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Photocatalytic TiO2 particles confer superior antibacterial effects in a nutri-
tion-rich environment: an in vitro study
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ABSTRACT
Titanium dioxide (TiO2) is known to confer photocatalytic bactericidal effects under ultraviolet 
(UV) irradiation. Few reports are available, however, on the clinical applications of TiO2 particle 
mixtures. Our objective in the present research was to evaluate the in vitro bactericidal effects of 
a TiO2 particle mixture in a nutrition-rich biological environment. A bacterial suspension of Staph-
ylococcus aureus and epidermidis 3 × 103 CFU/mL was added to a TiO2 particle mixture 
(0.038 mg/mL) containing mainly sodium percarbonate and citric acid. To simulate a biological 
environment, 40 μL of 10% bovine serum albumin was added and the culture temperature was 
maintained at 37°C. The resulting product was irradiated by UV light and the bacterial survival 
rate was calculated for each time of UV irradiation. In the control sample treated with distilled 
water + UV, the bacteria survived at a high rate even after 180 min. In the TiO2 mixture + UV 
sample, meanwhile, the bacterial survival rate dropped to 43.8% and 6.0% of the baseline values 
in S. aureus and S. epidermidis, respectively, after 60 min of UV irradiation. The photocatalytic 
antibacterial action of the TiO2 particle mixture was high even in a protein-rich biological envi-
ronment.

Even with careful preventative measures such as 
disinfection of the surgical field and surgical instru-
ments, postoperative infection appears in 0.14% to 
17.3% (9, 15, 18) of patients undergoing orthopedic 
surgery. Implant-related infections are also common 
occurrences and are often highly resistant to treat-
ment. Two of the most common pathogenic bacteria 
responsible for postoperative implant-related infec-
tion are Staphylococcus aureus (S. aureus) and 
Staphylococcus epidermidis (S. epidermidis), organ-
isms with a thick cell walls that readily acquire 

multidrug resistance by mutation (2, 17). The methi-
cillin-resistant strains of these organisms have an es-
pecially high resistance to antibiotic treatment (11). 
New techniques to prevent postoperative infection 
would clearly be of great value.
　Our group has focused on the photocatalytic ap-
plication of titanium dioxide (TiO2) as a technique 
to reduce the incidence of postoperative infection in 
orthopedic surgery. On exposure to ultraviolet (UV) 
irradiation, TiO2 releases free radicals such as −OH, 
O2

−, and H2O2. This potent oxidizing power charac-
teristically results in the lysis of bacteria and other 
organic substances (5, 6). In a previous paper we 
described the high photocatalytic antibacterial ef-
fects of a TiO2 particle mixture against S. aureus (4). 
To explore the feasibility of application, we need to 
evaluate the advantages of TiO2 in a clinical setting. 
Yet as of this writing, there have been very few 
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culture kit (Nissui Pharmaceutical Co., Ltd., Tokyo, 
Japan), and irradiated by UV. Colony-forming units 
(CFUs) were counted and the bacterial survival rate 
was calculated (4). The samples were divided into 
three groups: Group 1, distilled water + no UV irra-
diation; Group 2, distilled water + UV irradiation; 
and Group 3, TiO2 mixture + UV irradiation. Six 
replicate experiments were performed for each sam-
ple. The results were examined statistically by one-
way analysis of variance (ANOVA) in multiple 
comparisons.
　Fig. 1A and 1B show the bacterial survival rates 
at different irradiation times. The bacteria added to 
the Group 1 (distilled water + no UV irradiation) 
samples survived at high rates (mean 117.8% in S. 
aureus and 87.8% in S. epidermidis) even after 
180 min. This confirmed that the bovine serum albu-
min and culture temperature (37°C) conferred bio-
logical conditions favorable for bacteria breeding. 
The bacterial survival rates of Group 2 (distilled 
water + UV irradiation) decreased gradually over 
time, reaching mean values of 98.5% in S. aureus 
and 66.7% in S. epidermidis at 60 min, and 94.2% 
in S. aureus and 50.6% in S. epidermidis at 150 min. 
This decline in bacterial survival in Group 2 was 
presumably the result of the bactericidal capabilities 
of the UV itself (16). Many of the sterilization 
systems now in use for surgical instruments and op-
erating rooms rely on UV irradiation. In Group 3 
(TiO2 mixture + UV irradiation), meanwhile, the 
bacteria count dropped sharply, reaching 43.8% in S. 
aureus and 6.0% in S. epidermidis at 60 min, and 
4.0% in S. aureus and 1.5% in S. epidermidis at 
120 min. The inhibition of bacterial survival was 
significantly greater in the Group 3 samples than in 
the Group 2 samples after 60 min of irradiation in S. 
aureus and after 30 min of irradiation in S. epider-
midis (ANOVA: P < 0.05). These findings indicate 
that the photocatalytic action of the TiO2 particles 
against S. aureus and S. epidermidis remained po-
tent even in a nutrition-rich environment advanta-
geous for bacteria.
　TiO2 crystals appear in three forms (rutile, ana-
tase, and brookite), all of which characteristically 
become semiconductors under UV irradiation. The 
electrons and positive holes created on the crystal 
surface react with water and oxygen to form various 
superoxides. The oxidizing action of TiO2 is more 
potent than that of chlorine, hypochlorous acid, or 
hydrogen peroxide, and is capable of degrading or-
ganic substances such as bacteria (5, 6). Several re-
ports have been published on the bactericidal effects 
of TiO2 against organisms such as Escherichia coli 

studies on the antibacterial effects of TiO2 on simu-
lated postoperative infections in a biological envi-
ronment. It will be important to conduct such 
studies, as the protein-rich and high-temperature 
conditions of biological environments are favorable 
for bacterial breeding. The objective of this study 
was to evaluate the photocatalytic antibacterial ef-
fects of the TiO2 particle mixture against S. aureus 
and S. epidermidis in a biological environment.
　TiO2 particles (anatase 80%: rutile 20%) were 
prepared from titanium (IV) chloride gas by the va-
por phase method and then annealed. The mean di-
ameter and Brunauer-Emmett-Teller (BET) ratio 
surface area of the primary particles were 21 nm 
and 50 m2/g, respectively. Next, a powder was pre-
pared by mixing these TiO2 particles with other sub-
stances, mainly sodium percarbonate and citric acid 
(Table 1). The sodium percarbonate, an oxidizer, ac-
celerated the photocatalytic chemical reaction by 
providing a continuous supply of oxide. The citric 
acid adjusted the aqueous pH to neutral or low alka-
linity (pH 8.0). The powder thus prepared was dis-
persed in distilled water to create a 1.0% mixture 
containing 38 ppm (0.038 mg/mL) of TiO2 particles. 
All solutions and materials were sterilized by auto-
claving at 120°C.
　S. aureus (strain Seattle 1945) and S. epidermidis 
(ATCC35984) were cultured for 6 h at 37°C, then 
centrifuged to provide bacteria samples at a concen-
tration of 3 × 103 CFU/mL (pH 7.0). Forty μL of the 
bacteria solution was combined with 40 μL of the 
TiO2 mixture in a transparent polypropylene conical 
tube. To simulate a biological environment, 40 μL of 
10% bovine serum albumin (Gibco, Invitrogen Ja-
pan K.K., Tokyo, Japan) was added and the culture 
temperature was kept at 37°C. The resulting mixture 
was irradiated by UV black light (FL15BL-B; NEC, 
Tokyo, Japan) (illumination, 1.82mW/cm2; wave-
length, 352 nm). The bacterial samples in the TiO2 
mixture were diluted with phosphate-buffered saline 
(PBS), cultured for 24 h with a Compact Dry TC 

Table 1　Components of TiO2 powder

Components Content (%)
Sodium Percarbonate 37
Metasodium Silicate  6
Citric Acid 31
Sodium Tripolyphosphate 25
Magnesium Silicate  0.5
TiO2  0.38

Sodium percarbonate added as an oxidizer ac-
celerates the photocatalytic chemical reaction.
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alkalinity (pH 8.0).
　The negative effects of UV rays on the human 
body also pose potential problems in clinical appli-
cation. A good deal of research is underway to 
resolve this problem using materials with photocata-
lytic actions triggered by visible light (1, 3, 13, 14). 
By adjusting the TiO2 concentration and reacting the 
TiO2 with other components, our TiO2 particles form 
a chelator which might feasibly shift the absorption 
spectrum towards visible light spectrums (4). Fur-
ther research will be needed to evaluate the antibac-
terial effects of visible light alone.
　Our present experiments have revealed that when 
TiO2 particles react with oxidizer, they confer supe-
rior photocatalytic antibacterial affects against S. au-
reus and S. epidermidis even in a nutrition-rich 
biological environment. Further laboratory or in vivo 
studies under more sophisticated conditions will be 
required for comprehensive evaluation. In the mean-
time, these simple configurations with the TiO2 par-
ticle mixture are particularly encouraging for use in 
the early stages of assessment. Our simple study 
allowed for greater control over experimental vari-
ables and produced fewer artifacts in the results.
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