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Abstract. In this paper, we propose a new method for topical trend
analysis. We model topical trends by per-topic Beta distributions as in
Topics over Time (TOT), proposed as an extension of latent Dirichlet
allocation (LDA). However, TOT is likely to overfit to timestamp data
in extracting latent topics. Therefore, we apply prior distributions to
Beta distributions in TOT. Since Beta distribution has no conjugate
prior, we devise a trick, where we set one among the two parameters
of each per-topic Beta distribution to one based on a Bernoulli trial
and apply Gamma distribution as a conjugate prior. Consequently, we
can marginalize out the parameters of Beta distributions and thus treat
timestamp data in a Bayesian fashion. In the evaluation experiment,
we compare our method with LDA and TOT in link detection task on
TDT4 dataset. We use word predictive probabilities as term weights and
estimate document similarities by using those weights in a TFIDF-like
scheme. The results show that our method achieves a moderate fitting
to timestamp data.

1 Introduction

Term weighting is a key component of the applications in text mining such as
information retrieval, document clustering, word clustering, etc.1 While TFIDF
is a classic term weighting scheme widely used in such applications [8], we can
obtain a more well-founded term weighting with probabilistic modeling. In this
paper, we propose a new probabilistic model based on latent Dirichlet allocation
(LDA) [5] and obtain efficient term weights for text mining applications.

We can use LDA to obtain term weights as follows. LDA models each docu-
ment as a mixture of latent topics. Therefore, we have a multinomial distribution
Mult(θj) defined over topics for each document j. From Mult(θj), we draw as
many topics as the length of document j. Further, LDA models each topic k by
a multinomial Mult(φk) defined over words. By drawing a word from the word
multinomial corresponding to each of the topics which is in turn drawn from
Mult(θj), we obtain a set of word tokens composing document j. Based on this
modeling, we can estimate the predictive probability of word w given document
1 In this paper, the term “term” is used exchangeably with “word”.



Table 1. The definition of symbols.

x set of observed word tokens
y set of observed timestamps
z set of latent topic assignments to word tokens
s set of latent Bernoulli trials in BTOT

θjk parameters of per-document topic multinomials
φkw parameters of per-topic word multinomials

τk1, τk2 parameters of per-topic Beta distributions defined over timestamps
ηk1, ηk2 parameters of per-topic Bernoulli trials in BTOT

α parameter of a symmetric Dirichlet prior for topic multinomials
β parameter of a symmetric Dirichlet prior for word multinomials
γ parameter of a symmetric Beta prior for binomials

a1, b1, a2, b2 parameters of Gamma priors for Beta distributions

nk # of word tokens which are assigned to topic k
nj # of word tokens in doc j
njk # of word tokens in doc j which are assigned to topi k
nkw # of tokens of word w which are assigned to topic k

nk1, nk2 split of nk according to the results of Bernoulli trials in BTOT
nj1, nj2 split of nj according to the results of Bernoulli trials in BTOT
njk1, njk2 split of njk according to the results of Bernoulli trials in BTOT

j as
∑
k
njk+α
nj+Kα

· nkw+β
nk+Wβ . The definition of symbols are referred to Table 1. This

predictive probability can be computed based on a result of collapsed Gibbs
sampling (CGS) [7], where each word token is assigned to a topic so that the
resulting set of topic assignments is a sample from the true posterior.2 We can
regard the above predictive probability as a weight of word w in document j.

While both TFIDF and LDA are defined based on the frequencies of words,
other types of information may help in weighting terms. For example, we often
sort Web search results in chronological order. This is based on an intuition that
the similarity of document timestamps improves ranking. Therefore, we propose
a new probabilistic model utilizing document timestamps and provide a more
efficient term weighting.

Our proposed model is a sophistication of Topics over Time (TOT) [15],
which is proposed as an extension of LDA. In TOT, the dependency of word
token generation on document timestamps is modeled by per-topic Beta dis-
tributions defined over continuous timestamps. Intuitively speaking, each Beta
density represents a change of popularity over time for the corresponding topic.

2 To be precise, this is not the actual predictive probability, which is obtained by
taking an average over the posterior probability over all possible topic assignments.
However, it is intractable to compute the actual predictive probability. Therefore,
in this paper, word predictive probability always means a predictive probability
computed based on a result of collapsed Gibbs sampling.
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Fig. 1. Graphical representation of BTOT.

The predictive probability of word w given document j in TOT can be ob-
tained as follows:

1
Z

K∑

k=1

njk + α

nj +Kα
· nkw + β

nk +Wβ
· Γ (τk1 + τk2)
Γ (τk1)Γ (τk2)

tτk1−1
j (1− tj)τk2−1 , (1)

where Γ (·) denotes Gamma function and Z is a normalization constant. In
[15], the parameters of Beta distributions τk1, τk2 are directly estimated by the
method of moments. Therefore, Beta distributions are likely to overfit to times-
tamps. To be precise, in CGS for TOT, the same topic is likely to be assigned
to word tokens only because the tokens appear in the documents having similar
timestamps. We say that timestamps are similar when the time interval between
them is short. Consequently, the topic population at each point on the time axis
is dominated by only a few topics, though a wide variety of topics may appear at
the same time point. In [15], this problem is solved with a balancing parameter
appearing as an exponential power of the Beta density in Eq. (1).

In constrast, we propose a more well-founded approach, a Bayesian TOT
(BTOT), where we apply Gamma priors to Beta distributions and marginalize
out the parameters of Beta distributions. BTOT is a substantial modification of
TOT, because we can obtain word predictive probabilities with no reference to
a specific estimation of the parameters of Beta distributions. However, Gamma
distribution is not a conjugate to Beta distribution. Therefore, we use the fol-
lowing trick: we set one among the two parameters of each Beta distribution to
one. This is because Gamma distribution is a conjugate to Beta distribution one
of whose parameters is equal to one. Further, we determine which parameter is
set to one by a Bernoulli trial. Consequently, we can treat document timestamps
in a Bayesian manner by marginalizing out the parameters of Beta distributions.
Figure 1 shows the graphical representation of BTOT.

In the evaluation experiment, we compare BTOT with LDA and TOT by
link detection task on TDT4 dataset [1]. Link detection is a task to determine
whether a given pair of documents relate to the same topic. Therefore, an efficient
estimation of document similarity is a key to success. We use word predictive



probabilities given by the compared methods in a TFIDF-like term weighting
scheme and compute cosine measure of the resulting document vectors. Our
evaluation will show that BTOT gives evaluation results lying between LDA,
which uses no timestamps, and TOT, which depends too strongly on timestamps.
Therefore, we will conclude that BTOT shows a moderate fitting to timestamps.

The rest of the paper is organized as follows. Section 2 gives exisiting ap-
proaches for topical trend analysis. Section 3 describes the details of our method.
Section 4 explains how the evaluation is conducted. Section 5 includes evaluation
results and discussions. Section 6 concludes the paper with future work.

2 Previous Works

In recent years, probabilistic methods find an interesting application in modeling
topical trends of documents. In this paper, we focus on the applications of multi-
topic probabilistic models like LDA [5] to topical trend analysis.

Dynamic Topic Models (DTM) [4] and its continuous time version (cDTM)
[14] model topical trends as transitions of the parameters of per-topic word
multinomial distributions. First, a real vector is drawn from a time-dependent
Gaussian distribution at each position of time axis. The time-dependency of
Gaussian distributions is modeled as a linear transition in DTM, and as a Brow-
nian motion in cDTM. Second, the drawn vector is mapped to a set of parameters
of a multinomial distribution. However, Gaussian distribution is not a conjugate
to multinomial. Consequently, inference procedure becomes too complicated.

Multiscale Topic Tomography Models (MTTM) [10] are based on a com-
pletely different idea, where the entire time interval is segmented into two pieces
recursively. Consequently, we obtain a binary tree whose root represents the en-
tire interval and each internal node represents a subinterval. Each leaf node is
associated with a Poisson distribution for generating words. Further, the param-
eter of the Poisson distribution at each non-leaf node is equal to the sum of the
parameters of the Poisson distributions at the two child nodes. Therefore, we
can naturally express temporal localization of word counts by this branching at
each non-leaf node. However, we cannot use continuous timestamps in MTTM.

When compared with the works above, our proposal is remarkable in the
following two features:

– BTOT is an extension of LDA. Therefore, the inference can be implemented
by introducing a slight modification to that for LDA. In contrast, DTM,
cDTM and MTTM require heavily customized implementations. The infer-
ence used in our evaluation experiment is actually a slight modification of
CGS for LDA [7] as shown later.

– We can use continuous timestamps. Both MTTM and DTM lack this feature.
Another important recent approach dHDP [11] also assumes that timestamps
are discretized. While cDTM has this feature, the implementation is com-
plicated, because we need a special technique to realize an efficient memory
usage in modeling continuous timestamps [14].



3 Topical Trend Modeling with Priors

3.1 A Bayesian Topics over Time (BTOT)

We propose a new probabilistic model by introducing a sophistication to TOT
[15]. The full joint distribution of TOT can be written as follows:

p(x,y, z, θ, φ|α, β, τ) =
∏

j

Γ (Kα)
Γ (α)K

∏

k

θα−1
jk ·

∏

k

Γ (Wβ)
Γ (β)W

∏
w

φβ−1
kw

·
∏

j

∏

k

θ
njk
jk ·

∏

k

∏
w

φnkwkw ·
∏

j

∏

k

{ Γ (τk1 + τk2)
Γ (τk1)Γ (τk2)

tτk1−1
j (1− tj)τk2−1

}njk . (2)

The definition of symbols is referred to Table 1. Based on TOT, we devise a new
probabilistic model by applying Gamma prior distributions to the parameters
τk1, k = 1, . . . ,K and τk2, k = 1, . . . ,K in Eq. (2) (see also Figure 1).

However, Gamma distribution is not a conjugate to Beta distribution. There-
fore, we set one among the two parameters of Beta distribution to one. Then,
Gamma distribution becomes a conjugate. When one of the two parameters is
fixed to one, Beta distribution provides density functions as shown in the left
panel of Figure 2 for various values of the other parameter. Further, we deter-
mine which of the two Beta parameters is set to one by a Bernoulli trial for
each word token separately. To be precise, we choose one among the two Beta
distributions Beta(τk1, 1) and Beta(1, τk2) based on a random 0/1 draw from a
binomial distribution Bi(ηk1, ηk2) for each word token. We also apply a symmet-
ric Beta prior to these per-topic binomial distributions. Our approach is not the
only way to modify TOT in a Bayesian manner. Therefore, we call our approach
a Bayesian Topics over Time, though abbreviated simply as BTOT in this paper.

By marginalizing out the parameters of Beta distributions and those of bi-
nomial distributions, we obtain the full conditional probability of a topic assign-
ment followed by a Bernoulli trial as below:

p(zji = k, sji = 0|x,y, z¬ji, s¬ji, α, β, γ, a, b) ∝ (α+ n¬jijk ) · β + n¬jikw

Wβ + n¬jik

· γ + n¬jik1

2γ + n¬jik

· a1 + n¬jik1

tj
· {b1 −

∑
j n
¬ji
jk1 log tj}a1+n¬jik1

{b1 −
∑
j n
¬ji
jk1 log tj − log tj}a1+n¬jik1 +1

p(zji = k, sji = 1|x,y, z¬ji, s¬ji, α, β, γ, a, b) ∝ (α+ n¬jijk ) · β + n¬jikw

Wβ + n¬jik

· γ + n¬jik2

2γ + n¬jik

· a2 + n¬jik2

1− tj · {b2 −
∑
j n
¬ji
jk2 log(1− tj)}a2+n¬jik2

{b2 −
∑
j n
¬ji
jk2 log(1− tj)− log(1− tj)}a2+n¬jik2 +1

.

(3)

where ¬ji means the count after removing ith word token in document j. The
derivation is omitted due to space limitation. We use Eq. (3) in CGS for BTOT.
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Fig. 2. Left panel: Beta density functions Γ (τ1+τ2)
Γ (τ1)Γ (τ2)

tτ1−1(1− t)τ2−1 for various values
of τ1, while τ2 is fixed to one. Right panel: mixing proportions of two Beta distributions
at each point of the time axis. Each time point correspond to a timestamp of documents
used in our experiment. The solid line (resp. dashed line) shows the proportion of the
number of word tokens where the Beta density ∝ (1 − t)τ2−1 (resp. tτ1−1) is selected
by a Bernoulli trial. In the earlier half of the given time interval, the Beta density
∝ (1− t)τ2−1 is likely to be chosen. The opposite is observed in the later half.

However, the computation of the last term in each of the two cases in Eq. (3)
is time consuming. To reduce the execution time, we apply an approximation
shown below to the former case in Eq. (3).

{b1 −
∑
j n
¬ji
jk1 log tj}a1+n¬jik1

{b1 −
∑
j n
¬ji
jk1 log tj − log tj}a1+n¬jik1 +1

≈ {b1 −
∑
j njk1 log tj}a1+nk1

{b1 −
∑
j njk1 log tj − log tj}a1+nk1+1

(4)

A similar approximation is also applied to the latter case in Eq. (3). In the
evaluation experiment, we update these two approximated terms once for every
10 samplings of topics in CGS.

In the right panel of Figure 2, a line graph presents the proportions of 0/1
draws for each timestamp. This graph is drawn based on a result actually ob-
tained in our evaluation experiment. CGS for BTOT provides a set of 0/1 draws
for all word tokens along with a set of topic assignments. Therefore, we can
count the number of 0 draws and that of 1 draws at each time point to obtain
a proportion of 0/1 draws at each time point. This line graph shows that the
Beta density ∝ (1 − t)τ2−1 is likely to be chosen in the earlier half of the time
axis, and that the density ∝ tτ1−1 is likely to be chosen in the latter half. While
this example is arbitrarily selected from 50 results obtained in our experiment,
other results give almost the same tendency.

4 Experimental Settings

4.1 Evaluation strategy

We compare the methods by link detection task on TDT4 dataset [1]. This
dataset consists of 96,259 documents, where machine-translated non-English



documents are also included. 196,131 unique unstemmed words and 17,638,946
word tokens are observed after removing standard stop words. We use document
dates, ranging from Oct. 1 on 2000 to Jan. 31 on 2001, as document timestamps
and normalize them to the real values in the interval [0.05, 0.95], where the values
close to both ends of [0, 1] are omited for numerical stability.

We have two sets of evaluation topics for TDT4 dataset, i.e., TDT 2002
topic set and TDT 2003 topic set. These topic sets are prepared for TDT 2002
competition and for TDT 2003 competition, respectively. Each set consists of 40
topics and the corresponding 40 sets of on-topic documents. To avoid confusion
with the “topics” in probabilistic models, we call evaluation topics prepared for
TDT4 dataset “TDT-topics.” With respect to each TDT-topic, we evaluate the
efficiency of document similarity as follows. Let D be the entire TDT4 document
set and D0 be the on-topic document set for some TDT-topic. Then, under a
similarity threshold λ, we can compute the following two evaluation measures:

– False alarms probability:
| {(d0, d) : d0 ∈ D0, d ∈ D \D0, sim(d0, d) ≥ λ} | /(|D0| × |D|)

– Miss probability:
| {(d0, d

′
0) : d0, d

′
0 ∈ D0, d0 6= d′0, sim(d0, d

′
0) < λ} | /{|D0| × (|D0| − 1)},

where sim(·, ·) denotes document similarity. For both measures, a less value
means a better document similarity. However, there is a trade-off between the
two measures. Therefore, we introduce a measure called normalized detection
cost (NDC), defined as the sum of a false alarms probability multiplied by 4.9
and a miss probability [2][12]. NDC is based on an intuition that false alarms
are more harmful. Based on a preliminary experiment, we set λ = 0.05 for all
compared methods so that each method can give a near peak performance for
all TDT-topics in average.

4.2 Term weighting

In this paper, we estimate document similarity by cosine measure [8] of docu-
ment vectors whose entries are computed based on a TFIDF-like term weighting
scheme. We use the following term weighting scheme:

ej(w) ≡ njw × log

√
p(w|j)ρ · (njw/nj)σ

(Jw/J)
, (5)

where Jw is the document frequency of w, p(w|j) is the predictive probability of
word w given document j, njw is the term frequency of w in document j. This
weighting scheme is also adopted in [13].

In Eq. (5), njw/nj is a maximum likelihood estimation of the probability of
word w given document j where we assume that we have a different multinomial
for each document. The predictive probability p(w|j) can be computed based
on a result of CGS for each of the compared methods. The parameters ρ and
σ can be regarded as annealing parameters for p(w|j) and njw/nj , respectively.
Therefore, we compare the geometric mean of the annealed versions of p(w|j)



and njw/nj to Jw/J , which can in turn be regarded as a background probability
of word w. In this manner, Eq. (5) defines a term weight based on how largely
p(w|j) and njw/nj deviate from Jw/J .

When ρ = σ = 0, Eq. (5) is reduced to a standard TFIDF: ej(w) ≡
njw log J

Jw
. However, this turns out to be quite inefficient in our evaluation.

When ρ = 0 and σ 6= 0, we define a term weight with no reference to proba-
bilistic methods. We regard this case as our baseline method, simply denoted by
TFIDF. We set σ = 0.6 based on a preliminary experiment. When ρ 6= 0, we ob-
tain a term weight using a probabilistic method. Based on another preliminary
experiment, we set ρ = σ = 0.3 for all of LDA, TOT, and BTOT.

4.3 Inference

For each of LDA, TOT, and BTOT, we run 50 instances of CGS starting from
a random initialization. In CGS, the entire document set is scanned 800 times
to achieve a good convergence. We fix the number of topics K to 100 for all
compared methods. The evaluation results are worse when K = 50 and are only
comparable when K = 200. We optimize hyperparameters α, β, and γ by using
Minka’s fixedpoint iterations [9] as presented in [3]. For TOT, we reduce overfit-
ting to timestamp data as follows: every time one among 2K Beta parameters
τk1, τk2, k = 1, . . . ,K gets larger than a threshold, rescale all of them by mul-
tiplying the same constant and keep them less than or equal to the threshold.
This rescaling can directly suppress the unbounded increase of the parameters,
which causes overfitting. The threshold is set to one, because larger values lead
to worse evaluation results, and smaller values make TOT indistinguishable from
LDA. The execution time of inference is about five hours for LDA and TOT,
and about 11 hours for BTOT on a PC equipped with Intel Core2 Quad Q9650.

5 Evaluation Results

We have 50 NDC values for each of LDA, TOT, and BTOT, because 50 sampling
results of CGS are obtained for each of these compared methods. Based on these
NDCs, we conduct a series of comparisons among TFIDF (i.e., baseline method),
LDA, TOT, and BTOT, as described below.

– For TFIDF, we have only one evaluation result, because TFIDF is not a
probabilistic method and thus has no corresponding CGS trials. Therefore,
we compare each of LDA, TOT, and BTOT with TFIDF by one sample
t-test [6], where we regard the NDC of TFIDF as the test mean.

– Further, by applying two sample unpooled t-test [6], we conduct a compar-
ison between LDA and TOT, a comparison between LDA and BTOT, and
finally a comparison between TOT and BTOT.

Table 2 summarizes evaluation results. The six columns tagged with “Im-
provements M” (resp. “Deteriorations H”) show the numbers of the TDT-topics
where a significant improvement (resp. deterioration) is observed. We simply call



Table 2. The numbers of the TDT-topics for TDT 2002 or TDT 2003 where a signif-
icant improvement or deterioration is found.

Improvements M Deteriorations H
TDT 2002 TDT 2003 TDT 2002 TDT 2003

TFIDF LDA TOT TFIDF LDA TOT TFIDF LDA TOT TFIDF LDA TOT

BTOT 16 6 3 15 9 4 3 0 1 2 0 0
TOT 20 16 — 11 11 — 2 2 — 1 0 —
LDA 15 — — 11 — — 3 — — 5 — —

an improvement or a deterioration “significant” when it is significant at 99.5%
confidence level. With respect to both improvement and deterioration, the three
columns tagged with “TDT 2002” (resp. “TDT 2003”) gives the numbers of
TDT-topics among the 40 TDT-topics prepared for TDT 2002 competition (resp.
TDT 2003 competition). Each column tagged with “TFIDF” gives the results
obtained by comparing between TFIDF and the method appearing in the first
column. The other two column tags, “LDA” and “TOT”, mean the comparison
with LDA and that with TOT, respectively. For example, the number “16” on
the second last row in the third column means that when TOT is compared
with LDA, a significant improvement is observed for 16 TDT-topics among 40
prepared for TDT 2002 competition. Table 2 gives the following observations:

– The number of TDT-topics where LDA significantly improves TFIDF is
larger than that of TDT-topics where LDA significantly deteriorates TFIDF.
The same result is also observed for TOT and BTOT. Therefore, we can
conclude that LDA-like probabilistic models lead to term weighting efficient
for document similarity estimation.

– The number of TDT-topics where TOT or BTOT significantly improves
LDA is larger than that of TDT-topics where TOT or BTOT significantly
deteriorates LDA. Therefore, we can conclude that the efficiency of term
weighting can be improved by considering document timestamps in LDA-
like probabilistic modeling.

– The number of TDT-topics where BTOT significantly improves TOT is
larger than that of TDT-topics where BTOT significantly deteriorates TOT.
Therefore, we can conclude that our Bayesian approach improves TOT.

Finally, we point out the following fact. The number of TDT-topics where
BTOT significantly improves LDA is smaller than that of TDT-topics where
TOT significantly improves LDA. At the same time, the number of TDT-topics
where BTOT significantly deteriorates LDA is also smalller than that of TDT-
topics where TOT significantly deteriorates LDA. In fact, BTOT deteriorates
LDA for no TDT-topics. This means that BTOT behaves more similar to LDA
than TOT. Intuitively speaking, BTOT is halfway between LDA and TOT.
Therefore, we can conclude that BTOT exhibits a fitting to timestamp data in
a more moderate manner than TOT.



6 Conclusions

In this paper, we propose a new probabilistic model, a Bayesian Topics over
Time (BTOT). In BTOT, we model document timestamps with per-topic Beta
distributions. Further, we apply Gamma priors to the Beta distributions after
introducing a trick to make Gamma prior conjugate. Then, we marginalize out
the parameters of the Beta distributions and treat the timestamps in a Bayesian
manner. Based on the results of our evaluation experiment, we can conclude that
BTOT achieves a more moderate fitting to timestamp data than TOT.

When we utilize our methods as a component of indexing processes of a
realistic search engine, we should conduct a collapsed Gibbs sampling on a doc-
ument set where the arrivals of new documents frequently occur. Further, such
new documents will arrive with new timestamps. Therefore, our important fu-
ture work is to devise a collapsed Gibbs sampling which is applicable to the
situation where a document set dynamically changes not only in observed word
frequencies, but also in observed variations of timestamps.
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