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Abstract: Fractional-slot winding configurations have attracted much attention due to
the availability of concentrated windings and low cogging torque in permanent magnet
brushless motors. For the design of the winding configurations, many design parameters
must be determined. The winding factor provides a useful index for the optimal design.
However, no general expressions of the winding factor have been derived for all the
winding configurations. This paper performs the general formulation of the winding
factor for the fractional-slot concentrated windings. The winding factor is redefined
for stator windings without any information of the numbers of poles. For given stator
windings, the optimal numbers of poles are determined from the obtained winding
factors. The design strategy for the winding configurations is validated through a finite
element method analysis.

Nomenclature

c Number of repeatable groups

f Frequency of stator current

m Number of phases

m′ Number of phase belts in a repeatable group

p Number of pole pairs

q Number of slots per pole per phase

r Number of layers

s Number of phase belts belonging to a phase in a repeatable group

z Number of coils in a phase belt

kdν Distribution factor in winding degrees

kpν Pitch factor in winding degrees

krν Rotation factor in winding degrees

kwν Winding factor in winding degrees

Fcoil Magnetomotive force (MMF) due to current of a coil

Fi MMF due to winding current of the phase i in a repeatable group

Icoil Current supplied to a coil

Ii Current of the phase i in a repeatable group
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Ipeak Amplitude of phase current

N Number of turns of a phase winding in a repeatable group

Ncoil Number of turns in a coil

Q Number of slots in a repeatable group

β Ratio of coil pitch to the maximum pitch or π in winding degrees

θ Angular coordinate in winding degrees

θ0 Phase of stator current

φcoil Axis of a coil

φi Axis of the phase belt i

φi,j Axis of the coil (i, j)

ν Harmonic order

ω Angular frequency of stator current

1 Introduction

Fractional-slot winding configurations have attracted much attention in the production and devel-

opment of permanent magnet (PM) brushless motors [1]. This is mainly due to the availability of

non-overlapping or concentrated windings as well as low cogging torque. The concentrated windings

inherently provide short end-windings for low copper loss. The combination of the concentrated

windings and segmented stator structures can achieve a high slot fill factor and the automated man-

ufacturing of winding for mass production [2–4]. In addition, the concentrated windings wound

around alternate teeth or in a single layer are suited for fault-tolerant designs [5–7]. The low cogging

torque is attributed to the slot/pole combination.

Winding factor provides a useful index in the design of the winding configurations—including

the number of slots, the number of poles, and the winding layouts—and is used in the analytical

calculations of inductances [8–11] and rotor losses [12–15]. For integral-slot windings, the winding

factor is expressed in the general formulae. For the fractional-slot windings, several expressions

are established for specified slot/pole combinations [16]. However, these expressions cannot cover

all the fractional-slot winding configurations. For this reason, several methods have been proposed

to determine the optimal winding configurations. In [17], a systematic method was proposed to

determine the optimal winding layouts for given slot/pole combinations in three-phase configurations

with the concentrated windings. By using this method, the slot/pole combinations for high machine

performance were identified. In [18], this method was extended to cover four, five, and six-phase

configurations and the fundamental winding factors, cogging torque indicators, and net radial force

indicators were clarified for various slot/pole combinations. In [12], a method was presented to

calculate the fundamental winding factors based on electromotive force (EMF) phasor diagrams;

furthermore, harmonic components in the spatial distribution of magnetomotive force (MMF), which

corresponded to the harmonic winding factors, were calculated to estimate Joule losses. In [19], by

using the methods presented in [12,17], the fundamental winding factors were calculated for various
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slot/pole combinations including a large number of poles. In [6,20], another systematic method was

presented to determine the optimal winding layouts for given slot/pole combinations based on the

star of slots, which represents the phasors of the EMF induced in each individual coil-side. By using

this method, harmonics of the MMF were calculated to evaluate the winding configurations.

The general formulation of the winding factor for the fractional-slot windings may be hindered

by many design parameters yet to be determined, namely, the slot/pole combination, the number of

winding layers, the number of phase belts, and the coil pitch. For the integral-slot windings, only

two design parameters, namely, the number of slots per pole per phase and the coil pitch, must be

determined. This is because the integral-slot windings are inherently determined for a pole pair and

have a restriction in the winding layout. This restriction is that “go” or “return” coil-sides belonging

to a phase are inserted in adjacent slots. This simultaneously determines the number of phase belts.

Indeed, an integral-slot winding configuration without the restriction was proposed and a different

expression of the winding factor was derived for this configuration [21]. For this reason, this winding

configuration may be regarded as a special kind of winding layout. The different configurations of

the integral slot windings require different expressions for the winding factor.

In this paper, according to the typical configuration of the integral-slot windings, the configuration

of the fractional-slot windings is restricted with respect to the winding layout. The stator winding

is composed of concentrated winding coils to take advantage of the features. The coils construct one

or two phase belts for each phase. In addition, the number of poles can be excluded from the design

parameters required for the design of the winding configuration. The winding factor is redefined

without the information of the number of poles because a stator winding generates rotating MMF

independently of the number of poles of the rotor. Therefore, for the general formulation of the

winding factor, the design parameters to be determined are the number of layers, the number of

phase belts, and the number of slots or coils per phase belt.

This paper performs the general formulation of the winding factor for the fractional-slot windings

that are composed of concentrated windings and have one or two phase belts per phase. In spite of

these restrictions, the winding configuration includes the fractional-slot windings that are suitable for

practical use and mass production. This is due to the above features of the concentrated windings.

Regarding the restriction on the number of phase belts per phase, which is also imposed on the

integral-slot winding configuration, the small number of phase belts achieves that of the contacts

between phase windings to increase fault-tolerant capability. The general formulation covers all

the slot/pole combinations under these restrictions to provide a unified design method, which has

not previously been presented. Therefore, the general expression of the winding factor serves as a

powerful tool to determine the stator winding configuration in motor designs without any procedures

to obtain the optimal winding layout. For the fractional-slot concentrated windings, the winding

factor is redefined independently of the number of poles and formulated through the analysis of the

spatiotemporal distribution of the MMF. Using the obtained factors, the optimal numbers of poles

are determined for the winding configurations. In addition, a finite element method (FEM) analysis

is performed to validate the design of the winding configuration with the determination of the number

of poles.
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Fig. 1: Definitions of repeatable group, winding degree, and phase belt

2 Winding Configuration

This section describes the configuration of the stator windings that are analysed in this paper and

defines technical terms, namely repeatable group, winding degree, and phase belt.

A conventional stator winding may include several identical sequences of coil-sides. The shortest

identical sequences can be regarded as the minimum units of winding, called repeatable groups of the

winding, as shown in Fig. 1. The repeatable groups exhibit identical spatial distributions of MMF in

the corresponding regions of the air gap. That is, if the number of repeatable groups is c in a stator

winding, there are c periods of the MMF distribution in the whole region of the air gap. Therefore,

the analysis of a repeatable group is equivalent to that of the whole winding.

In a repeatable group, the circumferential position of the air gap is measured in winding degrees.

The winding degree is defined as the measurement that associates the corresponding region of the

air gap with 2π, as shown in Fig. 1. For integral slot windings, the winding degree is equivalent to

the electrical degree.

The stator windings that are analysed in this paper fulfil the following conditions.

1) The arrangement of coils is symmetric with respect to phase belt.

2) All coils have the same turns.

3) All coils have the same pitch. The coil pitch is fixed at the slot pitch; this winding is called

concentrated winding.

4) Coil-sides are inserted into slots in a single or double layer.

5) For the number of phases, m, each repeatable group consists of m or 2m phase belts.

The phase belt is defined as the group of adjacent coil-sides belonging to a phase, as shown in Fig. 1.

Condition 3 implies that a phase belt includes more than one coil-side. In condition 1, the phase

belt corresponds to the minimum unit of coil arrangements.

The design of a stator winding configuration begins with the determination of the number of phase

belts, which depends on the number of phases. The number of phase belts in the repeatable group
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is represented by m′. If m′ is odd, then the winding is constructed from m′ phase windings. If m′

is even, then the number of needed phase windings decreases by half, that is, to m′/2. The reason

is as follows. When the repeatable group has an even number of phase belts, the phase belts can be

divided into m′/2 pairs. Each pair is composed of two phase belts that are located at the positions

at a distance of π in winding degrees. The two phase belts of a pair are supplied with currents whose

phases are different by π from each other so that the repeatable group generates a rotating magnetic

field. The supply of the current in antiphase to a phase belt is equivalent to that of the current in

phase to the phase belt with the opposite polarity. Thus, condition 1 is modified as

1′) The arrangement of coils is symmetric with respect to phase.

For m′ phase belts, the number of phase belts belonging to a phase, s, is given by

s = GCD(m′, 2), (1)

where GCD(x, y) is the greatest common divisor of x and y. Hence, s = 1 or 2. Using m′ and s, the

number of needed phases is determined by

m =
m′

s
. (2)

According to the number of winding layers and the number of phase belts, the winding configu-

rations are classified as follows.

• Single-layer winding

– One phase belt for each phase

– Two phase belts for each phase

• Double-layer winding

– One phase belt for each phase

– Two phase belts for each phase

The analysis is performed for each of the classified winding configurations.

In the following sections, a repeatable group of the stator winding is analysed using the coordi-

nate θ in winding degrees. The winding factor and the associated factors, namely, pitch factor and

distribution factor are redefined in winding degrees.

3 Pitch Factor

A general expression of the pitch factor is described in winding degrees. For a repeatable group of

the stator winding, the maximum pitch of a coil is π in winding degrees. For a coil pitch βπ, Fig. 2

shows a coil in a repeatable group and the spatial distribution of the MMF at a current supply. The

coil pitch is defined as the arc width between the centres of the openings of the slots carrying the

coil-sides because the magnetic fields of coil-sides in a slot across the air gap are governed by the

distribution of magnetic reluctance due to the stator shape. In figures of MMF distributions, as in
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Fig. 2: Coil around a tooth with a slot pitch of βπ and spatial distribution of the MMF due to the coil

Fig. 2, the horizontal axis does not indicate the reference value of MMF for simplicity. Indeed, the

following formulation is not dependent on the reference value of MMF.

The MMF distribution of the coil is expressed by the following Fourier series:

Fcoil(t, θ;φcoil) =
2NcoilIcoil(t)

π

∞∑
ν=1

1

ν
kpν cos[ν(θ − φcoil)], (3)

where φcoil denotes the coil axis, Ncoil is the number of turns, Icoil denotes the supplied current, and

kpν is the pitch factor in winding degrees defined as

kpν = sin

(
πνβ

2

)
. (4)

In this paper, the coil pitch is fixed at the slot pitch. For the number of slots, Q, the slot pitch is

expressed as 2π/Q. Thus, the pitch factor can be written as

kpν = sin

(
πν

Q

)
= sin

(
πνr

2smz

)
, (5)

where r is the number of layers and z is the number of coils in a phase belt, and the following relation

is used:

Q =
2smz

r
. (6)

In the integral-slot winding configurations, the ratio β is generally selected as (Q − 2n)/Q for

n = 0, 1, 2. Therefore, the pitch factor for the integral-slot windings is

kpν = sin

[
πν(Q− 2n)

2Q

]
. (7)
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4 Distribution Factor

For the stator windings on the above conditions, a general expression of the distribution factor is

derived in winding degrees. The formulation is classified in terms of the number of layers and the

number of phase belts for each phase.

4.1 Single-Layer Winding

The distribution factor is formulated for single-layer concentrated windings, r = 1. In the windings,

coils are wound around alternate teeth, and the unwound teeth establish flux return paths. The

return path of an unwound tooth is used by the flux passing through the coils of adjacent teeth. For

an effective utilisation of the unwound teeth, adjacent coils belonging to a phase should be wound

with the same polarity.

The single-layer windings in which each phase belt has z coils can be constructed in stators with

Q slots or teeth:

Q =
2smz

r
= 2smz. (8)

In the windings, the axis of the coil (±i, j), which is the j-th coil in the phase belt ±i belonging to

the phase i, is expressed as

φ±i,j = φ±i +
2π

smz

(
j − z + 1

2

)
, (9)

where φ±i indicates the axis of the phase belt ±i. The phase belt −i appears for s = 2. The axes of

these phase belts have the relation: φ−i = φi + π.

4.1.1 One Phase Belt Per Phase

For one phase belt per phase, s = 1, the winding layout for m = 3 and z = 2 is, as an example,

shown in Fig. 3a. Each phase winding generates the spatial distribution of the MMF, as shown in

the figure.

The MMF distribution due to the winding current of the phase i is expressed as

Fi(t, θ) =
z∑

j=1

Fcoil(t, θ;φi,j). (10)

By substituting (3) and (9) into (10), the MMF distribution is

Fi(t, θ) =
2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν cos[ν(θ − φi)], (11)

where N (= szNcoil) is the number of turns of the phase winding, Ii(t) denotes the current of the

phase i, and the distribution factor kdν is formulated as

kdν =
sin(νπ/sm)

z sin(νπ/smz)
. (12)
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(a)

(b)

Fig. 3: Winding layout and spatial distribution of the MMF due to a phase winding for r = 1, m = 3, and (a) s = 1
and z = 2 and (b) s = 2 and z = 1

4.1.2 Two Phase Belts Per Phase

For two phase belts per phase, s = 2, the winding layout for m = 3 and z = 1 is, as an example,

shown in Fig. 3b. Each phase winding generates the spatial distribution of the MMF, as shown in

the figure.
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By using (3) and (9), the MMF distribution due to the winding current of the phase i is

Fi(t, θ) =
z∑

j=1

{
Fcoil(t, θ;φi,j)− Fcoil(t, θ;φ−i,j)

}
=

2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν cos[ν(θ − φi)],

(13)

where the distribution factor kdν is formulated as

kdν =


sin(νπ/sm)

z sin(νπ/smz)
if ν is odd,

0 if ν is even.

(14)

4.2 Double-Layer Winding

The distribution factor is formulated for double-layer concentrated windings, r = 2. In the windings,

coils are wound around all teeth, and each coil has a polarity opposite to the adjacent coils in each

phase belt. If the adjacent coils have the same polarity, then a slot between the wound teeth contains

a “go” coil-side of one coil and a “return” coil-side of the other coil. Thus, current flowing in the slot

is cancelled out magnetically. These coil-sides provide no contribution to the magnetic field around

the slot. Therefore, the adjacent coils with the same polarity are not implemented.

The double-layer windings in which each phase belt has z coils can be constructed in stators with

Q slots or teeth:

Q =
2smz

r
= smz. (15)

In the windings, the position of the coil (±i, j) is expressed as (9).

4.2.1 One Phase Belt Per Phase

For one phase belt per phase, s = 1, the winding layout for m = 3 and z = 3 is, as an example,

shown in Fig. 4a. Each phase winding generates the spatial distribution of the MMF, as shown in

the figure.

By using (3) and (9), the MMF distribution due to the winding current of the phase i is

Fi(t, θ)

=
z∑

j=1

(−1)j−1Fcoil(t, θ;φi,j)

=


2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν cos[ν(θ − φi)] if z is odd,

−2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν sin[ν(θ − φi)] if z is even,

(16)
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(a)

(b)

Fig. 4: Winding layout and spatial distribution of the MMF due to a phase winding for r = 2, m = 3, and (a) s = 1
and z = 3 and (b) s = 2 and z = 2

where the distribution factor kdν is formulated as

kdν =


cos(νπ/sm)

z cos(νπ/smz)
if z is odd,

sin(νπ/sm)

z cos(νπ/smz)
if z is even.

(17)
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Table 1: General expressions of the distribution factor

@
@@

s 1 2

r
HHHHHz

ν
odd even odd even

1
odd

kdν =
sin(νπ/sm)

z sin(νπ/smz)

kdν = 0

even

2

odd kdν =
cos(νπ/sm)

z cos(νπ/smz)

even kdν =
sin(νπ/sm)

z cos(νπ/smz)

4.2.2 Two Phase Belts Per Phase

For two phase belts per phase, s = 2, the winding layout for m = 3 and z = 2 is, as an example,

shown in Fig. 4b. Each phase winding generates the spatial distribution of the MMF, as shown in

the figure.

By using (3) and (9), the MMF distribution due to the winding current of the phase i is

Fi(t, θ)

=
z∑

j=1

(−1)j−1

{
Fcoil(t, θ;φi,j)− Fcoil(t, θ;φ−i,j)

}

=


2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν cos[ν(θ − φi)] if z is odd,

−2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν sin[ν(θ − φi)] if z is even,

(18)

where the distribution factor kdν is formulated as

kdν =



cos(νπ/sm)

z cos(νπ/smz)
if ν is odd and z is odd,

sin(νπ/sm)

z cos(νπ/smz)
if ν is odd and z is even,

0 if ν is even.

(19)

The obtained general expressions of the distribution factor for the classified winding configurations

are summarised in Table 1. In the integral-slot winding configurations, the distribution factor is

written as

kdν =
sin(νπ/sm)

z sin(νπ/smz)
=

sin(νπ/2m)

q sin(νπ/2mq)
, (20)

where s is fixed at 2 for the integral-slot windings and z corresponds to the number of slots per pole

per phase, q.
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5 Winding Factor

A repeatable group of the stator winding supplied with current generates a spatiotemporal distribu-

tion of the MMF in the air gap. The MMF distribution consists of forward and backward-rotating

components, which are so-called rotating magnetic fields. The amplitudes of the components depend

on the winding configuration. The relative values are expressed by the winding factor. In this sec-

tion, the winding factor, which is redefined in winding degrees, is derived from the spatiotemporal

distribution of the MMF in a repeatable group.

The MMF distribution of the stator winding is the superposition of the MMF distributions of

the phase windings. The phase MMF distribution is expressed by (11), (13), (16), and (18) for the

classified winding configurations. Hence, if r = 1, or r = 2 and z is odd, the MMF distribution of

the phase i is

Fi(t, θ) =
2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν cos[ν(θ − φi)]. (21)

If r = 2 and z is even, then the distribution is

Fi(t, θ) = −2NIi(t)

π

∞∑
ν=1

1

ν
kpνkdν sin[ν(θ − φi)]. (22)

Because the coil arrangement is symmetric with respect to phase, the axis of the phase belt i is

determined to be

φi =
2π

sm

(
i− m+ 1

2

)
. (23)

In the m-phase current supplied to the stator winding, the current of the phase i is expressed as

Ii(t) = Ipeak cos(ωt− φi + θ0), (24)

where Ipeak denotes the amplitude, ω denotes the electrical angular frequency, and θ0 denotes the

phase that regulates current vector control.

If r = 1, or r = 2 and z is odd, using (21), (23), and (24), then the MMF distribution of the

stator winding current is

F (t, θ) =
m∑
i=1

Fi(t, θ)

=
m

2
· 2NI

π

∞∑
ν=1

1

ν

{
kpνkdνkrν−1 cos(ωt− νθ)

+ kpνkdνkrν+1 cos(ωt+ νθ)
}
,

(25)

where krν is defined as

krν =
sin(πν/s)

m sin(πν/sm)
. (26)

This factor determines the existence and the rotational direction of the rotating magnetic fields. For

this reason, the factor is called rotation factor in this paper. If r = 2 and z is even, using (22), (23),
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Table 2: Winding factors and rotating MMF components for r = 1, s = 2, m = 3, and z = 1

Order Winding Factors Rotating MMF

ν kpν kdν kwν krν−1 krν+1 forward backward

1 0.2588 1.0000 0.2588 1.0000 0.0000 0.2588 ——

2 0.5000 0.0000 0.0000 0.6667 −0.3333 —— ——

3 0.7071 1.0000 0.7071 0.0000 0.0000 —— ——

4 0.8660 0.0000 0.0000 −0.3333 0.6667 —— ——

5 0.9659 1.0000 0.9659 0.0000 1.0000 —— 0.9659

6 1.0000 0.0000 0.0000 0.6667 0.6667 —— ——

7 0.9659 1.0000 0.9659 1.0000 0.0000 0.9659 ——

8 0.8660 0.0000 0.0000 0.6667 −0.3333 —— ——

9 0.7071 1.0000 0.7071 0.0000 0.0000 —— ——

10 0.5000 0.0000 0.0000 −0.3333 0.6667 —— ——

11 0.2588 1.0000 0.2588 0.0000 1.0000 —— 0.2588

12 0.0000 0.0000 0.0000 0.6667 0.6667 —— ——

13 −0.2588 1.0000 −0.2588 1.0000 0.0000 0.2588 ——

14 −0.5000 0.0000 0.0000 0.6667 −0.3333 —— ——

15 −0.7071 1.0000 −0.7071 0.0000 0.0000 —— ——

16 −0.8660 0.0000 0.0000 −0.3333 0.6667 —— ——

17 −0.9659 1.0000 −0.9659 0.0000 1.0000 —— 0.9659

18 −1.0000 0.0000 0.0000 0.6667 0.6667 —— ——

19 −0.9659 1.0000 −0.9659 1.0000 0.0000 0.9659 ——

20 −0.8660 0.0000 0.0000 0.6667 −0.3333 —— ——

21 −0.7071 1.0000 −0.7071 0.0000 0.0000 —— ——

22 −0.5000 0.0000 0.0000 −0.3333 0.6667 —— ——

23 −0.2588 1.0000 −0.2588 0.0000 1.0000 —— 0.2588

24 0.0000 0.0000 0.0000 0.6667 0.6667 —— ——

and (24), the MMF distribution of the stator winding current is

F (t, θ) =
m∑
i=1

Fi(t, θ)

=
m

2
· 2NI

π

∞∑
ν=1

1

ν

{
kpνkdνkrν−1 sin(ωt− νθ)

− kpνkdνkrν+1 sin(ωt+ νθ)
}
.

(27)

In (25) and (27), the product of the pitch factor kpν and the distribution factor kdν is defined as the

winding factor:

kwν = kpνkdν . (28)

For the three stator windings shown in Figs. 3b, 4a, and 4b, the winding factors are listed for the

harmonic order with the rotating MMF components in Table 2, 3, and 4, respectively. The listed

values are repeated with the period of 4smz/r for the order ν because of the periodicity of the factors.

The tables present the first periods of the factors. As shown in these tables, the MMF components

of the order for krν−1 = 1 and krν+1 = 1 rotate in the forward and backward directions, respectively.
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Table 3: Winding factors and rotating MMF components for r = 2, s = 1, m = 3, and z = 3

Order Winding Factors Rotating MMF

ν kpν kdν kwν krν−1 krν+1 forward backward

1 0.3420 0.1774 0.0607 1.0000 0.0000 0.0607 ——

2 0.6428 −0.2176 −0.1398 0.0000 1.0000 —— 0.1398

3 0.8660 −0.6667 −0.5774 0.0000 0.0000 —— ——

4 0.9848 −0.9598 −0.9452 1.0000 0.0000 0.9452 ——

5 0.9848 −0.9598 −0.9452 0.0000 1.0000 —— 0.9452

6 0.8660 −0.6667 −0.5774 0.0000 0.0000 —— ——

7 0.6428 −0.2176 −0.1398 1.0000 0.0000 0.1398 ——

8 0.3420 0.1774 0.0607 0.0000 1.0000 —— 0.0607

9 0.0000 0.3333 0.0000 0.0000 0.0000 —— ——

10 −0.3420 0.1774 −0.0607 1.0000 0.0000 0.0607 ——

11 −0.6428 −0.2176 0.1398 0.0000 1.0000 —— 0.1398

12 −0.8660 −0.6667 0.5774 0.0000 0.0000 —— ——

13 −0.9848 −0.9598 0.9452 1.0000 0.0000 0.9452 ——

14 −0.9848 −0.9598 0.9452 0.0000 1.0000 —— 0.9452

15 −0.8660 −0.6667 0.5774 0.0000 0.0000 —— ——

16 −0.6428 −0.2176 0.1398 1.0000 0.0000 0.1398 ——

17 −0.3420 0.1774 −0.0607 0.0000 1.0000 —— 0.0607

18 0.0000 0.3333 0.0000 0.0000 0.0000 —— ——

Table 4: Winding factors and rotating MMF components for r = 2, s = 2, m = 3, and z = 2

Order Winding Factors Rotating MMF

ν kpν kdν kwν krν−1 krν+1 forward backward

1 0.2588 0.2588 0.0670 1.0000 0.0000 0.0670 ——

2 0.5000 0.0000 0.0000 0.6667 −0.3333 —— ——

3 0.7071 0.7071 0.5000 0.0000 0.0000 —— ——

4 0.8660 0.0000 0.0000 −0.3333 0.6667 —— ——

5 0.9659 0.9659 0.9330 0.0000 1.0000 —— 0.9330

6 1.0000 0.0000 0.0000 0.6667 0.6667 —— ——

7 0.9659 0.9659 0.9330 1.0000 0.0000 0.9330 ——

8 0.8660 0.0000 0.0000 0.6667 −0.3333 —— ——

9 0.7071 0.7071 0.5000 0.0000 0.0000 —— ——

10 0.5000 0.0000 0.0000 −0.3333 0.6667 —— ——

11 0.2588 0.2588 0.0670 0.0000 1.0000 —— 0.0670

12 0.0000 0.0000 0.0000 0.6667 0.6667 —— ——

13 −0.2588 −0.2588 0.0670 1.0000 0.0000 0.0670 ——

14 −0.5000 0.0000 0.0000 0.6667 −0.3333 —— ——

15 −0.7071 −0.7071 0.5000 0.0000 0.0000 —— ——

16 −0.8660 0.0000 0.0000 −0.3333 0.6667 —— ——

17 −0.9659 −0.9659 0.9330 0.0000 1.0000 —— 0.9330

18 −1.0000 0.0000 0.0000 0.6667 0.6667 —— ——

19 −0.9659 −0.9659 0.9330 1.0000 0.0000 0.9330 ——

20 −0.8660 0.0000 0.0000 0.6667 −0.3333 —— ——

21 −0.7071 −0.7071 0.5000 0.0000 0.0000 —— ——

22 −0.5000 0.0000 0.0000 −0.3333 0.6667 —— ——

23 −0.2588 −0.2588 0.0670 0.0000 1.0000 —— 0.0670

24 0.0000 0.0000 0.0000 0.6667 0.6667 —— ——

6 Determination of Pole Number

For a given stator winding, possible numbers of poles are determined according to the winding factors

obtained from (28). For a well-designed stator core, the MMF distribution generates an almost
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Table 5: General expressions of the harmonic order for the maximum absolute value of the winding factor using a
positive integer n

r s
mz

odd even

1 1
ν = (2n− 1)smz ± 1

2

2
1 ν =

(2n− 1)smz

2
± 1

2
ν =

(2n− 1)smz

2
± 1

2 ν =
(2n− 1)smz

2
± 2

Table 6: List of the harmonic order for the maximum absolute value of the winding factor for m = 3 including optimal
numbers of poles for the winding layouts

r s z ν Q 2p

1

1

1 2, 4, 8, 10, 14, 16, · · · 6 4, 8

2 5, 7, 17, 19, 29, 31, · · · 12 10, 14

3 8, 10, 26, 28, 44, 46, · · · 18 16, 20

4 11, 13, 35, 37, 59, 61, · · · 24 22, 26

2

1 5, 7, 17, 19, 29, 31, · · · 12 10, 14

2 11, 13, 35, 37, 59, 61, · · · 24 22, 26

3 17, 19, 53, 55, 89, 91, · · · 36 34, 38

4 23, 25, 71, 73, 119, 121, · · · 48 46, 50

2

1

1 1, 2, 4, 5, 7, 8, · · · 3 2, 4

2 2, 4, 8, 10, 14, 16, · · · 6 4, 8

3 4, 5, 13, 14, 22, 23, · · · 9 8, 10

4 5, 7, 17, 19, 29, 31, · · · 12 10, 14

2

1 1, 5, 7, 11, 13, 17, · · · 6 2, 10

2 5, 7, 17, 19, 29, 31, · · · 12 10, 14

3 7, 11, 25, 29, 43, 47, · · · 18 14, 22

4 11, 13, 35, 37, 59, 61, · · · 24 22, 26

identical spatiotemporal distribution of magnetic flux across the air gap. However, the harmonic

components whose order is much larger or much smaller than half of the slot number tend to be

reduced because of the angular variation in the stator magnetic reluctance and fringing flux around

the sides of the stator teeth.

In a repeatable group, the rotor with the p pole pair synchronises with the p-th harmonic compo-

nent of the rotating magnetic flux [6]. The rotational direction is the same as that of the synchronised

component and the rotational velocity is ω/p. If magnetic saturation is negligible, the average torque

is proportional to the amplitude of the synchronised component. The other components give rise to

pulsating torques in proportion to their amplitudes. Therefore, the orders of the existing harmonic

components correspond to the possible numbers of pole pairs. Among the numbers, the optimal

numbers are determined considering the absolute values of the winding factors. The harmonic com-

ponents corresponding to the maximum absolute value of the winding factor are selected to achieve

a torque production with high average and low pulsation. That is, the optimal numbers of pole pairs

are equal to the harmonic orders for the maximum absolute value of the winding factor.

The functions of the general expressions for the winding factor are examined to obtain the har-

monic orders for the maximum absolute value. In the single-layer winding configurations, r = 1, the
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(a) r = 1 and s = 1 (b) r = 1 and s = 2 (c) r = 2 and s = 1 (d) r = 2 and s = 2

Fig. 5: Winding layouts for the 12-slot 10-pole combination

(a) r = 1 and s = 1 (b) r = 1 and s = 2 (c) r = 2 and s = 1 (d) r = 2 and s = 2

Fig. 6: Winding layouts for the 12-slot 14-pole combination

absolute value of the winding factor is maximised at ν = (2n− 1)smz± 1 for a positive integer n. In

the double-layer winding configurations, r = 2, the maximum is given at ν = (2n − 1)smz/2 ± 1/2

if smz is odd, ν = (2n − 1)smz/2 ± 1 if mz is even, and ν = (2n − 1)smz/2 ± 2 if s = 2 and mz

is odd. Tables 5 and 6 summarise these general expressions and the list of the orders for m = 3.

These orders are consistent with Tables 2, 3, and 4. The winding layouts with the optimal numbers

of poles, 2p = 10 and 14, for the number of slots, Q = 12, are shown in Figs. 5 and 6, respectively.

These figures imply that these winding layouts are designed regardless of the number of poles. In

addition, the winding factors of the maximum absolute values are coincident with the conventional

winding factors, which are defined in electrical degrees, for the corresponding slot/pole combinations

that are obtained in [17–19].

7 FEM Analysis

The performance of surface-mounted permanent magnet synchronous motors equipped with iden-

tical fractional-slot concentrated windings is examined through an FEM analysis. A stator with a

fractional-slot concentrated winding is constructed as the stator common to different rotors that have

possible numbers of poles. Based on the obtained winding factors, the numbers of poles are selected

among the harmonic orders that are close to half of the slot numbers because the other harmonics

are reduced in the generated flux distribution.

The stator winding for r = 2, s = 1,m = 3, and z = 3, as shown in Fig. 4a, is selected. The number

of slots is Q = 9. The winding supplied with a three-phase current generates the spatiotemporal

distribution of the MMF that includes the rotating components described in Table 3. For the order

less than the slot number, ν ≤ 9, the non-zero winding factors appear at ν = 1, 2, 4, 5, 7, and 8,

as shown in Fig. 7. The orders can be selected as the possible numbers of pole pairs. Among the
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Fig. 7: Harmonic components of the winding factor for r = 2, s = 1, m = 3, and z = 3. The labels (a), (b), and (c)
indicate the models in Fig. 8.
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Fig. 8: Flux distributions of motors consisting of identical 9-slot stators equipped with the fractional-slot concentrated
windings and different pole rotors: (a) 8-pole, (b) 10-pole, and (c) 14-pole.

Table 7: Performance of the motors, as shown in Fig. 8, with different numbers of poles for a supply current with the
amplitude of 4A and the frequency of 42Hz

Number Rotational Rotational Average Ripple Synchronous
of Poles Speed Direction Torque Factor No-load EMF

2 2520 rpm forward 0.12N·m 1783.0 % 6.0V

4 1260 rpm backward 0.61N·m 445.6 % 12.7V

8 630 rpm forward 5.16N·m 7.1 % 58.2V

10 504 rpm backward 5.57N·m 8.8 % 50.4V

14 360 rpm forward 0.87N·m 99.9 % 5.6V

16 315 rpm backward 0.41N·m 378.0 % 2.1V

winding factors, the maximum absolute value is 0.9452 at ν = 4 and 5. Hence, the optimal numbers

of pole pairs are 4 and 5.

A three-phase current is supplied to the motors with different numbers of poles. For each phase of

the supply current, the amplitude of phase currents is Ipeak = 4A, the frequency is f = ω/2π = 42Hz,

and the phase is θ0 = 0◦. The current includes only the q-axis component on vector control. The

analysed models for the 8-pole, 10-pole, and 14-pole motors are shown in Fig. 8. The performance of

the motors is presented in Table 7. The rotational directions are consistent with those of the rotating

MMF components of the corresponding order in Table 3. This implies that the rotors synchronise

with the corresponding MMF components. The produced torque is approximately proportional
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Fig. 9: Torque produced in the motors, as shown in Fig. 8, with different numbers of poles for a supply current with
the amplitude of 4A and the frequency of 42Hz

to the amplitude of the synchronised MMF components and the number of poles. Therefore, the

analysis validates the determination of the optimal numbers of poles based on the winding factor.

In addition, the torque pulsation or the ripple factor in Table 7 can be approximately estimated

from the winding factors of non-synchronous order. Fig. 9 shows the torque produced in the motors

with different numbers of poles. For reference, Table 7 includes the amplitude of the synchronised

components in the no-load EMFs. Magnetic saturation in stator cores reduces the average torques

and the synchronised EMFs for the small numbers of poles or 2p = 2, 4.

8 Conclusion

This paper performs the general formulation of the winding factor for the fractional-slot concentrated

windings. The winding factor is redefined for winding configurations without any information of the

number of poles. For the winding configurations, the optimal numbers of poles are selected among the

orders of the maximum absolute value of the winding factor. The design of the winding configuration,

including the determination of the number of poles, is verified through an FEM analysis. The derived

general expression is expected to serve as a powerful tool to obtain the winding factor in the design

of the fractional-slot concentrated windings because it requires no procedures. However, the general

expression, which is derived for the restricted winding configurations with concentrated windings,

cannot cover all slot/pole combinations. Hence, the derived expression is not applied to the fractional-

slot overlapping winding configurations. In the future, based on this achievement, it is hoped that a

general expression can be derived for the optimal winding configurations of all slot/pole combinations

obtained in [6, 17,18].
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