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Abstract
Long-term environmental stochasticity is known to affect the adaptive evolution of
life history traits. In stochastic environments, there are two different levels of
behavioral optimization, as follows: Level 1, the optimal strategy under an intra-
generation stochastic environment and Level 2, the optimal strategy under an inter-
generation stochastic environment. This article presents a simple optimal foraging
model under predation risks and verified the effect of behavioral optimization on
the foraging time ratio. In this model, foragers are exposed to predation risks dur-
ing foraging but are safe if they stay in their nests without any food. The foraging
time allocation strategies that optimize the geometric mean fitness (Level 2) were
compared with the arithmetic mean fitness (Level 1) to verify the effects of interge-
nerational stochasticity, whereby there is an alternation in good/bad environments
across generations. As in previous studies, risk-averse strategies (a shorter foraging
time is adopted for Level 2 than for Level 1) were commonly observed using this
model. Unexpectedly, the model showed a tendency toward a preference for risk-
prone strategies. This qualitative difference became prominent when food was
abundant and the maximum energy reserves were small. Theoretical studies have
shown that risk-averse strategies are commonly adopted during food shortages and
result in starvation. However, the current results indicate that risk-prone strategies
may become optimal under a limited reserve capacity. Thus, the optimal strategy
depends not only on the individual status and environmental conditions, but also
on the detailed selection regimes.
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1 | INTRODUCTION

1.1 | Optimal foraging theory

Optimal foraging theory under predation risk has been exten-
sively studied in the fields of ecology and evolution
(Houston, Higginson, & McNamara, 2011a, 2011b;
McArthur, Banks, Boonstra, & Forbey, 2014; Stephens,

Brown, & Ydenberg, 2007; Stephens & Krebs, 1986). Of
particular interest has been foraging behavior in environ-
ments characterized by uncertain amounts of food and preda-
tor abundance (Caraco, 1980; Houston & McNamara, 1999;
Real & Caraco, 1986; Stephens et al., 2007; Stephens &
Krebs, 1986). In fact, it has been found that the foraging
behavior of many animals (e.g., birds and fish) is strongly
influenced by predation risks and variations in food quality
and quantity (Caraco, Martindale, & Whittam, 1980; Fraser,Hiromu Ito is the recipient of the fifth Nobuhiko Suzuki Award.
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Gilliam, Akkara, Albanese, & Snider, 2004; Greenwood &
Metcalfe, 1998; Jones & Rydell, 1994; Krams, 2000; Lima,
1985, 1988a, 1988b; Metcalfe, Fraser, & Burns, 1999). In
addition, the reduction in foraging time in the presence of
predators is likely to lead to a long-term decrease in repro-
duction (Lima, 1998; Martin & Lopez, 1999). Because bene-
fits (e.g., food amount) and risks (e.g., predation and
starvation) can be analyzed using models, optimal foraging
theory is a good base from which the decision-making mech-
anism of all foraging organisms can be understood.

1.2 | Arithmetic and geometric mean fitness

The response to stochasticity, whereby foraging efficiency is
maximized and risk is minimized, applies to all organisms
(Houston et al., 2011a, 2011b; Stephens & Krebs, 1986;
Yoshimura & Clark, 1991). Hence, the best strategy should
take unpredictability into account. When environmental con-
ditions are temporally or spatially heterogeneous, the aver-
age (mean) fitness is measured via two typical methods, the
arithmetic mean and the geometric mean. The arithmetic
mean is an appropriate measure of the fitness when the envi-
ronmental fluctuation occurs within an individual lifetime
only. On the other hand, the geometric mean is an appropri-
ate measure when the environment fluctuates temporally
across generations (Cohen, 1966; Lewontin & Cohen, 1969;
Schaffer, 1974; Stearns, 1976; Yoshimura & Clark, 1991).

Here, I define two different levels of behavioral optimi-
zation, as follows: the optimizations that do not consider
(Level 1) or consider (Level 2) intergeneration stochasticity.
Accordingly, Level 1 should be measured using the arith-
metic mean, and Level 2 should be measured geometrically
because of cross-generational environmental variations
(i.e., good years or generations vs. bad years or generations).

1.3 | Risk sensitivity and risk aversion

Much previous work has indicated that “risk-averse” behav-
iors are common in nature and theory (Stephens et al., 2007;
Stephens & Krebs, 1986; Yoshimura, Ito, Miller III, & Tai-
naka, 2013a; Zhang, Brennan, & Lo, 2014). In our previous
model of risk-sensitive foraging, we found a preference for a
“risk-prone” strategy when the foraging time is longer than
optimal foraging time that maximizes the arithmetic mean
fitness (xA

*) (Ito, Uehara, Morita, Tainaka, & Yoshimura,
2013). In the same way, we found a preference for a “risk-
averse” strategy when the foraging time is shorter than (xA

*).
Note that, in both the present model and our previous model,
a risk-neutral strategy is defined as the ratio of foraging time
when maximizing foraging efficiency (Ito et al., 2013). A
risk-prone strategy is when a forager extends his/her forag-
ing time under predation risk from a risk-neutral strategy. In
contrast, a risk-averse strategy is when a forager shortens
his/her foraging time from a risk-neutral strategy
(Houston & McNamara, 1999; Mangel & Clark, 1986,

1988). In this sense, we define risk neutral as the ratio of for-
aging time when maximizing the arithmetic mean fitness
(xA

*), because (xA
*) is the optimal strategy to maximize the

expected value of Level 1. Thus, if foraging time is longer
or shorter than this risk-neutral strategy (xA

*), risk-prone and
risk-averse strategies can be discriminated as follows (Ito
et al., 2013):

Case 1: Risk-averse (optimal foraging time of Level
2 < Level 1; xG

* < xA
*).

Case 2: Equivalently risk-sensitive (optimal foraging
time of Level 2 = Level 1; xG

* = xA
*).

Case 3: Risk-prone (optimal foraging time of Level
2 > Level 1; xG

* > xA
*).

Our previous foraging model also revealed this risk-
averse tendency in optimal foraging behavior (Ito et al.,
2013). Notably, risk-prone strategies appeared in extreme
conditions under which gambling was necessary to achieve
any reproductive success. In this model, the effects of sto-
chastic environments on the risk sensitivity of foragers were
evaluated using the difference between the geometric mean
fitness and the arithmetic mean fitness. However, such a
model ignores the capacity of the maximum energy reserves
that are inherent in any foraging animal (Caraco et al., 1980;
Whelan & Brown, 2005). Thus, in the present study, the
same model was used, but with the inclusion of the maxi-
mum energy reserves of a forager, to determine whether the
overall differences were the same as those described by our
previous model (Ito et al., 2013).

1.4 | State variable and optimal behavior

Predator avoidance behavior and foraging time allocation
depend on specific “states”, such as body size (Clark & Man-
gel, 2000; Lima, 1998; Rizzuto, Carbone, & Pawar, 2017).
Individual status, such as body size or fat reserve, has been
included as a state variable in dynamic programming
(DP) studies of animal behavior (Clark, 1987; Houston, Clark,
McNamara, & Mangel, 1988; Houston & McNamara, 1999;
Mangel & Clark, 1988). Note that in DP, the overall objective
function is maximized at every time step. Therefore, the opti-
mal solutions depend on the state variables. However, most DP
problems cannot be solved due to the large computation load
(Merkuryev, 2012). In addition, DP models cannot be used to
compare optimality at the average offspring level (Level 1)
with that at the extinction probability level (Level 2).

In the present study, I considered not only the environ-
mental stochasticity of the amount of food and predation
risk, but also the capacity of the maximum energy reserves.
A DP model was not used, primarily to simplify the model,
but also to avoid difficult qualitative analysis. A simple for-
aging model was built and the effects of short-term and
long-term environmental changes on optimal foraging
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strategies were verified. This model was built with consider-
ation to the fact that energy reserves have a strong effect on
bad environments when they become a critical factor for sur-
vival. The importance of this model is that the optimization
of the average number of offspring (Level 1) seems to have
a strong effect on the minimization of extinction probability
(Level 2), because it becomes critical for all individuals of a
generation in bad environments, often leading to extinction
(Ito et al., 2013). This model can help us to understand not
only the effect of short-term and long-term stochastic envi-
ronments (food quantity and predator abundance) but also
the effect of the maximum energy reserves of individuals.
This work will also help to generalize foraging theory
through the integral analysis of state variables and environ-
mental conditions.

2 | MODEL

A simple foraging-time-allocation model that optimizes forag-
ing efficiency under various predation (death) risks and food
amounts was built. The foragers (decision-makers) are
assumed to be subject to a risk of predation during foraging,
while the time that they spend in a safe nest (the time during
which no foraging acts are performed) is completely free from
predation (Ito et al., 2013; Lima, 1985; Lima, Valone, & Car-
aco, 1985; Stephens & Krebs, 1986; Yoshimura & Clark,
1991). In this model, ai is the food amount, and bi is the abun-
dance of predators in the i-th environment. The foragers
within a generation are assumed to experience one of two typ-
ical environments (i = 1, 2) with a given probability
(i.e., p1 + p2 = 1). The first environment (i = 1) is a good
environment with fewer predators, whereas the second envi-
ronment (i = 2) is a bad environment with more predators
(i.e., [b1 = 3] < [b2 = 10]). The ratio of foraging time was
set as x (0 ≤ x ≤ 1), during which predation occurs ran-
domly. In the current model, the foraging time (x) is the pro-
portion of the lifetime allocated to foraging behavior when the
total lifespan is set to 1. For example, when the ratio of forag-
ing time is x = 0.5, a forager devotes half of its entire lifespan
to foraging behavior. Note that during (1 − x), foragers stay
in the safe nest, with no predation risk. From this assumption,
the survival rate [Si(x)] in environment i follows a Poisson dis-
tribution (e−bix) (Ito et al., 2013; Lima, 1985; Lima et al.,
1985), as shown in Equation (1) (Figure 1a):

Si xð Þ¼ e−bix ð1Þ

Although the amount of food acquired increases monoton-
ically with x, the intake efficiency (digested food amount)
decreases asymptotically as it approaches a certain value
[r (0 << r)], at which point the energy reserves of the forager
are full (Whelan & Brown, 2005) (Figure 1b). The food gain
Fi(x; ai) during a foraging time of x is expressed as follows:

Fi x;aið Þ¼ r 1−e−
ai
r x

� �
ð2Þ

The fitness [φi(x)] in a single environment is then given
by the following equation:

φi xð Þ¼Fi x;aið Þ �Si xð Þ¼ r 1−e−
ai
r x

� �
� e−bix ð3Þ

This is a simple foraging model with a basic trade-off
between food gains and predation risks. The fitness curves
of the current model can be drawn based on any three
parameters (i.e., a, b and r) (Figure 1c,d). Even if a large
amount of food is available in the environment, the amount
of food intake is not simply proportional to the available
amount of food but is instead limited by the maximum
energy reserves of a forager. The optimal foraging time (x*)
under a stable (single) environment is derived from Equa-
tion (3), as follows:

xi* ¼ −
r
ai

log
bir

ai + bir

� �� �
ð4Þ

x* decreases as the amount of food (a) and/or predator
abundance (b) increases and increases as the maximum
energy reserve (r) increases (Figure 2) (Stephens &
Krebs, 1986).

3 | RESULTS

The arithmetic mean fitness (A) and geometric mean fitness
(G), given by the following formulas, were compared:

A xð Þ¼ p1φ1 + p2φ2 ¼
X
i¼1,2

piφi ð5Þ

and

G xð Þ¼φ1
p1φ2

p2 ¼
Y
i¼1,2

φi
pi ð6Þ

Note that A ≥ G for any foraging time (x). Neither the
maximum A [= A* = A(xA

*)] nor G [= G* = G(xG
*)] can be

solved analytically and are evaluated numerically by calcu-
lating the derivatives: dAdx ¼ 0 and dG

dx ¼ 0.
The effect of stochastic environments on foraging time

allocation was assessed in terms of the two environmental
conditions, namely, the amount of food (ai) and the abun-
dance of predators (bi; i = 1, 2) (Figure 1c,d). The fitness
functions of the arithmetic mean fitness (A) and the geomet-
ric mean fitness (G) are plotted under the assumption that
environments E1 (good) and E2 (bad) occur with equal prob-
ability (i.e., p1 = p2 = 0.5) (Figure 1c,d). The maximal
(peak) points are shown for the arithmetic mean fitness and
the geometric mean fitness. When the optimal foraging time
of the geometric mean fitness (xG

*) is less than that of the
arithmetic mean fitness (xA

*) (i.e., xG
* < xA

*), a “risk-
averse” strategy is more strongly preferred (Figure 1c),
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whereas when the opposite situation occurs (i.e., xG
* > xA

*),
a “risk-prone” strategy is more strongly preferred
(Figure 1d).

The differences in the optimal foraging time between
the arithmetic mean fitness (xA

*) and the geometric mean
fitness (xG

*) are shown in Figures 3 and 4. The risk-prone

strategy can be observed in a wider region when the
amount of food is high and r is small (Figure 3a,b;
Figure 4a,b). The largest difference in the two optimal
strategies (xG

* and xA
*) is found when the r is large and the

amount of food in both good and bad environments (a1 and
a2) is small.
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FIGURE 1 (a, b) Graphics of Equations (1) and (2). (a) The curve of the survival rate S(x) for various predator abundances (b = 1, 2 and 3). (b) The curve of
food gain F(x; a) for various maximum energy reserves (r = 1, 2 and 3) with a constant amount of food a = 5. (c, d) Fitness function for foraging time
allocation in stochastic environments. Potential fitness functions of a good environment, E1, and a bad environment, E2 (i.e., b1 = 3, b2 = 10), such as φ1 and
φ2, and their corresponding arithmetic mean fitness (A; dashed line) and geometric mean fitness (G; dotted line) are plotted against foraging time (x) (x = 0,
…, 1). The probabilities of E1 and E2 are set to be equal, and the maximum energy reserves are kept constant (i.e., p1 = p2 = 0.5, r = 3). The available
amount of food for good/bad environments are set as follows: (c) a1 = 5, a2 = 2 and (d) a1 = 3, a2 = 40. Open circles represent the optimal (peak) points for
the geometric mean fitness, and the filled circles represent the optimal (peak) points for the arithmetic mean fitness
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4 | DISCUSSION

Optimal foraging theory is an important topic because it
enables us to understand decision-making mechanisms from
benefits and risks. To promote our understanding of optimal
decision-making theory, this model considered not only the

balance between profits and risks, but also individual status.
Our previous results regarding risk sensitivity showed a risk-
averse tendency in environments with an abundance of food
(Ito et al., 2013). However, the present study shows that
introduction of maximum energy reserve into the model
increases the risk-prone tendency compared to our previous
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FIGURE 2 Effects of maximum energy reserves (r), available amounts of food (a), and the number of predators (b) on the optimal strategy (x*) in a single
generation. (a, b) Optimal foraging time (x*) versus the amount of food (a) for various predator abundances (b = 5, 10 and 15) and maximum energy reserve
(r = 10, 50 and 100). (c, d) Optimal foraging time (x*) versus predator abundance (b) for various amounts of food (a = 10, 50 and 100) and maximum energy
reserve (r = 10, 50 and 100). (e, f ) Optimal foraging time (x*) versus the maximum energy reserve (r) for various amounts of food (a = 10, 50 and 100) and
predator abundances (b = 5, 10 and 15)
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model. By introducing one simple limitation in the present
model (i.e., the maximum energy reserves), it was found that
optimality at the average number of offspring level (Level 1)
and that at the minimization of extinction probability level
across generations (Level 2) are reversed (from risk-averse
to risk-prone) under some environmental conditions
(i.e., when the amount of food is high and maximum energy
reserve is small). The current results demonstrate that the
relationships of risk-prone and risk-averse strategies can be
reversed when maximum energy reserves are introduced.
Thus, the detailed setting for such limitations may drastically
change the optimality of the dynamic solutions.

The current model is a simple model of optimal foraging
in stochastic environments over generations that incorporates
food intake and maximum energy reserves. In the previous
model, which ignored maximum energy reserves (and
implied an infinitely large energy reserve), risk-prone strate-
gies were limited in areas and locations in the parameter
space (see the case of a large r in Figure 4d) (Ito et al.,
2013). However, the utility of food does not exhibit a simple
proportional relationship with the amount of food; instead, it
depends on the maximum energy reserves and the degree of
starvation (Caraco, 1980; Caraco et al., 1980; Real, 1980a,
1980b). In the current model, which included maximum
energy reserves, risk-prone strategies appear in much wider
areas and on the opposite sides from the previous model
(Figure 4a–c)). The reason for the expansion of a risk-prone
strategy with the inclusion of maximum energy reserves

could be the necessity of frequent foraging because of small
energy reserves (Figure 1d).

The current model is similar to some previous ones in
terms of the foraging theory, which consider the stomach
condition of decision-maker. For example, Clark also exam-
ined the effect of capacity in stochastic environments (Clark,
1987). Moreover, earlier models have indicated that a risk-
prone strategy is more likely to occur when organisms are
hungry (Houston et al., 1988). The work of these authors
further shows that smaller energy reserves imply a higher
probability of suffering starvation. However, this previous
work did not comprehensively treat the level of adaptation
(i.e., Level 1–2), which means what kind of environmental
situations and individual conditions diverge Level 1 and
2 from each other. Specifically, they analyzed foraging
behavior using DP. In contrast, I used a mathematical analy-
sis rather than a numerical approach such as DP; I not only
analyzed the effect of state variable (maximum energy
reserve) of the decision-maker, but also mathematically
showed the gap in optimal strategies between Level 1 and
Level 2 behavioral optimization. Indeed, for the first time, a
mathematical distinction between Levels 1 and 2 was
applied to foraging theory in the current model.

Many studies have shown that risk-averse foraging
behavior is generally promoted under broad conditions
except for severe situations, such as extreme cold or starva-
tion (Caraco & Chasin, 1984; Ito et al., 2013; Yoshimura &
Shields, 1987). However, several empirical studies have
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observed risk-prone behavior in a variety of animals, includ-
ing birds (Caraco et al., 1980), fish (Sih, 1994), insects
(Frank & Eduard Linsenmair, 2017; Moses & Sih, 1998),
squirrels (Bowers & Breland, 1994), chimpanzees (Gilby &
Wrangham, 2007) and humans (Codding, Bliege Bird, &
Bird, 2011). The current results support this previous work
and imply that risk-prone behavior is far more common than
expected and may be invoked by certain biological limita-
tions, such as the maximum energy reserves. In this sense,
optimal solutions may be affected by many other limiting
factors, such as variation in the reduction of digestive rates
under conditions of a full/empty stomach or good/bad health
(Armstrong & Schindler, 2011), niche breadth and nutrient
value (Dussutour, Latty, Beekman, & Simpson, 2010; Hous-
ton et al., 2011a, 2011b; Mayntz, Raubenheimer, Slomon,

Toft, & Simpson, 2005). More importantly, the directions
and trends of risk sensitivity may be reversed if certain
explicit factors, such as the amount of fat reserve and the
amount of wealth in humans, are introduced. Further
research using theoretical models is needed, and theoretical
predictions should be verified using empirical systems, as in
traditional risk-sensitivity analyses of an individual.

This model cannot explain all real-world risk-prone foraging
behavior. For example, the chimpanzee's (Pan troglodytes
schweinfurthii) risk-prone foraging (hunting) behavior has not
been explained by the traditional foraging models that focus on
the starvation threshold (Gilby & Wrangham, 2007). Indeed,
chimpanzees adopt risk-prone behaviors even when they
already have a high diet quality. However, the current model
may be able to verify the relationship between the body size
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*) plotted against food abundances of a1 and
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* > xG
*), while in the blue regions, the strategies become risk-prone (e.g., xA

* < xG
*). The

solid line indicates neutral boundaries for risk sensitivity (xA
* = xG

*). The probabilities of E1 and E2 are set as equal (i.e., p1 = p2 = 0.5), and the predator
abundance is kept constant (b1 = 3, b2 = 10). (a) r = 1, (b) r = 3, (c) r = 5 and (d) r = 10
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and the foraging behavior. As the body size can be defined as
the maximum energy reserve, the current model can demon-
strate risk sensitivity differences between large and small organ-
isms. Indeed, several studies have shown that risk sensitivity of
foraging behavior differs depending on body size. Namely,
small animals (such as yellow-eyed juncos, bumblebees and
15-spined sticklebacks) adopt more aggressive foraging behav-
ior, and large animals (such as coyotes, bobcats and lions) adopt
more conservative foraging behavior (Caraco et al., 1990;
Carter & Dill, 1990; Croy & Hughes, 1991; Kissui & Packer,
2004; Odonoghue, Boutin, Krebs, & Hofer, 1997).

Risk-sensitivity is not only affected by body size (maxi-
mum energy reserve), but also lifespan and life history
(Kolodny & Stern, 2017). Large and small organisms have
different life histories, such as lifespan and the number of
reproduction events. Kolodny and Stern (2017) have argued
that the number of decision-making events in an individual's
lifetime is also an important factor to consider when asses-
sing risk preference. In other words, risk-averse strategies
are advantageous if there has only been one decision-making
event in an organism's lifetime; however, the advantage of
choosing a risk-averse strategy diminishes as the number of
decision-making events increases. This means that organ-
isms with many reproduction events in their life history are
more likely to exhibit a risk-prone strategy. The authors con-
cluded that evolution of risk preference is determined by
“reproduction dynamics”, “life history” and “population
size”. In this sense, although our model can be mathemati-
cally analyzed, we should build an agent-based simulation
model when considering the life history of an organism.

We should also note that the maximum energy reserve is
also largely involved in reproduction dynamics of long-lived
organisms (Bårdsen, Næss, Tveraa, Langeland, & Fauchald,
2014); long-lived organisms experience a temporally varying
cost of reproduction and build body reserves during periods of
favorable environmental conditions. They prepare for repro-
duction by using these reserves as a buffer against periods of
nonfavorable conditions; this is true for humans (Lummaa &
Clutton-Brock, 2002), large herbivores (Grailland & Yoccoz,
2003), birds (Hanssen, Hasselquist, Folstad, & Erikstad, 2005),
fish (Klemetsen et al., 2003) and reptiles (Radder, 2006).
Therefore, the introduction of the concept of maximum energy
reserve to the foraging model means that complex interactions
of this variable with various other elements become apparent.

In this sense, the present model is still a simple model that
ignores many important features of optimal foraging. For
example, the analysis of individual states is insufficient because
the nonlinearity of fitness consequences is not included.
Namely, in this model, the amount of food intake is assumed
to be equal to the fitness gain of an individual. However, both
the expected utility theory (Caraco, 1980; Caraco et al., 1980;
Real, 1980a, 1980b) and dynamic utility theory (Ito, Katsu-
mata, Hasegawa, & Yoshimura, 2016, 2017; Yoshimura et al.,
2013a; Yoshimura, Ito, Miller III, & Tainaka, 2013b) suggest

that fitness consequences are not linearly associated with food
intake. The introduction of utility functions (either static or
dynamic) further complicates the calculations and analyses.
However, in the future, the expected utility theory, which con-
siders the individual status (current status) and food quality,
may explain the mechanism underlying the occurrence of risk-
prone foraging behavior (as seen in, e.g., chimpanzees) that
cannot be explained by the traditional foraging theory. Thus,
the optimality of risk-sensitive foraging is highly variable and
depends on the detailed selection regimes, such as maximum
energy reserve, predation risks and food availability.
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