1 . 緒言

活性のある酵素は、単量体だけでなく、同一または 異種の複数個のポリペプチド鎖からなる多量体構造(サ ブユニット構造、四次構造)を形成するものが多く存在 している。酵素の多量体構造の形成は、それらの安定性 の増強、触媒能の増減、アロステリック調節機能の発 現、膜結合性や膜透過性機能など、生命現象の最も基本 となる重要な機能の発現と調節に直接係っている。同一 の反応を触媒する酵素であっても、生体内全体の反応を 構成する一部としての個別の生理的機能が異なるために サブユニット構造が異なることは、しばしば観察される ことである。また、同じ酵素であっても、それらを有す る生物種によって生理的機能を反映して、異なる多量体 を形成することが認められることもある。このように、 酵素の多量体形成は生理的機能と関連して重要である が、意外にも酵素がリボソームで生産された後、どのよ うな分子機構で多量体化し活性型酵素を形成するかに関 しては、ほとんど明らかになっていない。もちろん一次 造情報が多量体化を決定していることは間違いない が、多量体形成を決定する具体的な酵素分子の情報はほ とんど不明である。我々は、水の沸点付近の高温で増殖 する超好熱菌のグルタミン酸脱水素酵素 (GDH)(EC 1.4.1.2)

を、常温菌である遺伝子組換え大腸菌で発現させると、 発ど活性がない不活性型酵素として生産され、本来の生育温度である90℃の温度、または高濃度の尿素 (37℃の条件で 5M 濃度)処理で活性型酵素に変換構を ることを見出したり。この超好熱菌酵素の活性化粉構を 構造と機能の面から追跡することは、これまで不分えて あった多量体構造の形成機構の詳細を解明するうで、 あったな情報を提供することが期待できる。本稿でいたの 結果を中心に、他の超好熱菌由来のGDHの関連情報について説明する。

2 . 大腸菌体内で生産される超好熱菌由来の組換え 不活性型 GDH

GDH は補酵素ニコチンアミドアデニンジヌクレオチド(リン酸) (NAD(P)) 依存的に L・グルタミン酸の 2・オキソグルタル酸とアンモニアへの可逆的な酸化的脱アミノ反応を触媒する。補酵素の特異性により NAD 及び NADP 特異的酵素と、特異性のない酵素の 3 種類が知られ、エネルギー代謝と窒素(アミノ酸)代謝をつなぐ鍵酵素として重要な生理的役割を担っている。そのために多くの生物種で普遍的に存在し、種々の生物由来の本酵素の構造と機能に関して多くの知見が得られている。

興味深い発見として、 DiRuggiero と Robb が 1995 年、 超 好 熱 菌 Pyrococcus furiosus 由 来 NADP 依 存 性 GDH(Pfu-GDH) を 大 腸 菌で発現させた後、細胞抽出液を調製し、酵素を精製す る た め に 加 熱 処 理 (90 ℃) を 行 っ た と こ ろ 、 総 活 性 が 顕 に増大することを見出した③。また、大腸菌の細胞抽 出液を加熱処理せずにゲルろ過クロマトグラフィーを行 い、各分画液の SDS-PAGE を行ったところ、六量体(270 kDa) と 単 量 体 (48 kDa) に 相 当 す る 二 つ の 溶 出 画 分 に Pfu-GDH の ブニットの分子質量 (48kDa) に相当するタンパク質バ ドが検出された。そして六量体構造の分子種に相当す 画分にのみ活性が検出でき、この分画を熱処理しても 活性の増加はなかった。一方、サブユニットの分子質量 に相当する溶出分画には活性が検出されなかったが、そ の分画を加熱処理すると明確な活性が検出され、その総 活性は前出の六量体構造の総活性とほぼ同じであること が見出された。また、この単量体の溶出画分の活性を持 たない酵素液を加熱後に再びゲルろ過クロマトグラフィ 一を行うと、六量体に相当する位置にのみ活性が検出さ れ、単量体の溶出位置からは加熱しても活性が見つから なかった。さらに、予め加熱処理した酵素を用いて同様 にゲルろ過クロマトグラフィーを行うと、六量体に相当 する溶出位置にのみ活性が検出された。なお、培養した 超好熱菌体から精製した天然型のPfu-GDHはゲルろ過クロマトグラフィーより、分子質量約 270 kDaの同一のサブユニットからなる六量体構造の酵素のみであった。これらの結果から、彼らはPfu-GDHが大腸菌体内では不活性な単量体と活性を有する六量体の混合物(ほぼ1:1の量比)として生産され、 in vitro での加熱によって多量体化が起こり、天然型酵素と同様な活性型に変換される特異的な現象であることを明らかにした。これはタンパク質の多量体化がその活性発現に大きな機能を持つことを示した興味深い最初の事例である(表 1)。

マいで、別の海洋性超好熱菌 Thermococcus kodakaraensis 由来のGDH (Tko-GDH) についても、遺伝子組換え酵素の活性と四次構造の関係に関する研究が報告された45。 Tko-GDH は大腸菌を宿主に用いた遺伝子組換え酵素として不活性な単量体および非常に活性の低い六量体の混合物として生産される。組換え低活性型六量体 Tko-GDH は、加熱処理によって活性の上昇が見られるものの、天然型酵素と比較するとその比活性はかなり低い。さらに、低活性型六量体酵素は天然型や加熱処理により活性化した組換え酵素とは大きく異なる円偏光二色性(CD) スペクトルを示すこと対ら、加熱処理による活性化は大きな構造変化を伴うと考えられたか。また、Pfu-GDH と異なる点として、不活

性な単量体 Tko-GDH は加熱処理を行っても、その大部分は単量体のままで存在し活性を示さず、ごく一部のみが大量体を形成し活性を示す。このことから不活性単量体Tko-GDH の活性型六量体への正しい構造変換には、何か付加的な要因の存在が示唆された。 Izumikawa らは Tko-GDH の加熱による構造変化を示差走査型熱量計 (DSC) と CD スペクトルを用いて解析し、加熱による活性化は不可逆であり、非加熱酵素が加熱によって安定な活性型に変換されたと報告しているの。また Wang らは、同様な超好熱菌

Pyrococcus horikoshii 由来 GDH (Pho-GDH) においても、組換え酵素は不活性な単量体と活性の低い六量体の混合物として生産され、加熱により酵素活性の上昇とともに蛍光やCD スペクトル解析による構造変化が起こることも示したの。

3. Pyrobaculum islandicum 由 来 の 組 換 え GDH

著者らの研究室では、超好熱菌由来の種々の高度耐熱性酵素の機能と構造解明を進めるなかで、海洋性超好熱菌(Pc. furiosus, Pc. woesei, T. litoralis)のNADP依存性GDHに加え、内陸性の超好熱菌Pyrobaculum islandicumにNAD依存性GDH(Pis·GDH)を見出したか。Pb. islandicum は100℃付近に最適生育温度を持つ内陸性の超好熱アーキアであり、嫌気的環境で生育する。我々は、Pis-GDHが上記Pc. furiosusのNADP依存性GDH

の場合とは異なり、大腸菌では殆ど活性がない不活性型 組 換 え 酵 素 と し て 生 産 さ れ る が 、 生 育 温 度 の 90 ℃ で 加 熱 すると活性型へ容易に変換されることを見出した。加え て、 Yips らは Pfu-GDH の 高 度 耐 熱 性 の 分 子 機 構 を 解 明 す る ために、そのX線結晶解析から得られた立体構造と、 温 菌 由 来 の 同 酵 素 の そ れ と 比 較 し て 、 高 度 耐 熱 性 (100℃ でも熱変性しない)は、サブユニット間におけるイオン 対ネットワークの大幅な増強が主原因であることを明ら かにした⁸。 我々は内陸性超好熱菌由来の Pis-GDH の X 線 結 晶 解 析 に 成 功 し 、 本 酵 素 が Pfu-GDH と は 異 な り 、 サ ブ ユ ニット間の疎水性相互作用の増強が本酵素の高度耐熱性 の主な原因であるということを明らかにしたり。このよ うに、 Pis-GDH は Pfu-GDH と同様に高度耐熱性酵素である が、立体構造情報から耐熱化の分子戦略は大きく異なっ ているので、大腸菌で生産される不活性型 Pis-GDH の活性 化 も 、 Pfu-GDH と は 異 な る こ と が 予 想 さ れ た 。 そ こ で 著 者 ら は 、 X 線 小 角 散 乱(SAXS)、 疎 水 性 蛍 光 プ ロ ー ブ で あ る ア ニリノナフタレン-8-スルホン酸(ANS)による蛍光スペクト ル、 DSC などの分析法によって Pis-GDH の活性化現象を構 造面からより詳細に解析した。

3-1 遺伝子組換え Pis-GDH の活性化と四次構造変化

Pb. islandicum の培養はそれほど簡単ではないため、培養 菌体からの Pis-GDH の精製の収率は低く、本菌由来の天然 型酵素の基礎や応用研究を進めるうえでの障害になって いる。そこで著者らは、大腸菌を宿主に用いた遺伝子組 換え酵素生産系を確立した。その際、タンパク質生産用 大腸菌として BL21 (DE3)-codon plus-RIL を、発現ベクターには pET11a を 用 い た ⁹ 。 生 産 さ れ た 組 換 え 型 Pis-GDH の 活 性 測 定を大腸菌での生産後そのままの状態で行うと、ほとん ど活性を検出することができなかった。しかし、90℃で 15 分 間 加 熱 す る こ と に よ っ て 、 *Pb. islandicum* か ら 直 接 精 製 した天然型 Pis-GDH と同等の比活性が検出された。 ゲルろ 過クロマトグラフィーによって分子質量を求めたとこ ろ、 不活性型及び熱活性型酵素の両者ともに 280kDa であ った。 SDS-PAGE から見積られた単量体の分子質量は47kDa であるので、どちらの分子種も六量体構造を形成してい ると考えられる。酵素化学的諸性質のパラメータを酸化 的脱アミノ反応の速度論的解析から求めると、 熱活性型 Pis-GDH の 補 酵 素 NAD 、 及 び 基 質 グ ル タ ミ ン 酸 に 対 す る K_{m} 値は、天然型、組換え型酵素ともにほぼ同じ値を示し た。このことから熱処理によって、不活性型組換え Pis-GDH は 天 然 型 Pis-GDH と 同 じ 構 造 へ 変 換 さ れ た と 考 え る ことができる。

3-2 常温環境下での活性化:尿素処理による活性化 天然型の Pis-GDH は尿素溶液中で活性が増大し、 6M 尿素溶液中で最大の活性を示すことが報告されている n。 そこで、不活性な組換え Pis-GDH の活性化におよぼす尿素の影響について検討した。 37℃において尿素の添加濃度、及び処理時間を検討した結果、 5M 尿素溶液中で 5時間処理したときに最も高い比活性が観察され、それは天然型及び熱活性型 Pis-GDH の比活性と近い値であった。 尿素添加による不活性型酵素の活性化の後、透析によかて尿素を除いても活性の低下は認められなかったことが

3-3 蛍光スペクトルによる酵素表面の疎水性領域の変動 解析

えられる。

ANS はタンパク質の疎水性アミノ酸残基と特異的に相互作用して蛍光を出すプローブとして用いられる試薬である。我々は、Pis-GDH の表面の疎水性領域の変化をこのプローブを利用して追跡した。すなわち、酵素へ ANS を添加し、その蛍光の発光スペクトルからタンパク質表面の疎水性残基の溶媒への露出度を測定した。不活性型

Pis-GDH を ANS とともにインキュベートし、 350 nm の波長で励起すると、 446 nm 付近にピークを持つ大きな蛍光スペクトルが得られた。 対照的に、天然型酵素、熱活性型あるいは尿素活性型 Pis-GDH では、同様に励起しても蛍光スペクトルにピークは認められなかった。 この結果により、不活性型 Pis-GDH ではその分子表面に疎水性残基が露出しており、それら疎水性残基を含む領域が熱や尿素処理によって分子内部に取り込まれるような構造変化が起きたと考えられる。

3-4 不活性型 Pis-GDH の活性化における熱量変化解析
不活性型 Pis-GDH の熱活性化及び熱変性時における熱力
学的パラメータを DSC によって求めた。不活性型酵素の
過剰熱容量曲線には温度上昇に伴う二つのピークが
70.2 ℃と 110.3 ℃に認められた。予め 90 ℃ 15 分間の熱活性
化处理をした酵素では、二つのピークのうち 70.2 ℃のピークは認められず、110.3 ℃のみにピークが検出された。
それ故、 70.2 ℃のピークが熱活性化、110.3 ℃のそれが熱変性に伴うものであると考えられる。また、熱変性温度
以上に加熱した酵素を冷却後、再び加熱を行っても過剰
熱容量曲線には、それら二つのピークが共に観察されな

あると考えられる。それぞれの温度におけるエンタルピー変化は15.5 kJ/mol (70.2 ℃)、及び1880 kJ/mol (110.3 ℃)と算出され、熱活性化のエンタルピー変化は小さく、熱変性のそれの約120分の1であった。疎水性プローブANSによる解析の結果は、活性化に伴って不活性型酵素の表面に露出している疎水性残基が内部に折りたたまれることを示しており、また、結晶構造解析は活性型Pis-GDHの高い耐熱性が分子間の疎水性相互作用を主原因としていることにがあったとより、活性化はエントロピー(疎水性相互作用形成)駆動型であるといえる。タバコモザイクウイルスのコートタンパク質の温度ジャンプによるSAXS測定における知見においても、殆ど同様なことが認められている10-11)。

3-5 不活性型 Pis-GDH の溶液状態での活性化による構造 変化の解析

SAXS は、 X 線を非結晶質の物質に照射すると生じる散乱の中でも散乱角が10°以下の回折・散乱を利用して物質の構造やその変化等に関する情報を得る方法である12°。 SAXS は、溶液状態で測定が可能なため、タンパク質の結晶化操作が不要であり、動的構造変化の情報が得られる。また、溶液状態で構造解析が行える核磁気共鳴法

と 比 較 し て 、 SAXS は よ り 高 分 子 量 の タ ン パ ク 質 試 料 で も 測 定 が 容 易 に 行 え る 。 SAXS に よ っ て 分 子 の 大 き さ や 形 分子量に関する経時的情報を得ることができるが、 X線結晶解析法や核磁気共鳴法のように原子レベルでの 精緻な構造情報を求めることは困難である。 著者らは Pis-GDH の 活 性 化 に お け る 構 造 変 化 を 溶 液 状 態 で 観 察 す る ため、不活性型、熱活性型、及び尿素活性型 Pis-GDH の SAXS 測 定 を 高 エ ネ ル ギ ー 加 速 器 研 究 機 構 BL-10C にて行った。 SAXS からは、酵素分子の回転半径(ギ ニエ半径ともいう:Rg)と最大長(Dmax)、散乱角 0 での 乱 強 度 (J(0)) を 酵 素 濃 度 (C) で 割 っ た 値 (J(0)/C) か ら の 平 均 分子量、クラツキープロットからの酵素の四次構造形成 に関する情報等が得られる。酵素分子の平均回転半径 (Rg,z) は、SAXS 測定で得られた散乱曲線からギニエプロッ トを作成し、そのプロットの直線部分の傾きがRg,2とに比 例することから算出できる(図1a)。その結果、不活性 熱活性型、及び尿素活性型 Pis-GDHの Rg,z値は、 ぞれ 54.6, 46.5, 46.9 Å と 算 出 で き た (表 2) 。 熱 活 性 型 と 尿 素 活性型の Pis-GDH のギニエ、及びクラツキープロットのパ ターンは、全てほぼ同じであった(データ省略) 性型酵素の Rg,z 値(54.6Å)は熱や尿素処理による活性化 によって約8Å小さくなり、活性化によって全体の構造が

よりコンパクトになることが明らかになった。同様に酵 素 分 子 の 最 大 長 (Dmax) も 145 Å か ら 124 Å (熱 活 性 型) 、 120Å (尿素活性型) へと顕著に小さくなった。 型、尿素活性型、及び天然型の酵素において、酵素化学 的パラメータ、及び構造学的パラメータに大きな違いが 見られないことから、それらは類似の構造をとると考え られる。一方、 J(0)/C から求めた分子質量は不活性型を含 めた3分子種の間で大差はなく、それらは全て六量体構 造 (約 270 kDa) をとっていることがわかった。また、クラ ツキープロットから酵素の四次構造のアレンジメントの 変化を見ると(図1b)、不活性型、熱活性型、及び尿素 活性型酵素の全ての場合に、異なる二つのピークを持つ 曲線が認められ、全て四次構造、つまり六量体を形成し ていると考えられた。しかし、そのピークの位置は活性 型では不活性型に対してより高角側にシフトしており、 四次構造のアレンジメントが異なることが示された。以 上のことから、活性化に伴い四次構造には変化がないも のの、そのアレンジメントが変化し、酵素分子全体のコ ンパクト化が起こると考えられる。

我々は熱活性型酵素の立体構造をX線結晶構造解析によって明らかにしているが、不活性型の立体構造は良好な結晶が得られないことから未だに不明である90。

そこで、SAXS データを用いて ab initio 法 $^{13)}$ による低分解能 の構造モデリング解析を行った。構造モデリングは、ラ ンダムな酵素の構造を初期構造として設定し、複数回の 計算を行って酵素構造モデルを構築した。プログラムに は構造の点群対称を指定して計算を行うことができるプ ロ グ ラ ム DAMMIN を 用 い た ¹³⁾ 。 熱 活 性 型 酵 素 は 結 晶 構 造 解 析 から P32 の 点 群 対 称 を 持 つ こ と が 分 か っ て い る の で 、 そ の 対 称 性 を 考 慮 し て 計 算 で 得 た モ デ ル 構 造 を SAXS の デ ータより構築したところ、結晶解析から得られている立 体 構 造 と 非 常 に 良 く 一 致 し た (図 2a, 2b) 。 一 方 、 不 活 性 型の立体構造は点群対称性を持つかどうか不明であるこ とから、 P32 点 群 対 称 性 と 点 群 対 称 性 な し (P1) の 2 条 件 を設定して計算を行ったところ、両者で立体構造のモデ ルが全く異なった。これは、不活性型酵素の最も取りう る 立 体 構 造 が 、 対 称 性 の な い P1 構 造 で あ る こ と を 示 し て いる (図 2c)。ここで得られた不活性型 GDH の低分解能 構造モデルは、熱活性型酵素の構造と比べて二つの異な る点が認められた。一つは酵素分子の点群対称性の消滅 で あ る 。 熱 活 性 型 酵 素 は P32 の 点 群 対 称 性 を 持 ち 、 分 子 を形成する二つの三量体が向き合って六量体構造を形成 している (図 2a,b)。一方、不活性型酵素は熱活性型酵 素で観察される3回対称軸がねじれた構造をとり、対称 性が失われている(図 2c)。二つ目の構造上の相違は、不活性型酵素がシリンダー状の構造をとるのではなく、分子の表面で特に広がった構造をとっている点である。不活性型酵素では表面の電子密度が、活性型酵素が部分的に変性状態に近い状態であることを推定させる(図 2c)。また、酵素活性の発現には、多量体構造の形成だけが必要であることを意味している。

4. 四次構造の正確なアレンジメント形成が酵素活性発現に重要である

組換え Pfu-GDHでは、上述のように不活性な単量体と活性な六量体の二つの分子種の混合状態で生産され、加熱により前者は後者へ変換され、天然由来のものと同等の活性を有する。また、組換え Tko-GDHと Pho-GDHでは、不活性な単量体と不活性な六量体の2分子種で生産され、加熱により両分子が活性化される(表1)。このような海洋性超好熱菌のGDHの場合とは異なり、内陸性のPis-GDHでは不活性な六量体構造のGDHの状態で得られ、分Pis-GDHでは不活性な六量体構造のGDHの状態で得られ、

た。

結晶構造の比較により、細胞内のイオン濃度が高い海洋性菌からのPfu-GDHはイオン対ネットワークの増強により高度耐熱性を有するのに対し、イオン濃度が低いと予想される内陸性菌からのPis-GDHでは主にサブユニット間の疎水性結合の増強に起因して高度耐熱性を示すと予想されている。これらのことは、リボソームで生産された単量体酵素が、熱やシャペロンなどにより活性型の多量体酵素へ成熟する過程で高次構造のアレンジメントが

起こる機構は、それぞれの酵素の持つ機能や熱に対する安定性の獲得の様式、細胞内環境などの違いを反映して多様であるということを示している。特に、組換えPis-GDHの熱や尿素による活性化に伴う構造変化の解析は、酵素活性の発現には正しい四次構造のアレンジメントが必要であることを示す最初の例として大きな意味を持っている。

これまで、著者らの研究を除き、超好熱菌の不活性な組換え酵素の熱による活性化の現象を構造学的な面が出界がした例は見あたらない。特に我々がSAXSの解析結果から見出した、熱や尿素による不活性型から活性型酵素への変化の過程で、分子質量は変化せず、分子サイズが劇的に小さくなる現象や、この変化が6個のサブユニットの再アレンジメントによって起こりうることは、タリの再アレンジメントによって起こりうることは、タリの再アレンジメントによって起こりうることは、を解りよる上で大きなインパクトを持つと考えられる。

5. 総括

大腸菌で生産された超好熱菌由来の不活性型 Pis-GDH を用いた著者らの研究は、加熱による活性化の発見と構造解析により多量体酵素の機能発現の過程を初めて構造から見ることができた点、及び機能の発現には多量体化の

みならず適切な四次構造のアレンジメントが必要であることを示した点で、酵素の多量体化と活性発現に関する全く新規な知見を提供でき、大きな成果であると言える。しかし、超好熱菌由来のGDHが大腸菌内で不活性型として生産される理由が、培養温度が低いためだけでなく、超好熱菌GDHに特異的な分子シャペロンが大腸菌ではないことによるのか、など興味深い問題も残されている。

これまでに酵素活性の発現に四次構造形成を必要と する他の酵素例として、異なるサブユニットが活性部位 を形成するアラニンラセマーゼの場合などがある14)。し かし、本稿で紹介した Pis-GDH では、その結晶構造解析か ら活性残基の存在する部位と他のサブユニットと接触し ている四次構造形成部位が互いに離れていることが示さ れている⁹。 さらに、不活性型 Pis-GDH は六量体が形成さ れているものの、不正確なアレンジメントのために活性 が発現しない。このことは四次構造の形成に寄与する部 位が正しい立体構造を形成していなければ、離れた位置 にある活性部位にも影響を与えているということを示唆 している。著者らの構造学的解析から、断片的にではあ るが、四次構造形成の酵素活性に与える影響の解明が進 んだが、多量体化が持つ生物学的な意義とは何かについ

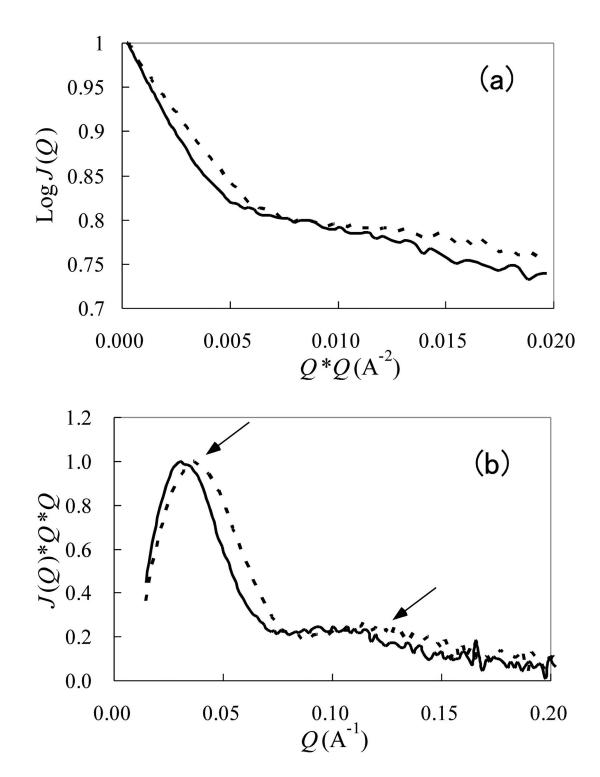
ては全くわかっていない。四次構造形成の多様性と酵素機能・安定性との関係、生理的意義や分子進化との関係など、今後さらに精緻な実験によって解明すべき課題は数多く残されている。得られる知見を生かして病気の治療や産業的応用につなげていくことが大いに期待される。

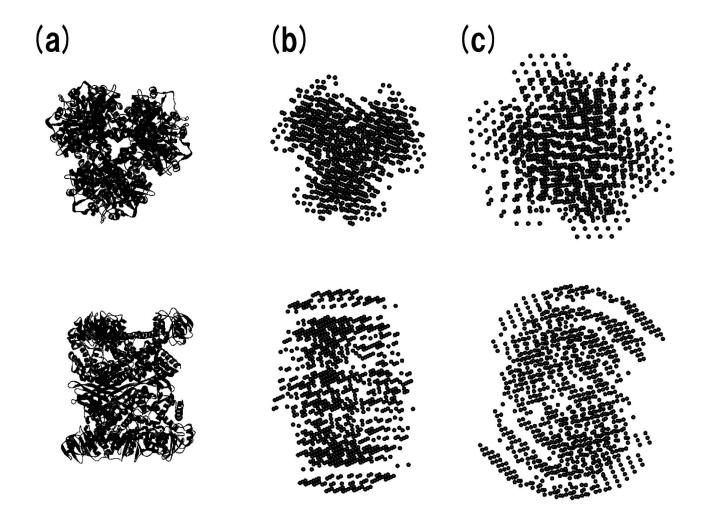
6. 参考文献

- 1) Goda, S., Kojima, M., Nishikawa, Y., Kujo, C., Kawakami, R., Kuramitsu, S., Sakuraba, H., Hiragi, Y., & Ohshima, T. (2005) Biochemistry, 44, 15304-15313.
- 2) Ohshima, T., & Soda, K. (2000) Stereoselective Biocatalysis (R. N. Patel ed.), pp.877-902, Marcel Dekker Inc., New York.
- 3) Diruggiero, J., & Robb, F.T. (1995) Appl. Environ. Microbiol., 61, 159-164.
- 4) Abd Rahman, R.N., Fujiwara, S., Takagi, M., Kanaya, S., & Imanaka, T. (1997) Biochem. Biophys. Res. Commun., 241, 646-652.
- 5) Izumikawa, N., Shiraki, K., Nishikori, S., Fujiwara, S., Imanaka, T., & Takagi, M. (2004) J. Biosci. Bioen., 97, 305-309.
- 6) Wang, S., Feng, Y., Zhang, Z., Zheng, B., Li, N., Cao, S., Matsui, I., & Kosugi, Y. (2003) Arch. Biochem. Biophys., 411, 56-62.
- 7) Kujo, C., & Ohshima, T. (1998) Appl. Environ. Microbiol., 64, 2152-2157.
- 8) Yip, K.S., Stillman, T.J., Britton, K.L., Artymiuk, P.J., Baker, P.J., Sedelnikova, S.E., Engel, P.C., Pasquo, A., Chiaraluce, R., & Consalvi, V. (1995) Structure, 3, 1147-1158.
- 9) Bhuiya, M.W., Sakuraba, H., Ohshima, T., Imagawa, T., Katunuma, N., & Tsuge, H. (2005) J. Mol. Biol., 345, 325-337.
- 10) Hiragi, Y., Inoue, H., Sano, Y., Kajiwara, K., Ueki, T., Kataoka, M., Tagawa, H., Izumi, Y., Muroga, Y., & Amemiya, Y. (1988) J. Mol. Biol., **204**, 129-140.
- 11) Hiragi, Y., Inoue, H., Sano, Y., Kajiwara, K., Ueki, T., & Nakatani, H. (1990) J. Mol. Biol., 213, 495-502.
 - 12) Guinier, A., & Fournet, G. (1955) Small-angle Scattering of X-rays, Chapman & Hall, New York.
- 13) Svergun, D.I. (1999) Biophys. J., 76, 2879-2886.
- 14) 大西浩平(2007) 生物物理, 271, 194-198.

表 1 . 種 々 の 好 熱 菌 / 超 好 熱 菌 由 来 の 大 腸 菌 組 換 え GDH の 活 性 、 及 び 四 次 構 造 と 活 性 化 に 伴 う 変 化

超好熱菌			四	次	構	造							特	徴						
Pc. furiosus		不	活	性	型	(単	量	体)	加	熱	に	ょ	る	活	性	化	が	多
	+	活	性	型	(六	量	体)		量	体	化	を	伴	う				
T. kodakaraensis		不	活	性	型	(単	量	体)	加	熱	に	ょ	る	部	分	的	活	性
	+	不	活	性	型	(六	量	体)	化	が	多	量	体	化	を	伴	う	
Pc. horikoshii		不	活	性	型	(単	量	体)	加	熱	に	ょ	る	活	性	化	が	多
	+	不	活	性	型	(六	量	体)	量	体	化	及	び	構	造	変	化	を
											伴	う								
Pb. islandicum		不	活	性	型	(六	量	体)	不	活	性	単	量	体	Ø	生	産	は
											見	5	れ	ず	0	加	熱	に	ょ	る
											活	性	化	が	構	造	変	化	を	伴
											う									


表 2 .X 線 小 角 散 乱 (SAXS) に よ っ て 求 め ら れ た 不 活 性 型 、 熱 活 性 型 、 尿 素 活 性 型 Pis-GDH の 構 造 学 的 パ ラ メ ー タ


組	換	え	酵	素

Pis-GDH の 状態	$Rg_{,Z}(\mathring{A})$	Mw, w(k)	Dmax(Å)
不活性型	54.6±0.1	280±26	145±3
熱活性型	46.5±0.1	299±14	124±3
尿素活性型	46.9±0.1	337±34	120±3

Figure Legends

- 図 1.X 線 小 角 散 乱 法 に よ る 不 活 性 型 Pis-GDH の 溶 液 構 造 に 対 す る 加 熱 処 理 の 影 響
- 直線の傾きが分子の平均回 (a) ギニエプロ 転 半 径 ツ \vdash : (Rg,z) \mathcal{O} 2 乗に比例する、 (b) ク ラッキープロッ } 徴的な二つの タンパク質に特 造を形成している 観察されている。 実 線 : 不 活 性 型 Pis-GDH 、 点線 Pis-GDH 。
- 図 2. 結晶構造と X 線小角散乱(SAXS)による低分解能構造の 比較
- (a) 熱活性型 Pis-GDH の結晶構造(リボン図)、(b) 熱活性型 Pis-GDH の SAXS からのモデル構造(球)、(c) 不活性型 Pis-GDH の SAXS からのモデル構造(P1対称性なし、球)。上段は六量体構造を3回対称軸を中心とした方向から見た図。下段は2回対称軸を左右にした方向から見た図。

