鉄のアルミニウム拡散被覆について

古賀 秀人* •内山 休男* •安芸 隆房* 高橋 満** • 大久保忠則***

On the aluminium diffusion coating of iron

by

Hideto KOGA

(Depertment of Materials Science and Engineering)

Yasuo UCHIYAMA

(Depertment of Materials Science and Engineering)

Takafusa AKI

(Depertment of Materials Science and Engineering)

Mitsuru TAKAHASHI

(Sankei House Co. Ltd., Osaka)

Tadanori OKUBO

(Shokosha Co. Ltd., Tokyo)

As one of the studies on the interdiffusion between iron and aluminium, pure iron samples diffusion-coated with aluminium at the temperature range of 900-1100°C were studied by usual methods including microscopic observations, and microhardness tests. The heat resistant property of aluminium-coated samples heated in air at high temperature was also studied by measuring weight gains by oxidation, surface appearances, and microscopic observations. The results were as follows:

1) The greater part of a diffused layer consisted of a α -solid solution layer, and a adhesion layer of Fe-Al alloy powder. At above 1050°C, needle-shaped particuls were formed in outer part of a α -layer. Voids were formed in a α -layer.

2) Hardness drop was founded at the same position where voids were formed.

3) The diffused layer, and the movement of a iron-diffused layer interface were increased exponentially with increasing the diffusion temperature, parabolically with increasing the diffusion time. Activation energy for these were 58 Kcal/mol, and 50 Kcal/mol.

4) A $\rm Al_2O_3$ was formed on the surface of a sample heated in air at high temperature, it peeled off during oxidation, and a new oxide film was formed there.

5) Oxidation of iron was started locally, maybe at cracks by heat repetition.

1. 緒 言

鉄鋼にアルミニウムを被覆するとその耐熱性・耐摩 耗性・耐食性が著しく改善される。また、PbO、 V_2O_5 、 S化合物を含む雰囲気に良く耐えることが知られてお り、近年では化学工業用・家庭用と用途も広まってき た。

鉄鋼にアルミニウムを被覆する方法には次にあげる 種々の方法がある¹,²⁾。

- 1. 溶射法 (Spraying)
- 拡散浸透法 (Carolizing, Diffusion Coating)
- 3. 高温浸漬法 (Hot Dipping)
- 4. 合せ圧延法 (Cladding)
- 5. 合せ鋳込法 (Casting)
- 6. 電気メッキ法 (Electroplating)
- 7. 蒸着法 (Vapor Plating)

これらの方法の内で,我が国では拡散浸透法,高温 浸漬法が多く行なわれ,とくに前者では,アリティー レン法を改変し,Fe—Al (50:50)合金粉末に塩化ア ンモニウム等の促進剤を配合した浸透剤を用いた独自 の方法が開発されている。この拡散浸透法はカロライ ジングという商業名で呼ばれ,耐高温性が特に優れ, 製鋼用のランスパイプに施され,その消耗を著しく低 減させている。

このように用途が広まり,生産量が増すにつれて, その耐熱性・耐食性,さらには高温における機械的性 質等の現象論的研究および理論的研究が数多くなされ てきたが^{3)~19)},拡散機構・耐酸化機構等の理論的 解明はいまだ不十分と思われる。

我々は高温浸漬法および拡散浸透法により鉄鋼にア ルミニウムを被覆した場合の鉄とアルミニウム間の相 互拡散反応について研究を行ないつつあるが,本報告 では,拡散浸透法における鉄とアルミニウム間の相互 拡散反応について基礎的知見を得るために,試料とし て純鉄を用いた研究結果を報告する。

2. 実験方法

2.1 供試材

電解鉄(Table1に組成を示す)を高周波真空溶解 し,30mm φ の丸棒に鋳込んだ。これから機械加工に より25.3mm φ・2 mm 厚さの円板を切り出し,表面を エメリー紙・ダイヤモンドペーストにて研摩して鏡面 とし,真空中で 950℃ に1時間保持後炉冷し,再研

** サンケイハウス㈱大阪府岸和田市 ***昭工舎㈱東京都北区

Table 1 Chemical composition of electrolytic iron

С	Si	Mn	Р	S	Cu	Fe
0.005	0.005	0.005	0.004	0.005	0.004	bal.

摩し,拡散浸透実験の供試材とした。拡散浸透処理は 高温で行なわれるため,表面加工・鋳造組織等の影響 は取り除かれる。したがって,熱処理は不要と思われ るが,拡散反応の開始温度が知られていないことなど のため,初期条件を一定にしておく目的で熱処理を施 した。

2.2 浸透剤

浸透剤は市販の「Fe—Al (50:50) 合金粉末に促進 剤として 0.3wt %塩化アンモニウム粉末を加え,充 分攪拌して実験に供した。浸透剤は各処理毎に新しく 調合したものを使用した。

2.3 拡散浸透法

2.1 で調製した供試材の表面をトリクレンで脱脂 し、6枚を一組として浸透剤ととに鉄製容器に充填し た。浸透剤の充填量は、すべての実験において 2.5 kg/cm と定めた。鉄製容器にはガス抜き用の 2 mm ø の小孔があけられているが、充填に際しては布切れを 詰め、充塡後は容器の入口をブリキ板で封じ、赤土で 目張りをした。

この充填された鉄製容器をマッフル炉内に入れ, (i)等時拡散処理(900,950,1000,1050,1100℃に 20時間保持)(ii)等温拡散処理(1000℃で2.5,5, 10,20,40時間保持)の実験を行なった。Fig.1 に 実験装置の略図を,Fig.2 に加熱時間と炉内および 容器内温度との関係を1000℃の場合について示す。 拡散処理時間は容器内の温度が所定温度に達した時を 基準とし,容器内の温度は所定温度±3℃以内に制 御した。拡散処理後は400℃まで炉冷し,のち室温 まで空冷した。

容器から取り出した試料の表面に付着した浸透剤は ブラッシングにより落とし,発銹の原因となる塩化ア ンモニウムは温水を用いて洗い落とした。

2.4 組織観察および硬度測定

アルミニウム拡散処理後の試料は、拡散面に垂直に 切断し、その断面について組織観察、硬度測定を行な った。切断面の腐蝕は吉田ら¹⁶)が用いた3% HF

^{*} 材料工学科

- (1) thermocouple (2) cold junction
- (3) pyrometer (4) firebrick
- (5) source and thermoregulator
- (6) red clay
 (7) tin plate
- (8) sample

Fig. 1 Experimental apparatus

Fig. 2 Heat diagram for the aluminium diffusion-coating

水溶液, 5%ナイタールによる2段腐蝕法を用い,硬 度測定は明石製のマイクロヴィッカース硬度計を用 い,荷重 300*9*,30秒で測定した。

2.5 耐酸化実験

アルミニウム拡散処理後の試料を 1000, 1100℃ に 保持したマッフル炉内で暴露加熱し,加熱時間と重量 増加の関係を求めると共に,暴露加熱後の試料表面の 状況および断面の組織観察を行ない耐酸化性について 検討を行った。

3. 実験結果

3.1 アルミニウム浸透量

アルミニウム浸透量とは、拡散処理後の試料重量と 処理前の試料重量との差 4 W を試料表面積Sで割っ た値であり、一般に mg/cm² の単位で表わされる。 20時間の等時拡散処理におけるアルミニウム浸透量 と処理温度との関係を Fig. 3 に、1000℃ 等温拡散 処理におけるアルミニウム浸透量と処理時間の関係

Fig. 3 Relation between weight gain per surface area and diffusion temperature (for 20 hr)

Fig. 4 Relation between weight gain per surface area and diffusion time (at 1000°C)

をFig. 4 に示す。これらの関係よりアルミニウム浸 透量は処理温度の増加とともに指数函数的に増加し, 処理時間の増加とともに放物線的に増加する。

3.2 組織観察

Photo. 1 に 900℃ で20時間拡散処理を行なった 試料の断面を示す。試料表面より黒点が散在する領 域,腐蝕されない白色の領域,小さな黒点が散在する 領域,および結晶粒界の現われた鉄素地が観察され る。900~1000℃ の処理温度では Photo. 1 と同様 の組織が観察されるが,さらに処理温度が高くなり 1050℃ になると表面に黒色に腐蝕された短冊状の粒 子が散在する領域が出現し,その内側に Photo. 1 と 同じ組織が続く。さらに、1100℃になると Photo. 2 に示すごとく表面に層状組織を有する領域が出現する が,その内部は 1050℃ の場合と同じ組織を示す。

Photo. 1 Structure of diffused layer $(900^{\circ}C \times 20hr)$

3.3 硬度測定

アルミニウム拡散処理した試料のすべてについて 表面から 50μ 間隔で硬度を測定した。Fig. 5 に 1000℃, 20時間処理試料についての硬度測定結果を示 す。すべての試料についての硬度測定の結果による と, Fig. 5 に示すと同様に硬度は表面より内部に向 って減少し,一度極小を示し,さらに内部へ向うと増 加が見られ,極大を示したのち再び減少し,鉄素地に 至って一定となる。Table 2 に実験された諸条件に おける硬度の極大・極小値,およびその間隔を示す。

Photo. 2 Structure of diffused layer (1100°C×20hr)

Fig. 5 Hardness curve for the sample aluminium diffsion-coated for 20 hr at 1000°C

Table 2 Hmax (Hv), Hmin (Hv) and *l* (Hmax - Hmin) (µ)

		Hmax	Hmin	<i>l</i> (Hmax-Hmin)
Temperature (°C)	900			
	950	275	220	90
	1000	315	230	135
	1050	325	220	175
	1100	315	220	300
Time (hr)	2.5			
	5	290	230	100
	10	300	250	120
	20	325	220	175
	40	330	240	200

3.4 浸透層厚さ

硬度の分布は、Fig. 5 に示すごとく左右対称の図 形を示すので、試料の両面における拡散が同一条件で 起ったと考えられる。そこで、鉄素地の中心を基準に とり処理前の試料表面を求めた。Fig. 5 の線IIがこ の処理前の鉄表面であり、線I,線IIはそれぞれ拡散 処理後の試料表面および鉄素地と合金層との界面を示 す。したがって、l(I-III)は合金層の厚さを示 し、l(II-III)は界面移動距離を示す。これらの値 と処理温度、処理時間との関係を Fig. 6, Fig. 7 に示す。合金層の厚さ、界面移動距離は共に処理温度 の増加とともに指数函数的に増加し、処理時間の増加 とともに放物線的に増加する。この合金層の成長、お

Fig. 6 Relation between l(I-II), l(II-II) and diffusion temperature (for 20 hr)

l (∏—Ⅲ) and diffusion tin (at 1000°C)

よび界面移動距離が体拡散により律速されているとす れば、これらの値の2乗と処理温度の逆数との間に直 線関係が成立する。合金層の厚さの2乗、および界面 移動距離の2乗と処理温度の逆数との関係を Fig. 8 に示す。いずれも直線関係を示し、各々の傾きから活 性化エネルギーを求めると、58 Kcal/mol、50 Kcal/ mol である。

l (I - III), l (II - III) vs. reciplocal absolute temperature

3.5 耐酸化実験

耐酸化性は,酸化による重量変化を追跡する方法が 良く用いられる^{20~25})。我々もこの方法を用い,ア ルミニウム拡散処理後の試料を 1000,1100℃ に保持 したマッフル炉内で暴露加熱してその重量変化を追跡 した。Fig.9 に 1000℃ 加熱における試料の重量変 化と保持時間の関係を示す。耐酸化時間…酸化増量が 急激に大きくなる時間…はアルミニウム浸透量が増す と長くなり,93 mg/cm²の試料 では,1000℃×600

Fig. 9 Relation between weight gain by oxidation and diffusion time (at 1000°C)

Photo. 3 Surface appearance of the sample oxidized at 1100°C for (a) 70hr, (b) 92hr, and (c) 170hr

Fig. 10 Sectional sketch of the sample oxidized for 170hr at 1100°C

時間の加熱においてもほとんど重量増加は見られな い。比較のため行なった純鉄試料では,加熱初期よ り重量増加が起り,100時間でほぼ試料全体が酸化 される。1100℃と加熱温度が高くなると耐酸化時 間は短かくなる。Photo.3にアルミニウム浸透量 60mg/cm²の試料の1100℃暴露加熱後の試料表面 の写真を示す。左から耐酸化時間前,耐酸化時間直 後,および耐酸化時間をはるかに越えた時間暴露加熱 したものである。耐酸化時間まではうすい灰白色を呈 するが,耐酸化時間直後では試料表面に小さな黒色を 呈した鉄の酸化物が現われる。さらに加熱時間が長く なるとこの酸化物が大きく成長する。この部分をよく 観察すると,大きな鉄の酸化物が表面に形成された部 分は鉄素地が Fig.10の模式図の如く円形に酸化され ることが判明した。

また, 試料表面に形成される Al₂O₃ 膜は重量測 定に際して剝離し, その部分には新しい酸化膜が形成 されることが確認された。

4. 考察

4.1 組織観察

鉄-アルミニウム合金のアルミニウム濃度と硬度の 関係を Fig. 11 に示す¹⁶)。本実験により形成され

Fig. 11 Relation between hardness and aluminium content

Photo. 4 Void structure (no etching)

る合金層は,硬度測定値と Fig. 11 との対比より, α固溶体と思われる。

Photo. 1・2 中の表面側の黒点は Photo. 4 に 示すごとく腐蝕前から存在し,ボイドである。このボ イドは処理温度が高温になるほど,処理時間が長くな るほど大きくなり,その存在領域も増す。

1100 C で表面に現われる層状組織は状態図で 1100 C 付近に $\epsilon \rightarrow \alpha + \zeta$ の共析が存在し、1100 C に 20時間保持した浸透剤にも同じ組織が見られることか ら、浸透剤が付着して共析組織となったと思われる。 この層の内側に存在する短冊状の組織は,硬度測定か らはα固溶体の範囲である。

4.2 硬度測定

硬度測定の結果硬度の落込みが見られたが、この落 込み部は Photo. 4 に示すボイドの形成された領域 に位置する。Fig. 11 のアルミニウム濃度と硬度のと 関係から、この落込み部でアルミニウム濃度の低下が 起っているはずある。しかしながら、組織的には変化 が見られず、拡散の法則からも濃度の落込みは考えら れず、別の因子によるものと思われる。この因子とし てKirkendall 効果、体積変化による無数のボイドの 集積が考えられている¹⁶)。ボイドの大きさ、存在領域 の変化はこれらの因子で説明されるが、落込み部は、 処理温度が高くなるにつれて最初の鉄界面(Fig. 5 の線Ⅱ)の表面側から鉄素地側へと移行することはこ れらの因子のみでは説明できない。

4.3 浸透層の厚さおよび界面移動距離

浸透層の厚さおよび界面移動距離と処理時間との間 に放物線的関係が得られたので、その時間指数を求め ると 0.47 および 0.32 となる。界面移動距離は放物線 則を満足するが、浸透層厚さは 0.5 より低い値となっ た。この原因は、浸透層の厚さとして Fig. 5 の線 I と線 II との間隔で定義したが、表面に付着した浸透 剤の厚さが含まれるためと思われる。

浸透層の厚さ,界面移動距離と処理温度の関係から 各々 58Kcal/mol, 50Kcal/mol という活性化エネ ルギーが得られたが,以下に他の研究者が求めた活性 化エネルギーを,研究者名,拡散対,拡散対形成方法お よび拡散方法,温度範囲,形成される層,活性化エネル ギーを求めた対象,活性化エネルギーの順で列挙する。

柴田ら12), アームコ鉄一純アルミニウム, 固相圧 着, 605~655℃, FeAl₃・Fe₂Al₅(舌状)・一部に FeAl₂, 合金層の厚さ, 54Kcal/mol.

西田ら13), 再電解鉄--(α+ζ)合金, 蒸気拡 散,800~1100℃,α相全域,マーカーの移動距離, Q_{A1}・Q_F。ともに約 60Kcal/mol.

吉田ら¹⁶), *a* – Fe・ζ – Fe・₇ – Fe, 電気メッキ・ 固相拡散, 900~1200℃・950~1100℃, —, 鉄側に 生成した拡散層の厚さ, 37Kcal/mol.

平野ら18),純鉄-α固溶体,電気抵抗溶接・固相 拡散,800~1200℃,α固溶体およびr,保野法およ び界面移動距離,規則相で31~45Kcal/mol・不規 則相で約70Kcal/mol・希薄合金で約40 Kcal/mol.

この他, Argew²⁸) はα鉄中のアルミニウム原 子の拡散に対して 44Kcal/mol, Gertsricken²⁹) は αFe-Al 中の鉄の自己拡散に対して 60Kcal/mol という値を得ている。

これらの値と比較して本実験で得られた活性化エネ ルギーは妥当な値と思われる。

4.4 耐酸化実験

Photo.3 に示すごとくアルミニウム拡散浸透処 理した試料を加熱すると表面に灰白色の酸化膜が形成 される。この酸化膜は中山^{26,27})の報告によるごと く Al_2O_3 と思われる。この酸化膜はくり返し加熱を 行なうと剝離し、その部分には新しい酸化膜が形成さ れる。

アルミニウム拡散被覆が耐酸化性を有するのは表面 にち密な Al_2O_3 が形成されるためとする考え方と, Fe-Al 合金層自体にあるとする考え方がある。本実 験によるとアルミニウム浸透量が多い試料ほど耐酸化 性が大きいこと,および Al_2O_3 被膜の再生が観察さ れることより,双方の因子が相俟って耐酸化性に寄与 していると思われる。

酸化は Photo. 3 に示すごとく局所的に開始し, Fig. 10 に示すごとく酸化が起った箇所では鉄素地 が酸化されていることから、くり返し加熱により Al_2O_3 膜が剝離するばかりでなく、表面層に亀裂が 発生し、この部分が酸化の基点となり鉄が酸化され、 耐酸化時間が短かくなると思われる。

5. 結 言

本研究の実験条件の下において,次のことが明確と なった。

(1) 形成される浸透層は α固溶体の層と浸透剤が付着した層よりなる。高温において α固溶体の中に短冊 状の粒子が出現する。また,ボイドが形成される。

(2) 表面から内部の鉄素地へ向って硬度変化を調べると,落込みが見られる。この落込みはボイド領域にあたる。

(3) 浸透層の成長および界面移動距離はほぼ放物線 則を満足し,その温度依存性から活性化エネルギーを 求めると各々 58Kcal/mol,50Kcal/molである。

(4) アルミニウム拡散浸透処理した試料を暴露加熱 すると、表面に Al₂O。膜が形成される。長時間加熱 を続けると局所的に鉄の酸化が起こり始め、酸化増量 が急激に増す。

(5) 酸化の基点は、くり返し加熱により表面層に入った亀裂部分と思われる。

(6) 耐酸化性は表面に形成される Al₂O₃ 膜と

Fe-Al 合金の Al₂O₃ 膜再生能力に起因する。

参考文献

- (1) 上田:金属表面技術,8(1957),34
- (2) 上田:鉄鋼便覧,日本鉄鋼協会編,丸善, (1975)
- (3) 三浦,上田:金属表面技術,12(1961),38
- (4) 多賀谷,伊佐:金属表面技術,10(1959),3
- (5) 多賀谷,伊佐,尾上:金属表面技術,11(1960), 17
- (6) 多賀谷,伊佐:金属表面技術, 11 (1960),134
- (7) 嵯峨,安井:金属表面技術,8(1957),5
- (8) 戸部,嵯峨,宮川:金属表面技術,23(1972), 514
- (9) 嵯峨,宮川,戸部,加藤:日本機械学会論文集, 38(1972),1654
- (10) 矢島:日本金属学会誌,16(1952),333
- (11) 幸田,諸住,金井:日本金属学会誌,26(1962), 764
- (12) 柴田,諸住,幸田:日本金属学会誌,30(1966), 382
- (13) 西田,山本,永田:日本金属学会誌, 34 (1970), 591
- (14) 西田,成田:日本金属学会誌,35(1971),269
- (15) 山口,長坂,武井:金属表面技術,9 (1958),16
- (16) 吉田,河上,源馬:熱処理, 15(1975),87
- (17) 森永,加藤:日本金属学会誌,19(1955),578
- (18) 平野, 菱沼:日本金属学会誌, 32 (1968), 516
- (19) 佐野、佐藤:長崎造船大学研究報告, 12(1971), 100
- (20) 嵯峨,宮川:日本金属学会誌,19(1955),404
- (21) 嵯峨, 宮川: 日本金属学会誌, 20(1956), 184
- (22) 嵯峨,安井:日本金属学会誌,21(1957),636
- (23) 嵯峨, 宮川: 日本金属学会誌, 22 (1958), 177
- (24) 上田, 富永, 光田: 金属表面技術, **24**(1973), 15
- (25) 伊藤,池田:日本金属学会誌, 30 (1966), 995
- (26) 中山:日本金属学会誌, 21 (1957), 716
- (27) 中山:日本金属学会誌, 22(1958), 332
- (28) N. W. Agrew, O. J. Vhen : J. Inst. Metals, 44 (1930), 83
- (29) S. D. Gertsricken et al. : Issled Zharpr.
 Splav., 3 (1958), 68