0.453 
u/y=6 0.411  0.432  0.445  0.474 0.291 0.329 0.345 0.383 0.220  0.260  0.277 0.314 
u/y=8 0.257  0.265  0.269  0.278 0.200 0.218 0.225 0.241 0.160  0.182  0.190 0.208 
u/y=10 0.195  0.200  0.202  0.206 0.158 0.170 0.174 0.183 0.130  0.145  0.150 0.162 
u/y=20 0.105  0.106  0.106  0.107 0.091 0.095 0.096 0.099 0.079  0.085  0.087 0.091 

 
 
 
 


