Potentiometric CO sensors using anion-conducting polymer electrolyte: Effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties

Takeo Hyodo*, Mari Takamori, Toshiyuki Goto, Taro Ueda, and Yasuhiro Shimizu

Graduate School of Engineering, Nagasaki University

1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

*Corresponding author:

Takeo Hyodo, Dr.

Graduate School of Engineering, Nagasaki University

1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Tel: +81-95-819-2644

Fax: +81-95-819-2643

E-mail: hyodo@nagasaki-u.ac.jp

Abstract

Potentiometric CO-sensing properties of electrochemical gas sensors using an anionconducting polymer as an electrolyte and a metal oxide (MO; Bi₂O₃, CeO₂, In₂O₃, SnO₂, or V₂O₅) loaded with or without 2.0 wt% noble metal (N; Ag, Au, Ir, Ru, Rh, Pd, or Pt) as an electrode material (EC(N/MO) or (EC(MO) sensor; N/MO: N-loaded MO) were investigated in wet synthetic air (57%RH) at 30°C. Among all the EC(MO) sensors, the EC(CeO₂) sensor showed the largest CO response and excellent CO selectivity against H₂ and the EC(Bi₂O₃) sensor showed relatively large CO and H₂ responses (no CO selectivity against H₂). Other EC(MO) sensors hardly showed both CO and H₂ responses. However, the Au loading just onto In₂O₃ and SnO₂ was effective in improving the magnitude of CO and H₂ responses of the EC(In₂O₃) and EC(SnO₂) sensors, respectively, which resulted in relatively poor CO selectivity against H₂. On the other hand, the Pt loading only onto SnO₂ extremely enhanced only the magnitude of CO response of the EC(SnO₂) sensor, and thus the EC(Pt/SnO₂) sensor showed the most excellent CO selectivity against H₂, among all the sensors in this study. The heat treatment of N/MO powders in H₂ at 250°C reduced only the H₂ response of the EC(Au/SnO₂) sensor, leading to an improvement of the CO selectivity of only the EC(Au/SnO₂) sensor against H₂. On the other hand, the heat treatment drastically enhanced both CO and H₂ responses of the EC(Pt/SnO₂) sensor, resulting in a decrease in its CO selectivity against H₂. The CO and H₂ responses of other EC(N/SnO₂) sensors before and after the heat treatment in H₂ at 250°C were also examined, and the effectiveness of the noble metal loading and the heat treatment on the CO-sensing properties was discussed in this study. In addition, gas-sensing mechanism was also proposed on the basis of chemical surface states of representative N/MO.

Keywords: Potentiometric gas sensor; Anion-conducting polymer; Carbon monoxide; Metal oxide; Noble metal

1. Introduction

Carbon monoxide (CO) is extremely harmful to human health, because CO can quickly combine with hemoglobin in human blood and then seriously interfere with the transport of oxygen to tissues in human body [1]. However, we cannot detect CO, which is odorless and colorless, by ourselves, and thus highly sensitive and selective CO sensors are quite essential in detecting even a low concentration of CO quickly and accurately, and then in preventing inhalation of CO into lung through the respiratory system. Among various types of CO sensors [2–6], electrochemical gas sensors using cation-conducting polymer (such as Nafion[®]) as an electrolyte material, which can be operated at RT, have also been attractive as a high performance CO sensor [7–13], and some types of electrochemical CO sensors are presently commercialized all over the world [14]. On the other hand, anion-conducting polymers (ACP) with large OH⁻ conductivity and improved long-term stability [15–17] are also quite attractive as an electrolyte material alternative to cation-conducting polymers, because most of metal oxides are relatively stable in alkaline media. We have already demonstrated that potentiometric gas sensors employing the ACP electrolyte and Pd- or Pt-loaded carbon-black electrodes showed relatively large responses to H₂ [18], CO [19], and CO₂ [20], respectively, but gas selectivity of these sensors was really poor. Therefore, we have recently investigated COsensing properties of the ACP-based sensors using a metal oxide (Co₃O₄, In₂O₃, SnO₂, or ZnO) loaded with Au nanoparticles as a CO-sensing electrode material, and reported that the use of Au-loaded In₂O₃ or SnO₂ electrodes drastically enhanced the magnitude of CO response as well as CO selectivity against H₂ after heat treatment of the Au-loaded In₂O₃ or SnO₂ powder under a reducing atmosphere at an elevated temperature (250°C) [21, 22]. These results obviously show that such metal-oxide-based materials have substantial advantage in the CO-sensing properties (especially, the CO selectivity against H₂), as a CO-sensing electrode substrate of potentiometric gas sensors, in comparison with carbon-black-based materials.

Therefore, we have attempted to find promising metal oxides loaded with noble metal as a highly sensitive and selective CO-sensing electrode material of potentiometric gas sensors in this study. First, we have discussed effects of the kind of metal oxide (Bi₂O₃, CeO₂, In₂O₃, SnO₂, or V_2O_5) as a base material of the sensing electrode on the CO-sensing properties of the ACP-based sensors. In addition, the impacts of the kind of noble metal (Ag, Au, Ir, Ru, Rh, Pd, or Pt) loaded onto the SnO₂ powder and the heat-treatment conditions on their CO-sensing properties have been also investigated.

2. Experimental

2.1. Preparation of metal-oxide (MO) powders

Five kinds of MO powders (Bi₂O₃, CeO₂, In₂O₃, SnO₂, V₂O₅) were prepared according to the following procedure.

 $[Bi_2O_3]$ The pH of a 0.20 M Bi(NO₃)₃ aqueous solution was adjusted to 11 by the addition of a NaOH aqueous solution. The obtained precipitate was centrifuged and washed with pure water repeatedly, and then it was dried at 100°C. The resultant dried powder was calcined at 500°C for 3 h in air, to obtain a Bi₂O₃ powder.

[CeO₂] A 0.02 mol Ce(NO₃)₃·6H₂O was dissolved into ethanol (30 cm³), and then 0.16 mol triethanolamine and 300 cm³ pure water were added into the solution. The obtained precipitate was centrifuged and washed with pure water and methanol sometimes. A CeO₂ powder was prepared by the calcination of the resultant powder at 700°C for 2 h in air.

[In₂O₃ and SnO₂] The pH of 0.35 M In(NO₃)₃ or 0.17 M SnCl₄ aqueous solution was adjusted to 3.5 and 2.0, respectively, by the addition of a NH₃ aqueous solution. The obtained precipitate was centrifuged and washed with pure water repeatedly, and then dried at 100°C. Then, In₂O₃ or SnO₂ powder was prepared by the calcination of the resultant powder at 500°C for 3 h in air. [V₂O₅] After an appropriate amount of NH₄VO₃ and oxalic acid was added into pure water, the solution was evaporated to dryness. The obtained precipitate was centrifuged and washed with pure water repeatedly, and then dried at 100°C. After crushing the resultant solid by using an agate mortar, a V₂O₅ powder were prepared by the calcination of the powder at 500°C for 3 h in air.

2.2. Preparation of MO powders loaded with 2 wt% noble metal (N)

Loading of Au nanoparticles on the MO powders was only performed by general precipitation-deposition technique [23]. After the pH value of a 1 mM HAuCl₄ aqueous solution at 70°C was adjusted to 4 by addition of a NH₃ aqueous solution, the MO powder (2.0 g) was added to the solution (197 cm³). The pH value of the solution was adjusted to 7.0 by further addition of an NH₃ aqueous solution and the solution was stirred at 70°C for 1 h, to deposit Aubased precipitates (Au(OH)₃) on the surface of the MO powder, and then it was centrifuged and repeatedly washed with pure water. The obtained powder was dried at 100°C and then heat-treated at 400°C for 1 h in air or at 250°C for 1 h in H₂, to obtain 2 wt% Au-loaded MO powders. Their powders heat-treated in air or H₂ was referred to as Au/MO or Au/MO-h, respectively. Other N-loaded MO powders were prepared by general impregnation technique. After an appropriate amount of each MO powder was added to a 1 mM Ag(NO₃), IrCl₃, RuCl₃, RhCl₄, Pd(NO₃)₂, or PtCl₄ aqueous solution, the obtained solution containing a MO powder was ultrasonicated at RT for 10 min and then it was evaporated to dryness. Then, the resultant solid was heat-treated in air or H₂ were denoted as N/MO or N/MO-h, respectively.

2.3. Characterization of all powders

Crystal phases of all powders prepared were characterized by X-ray diffraction analysis (XRD; Rigaku Corp., RINT2200) using Cu Kα radiation (40 kV, 36 mA), and their crystallite

sizes (CS) were calculated by utilizing the Scherrer equation (shaper factor: 0.9). Pore size distributions and specific surface areas (SSA) of all the powders were measured by general Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) methods using N₂ adsorption-desorption isotherms (Micromeritics Inst. Corp., TriStar 3000), respectively. Chemical states of elements on the surface of representative N/MO powders (N: Au and Pt, MO: Bi₂O₃, In₂O₃, and SnO₂) were characterized by X-ray photoelectron spectroscopy using Al Kα radiation (XPS, Kratos, ACIS-TLATRA DLD), and the binding energy was calibrated using the C 1s level (285.0 eV) from usual contamination.

2.4. Fabrication of potentiometric gas sensors and measurement of their CO- and H₂sensing properties

A schematic drawing of a sensor element, or an electrochemical cell, is shown in Fig. 1(a). The MO or N/MO powder was mixed with an ACP solution (AS-4, Tokuyama Corp.), which is an *iso*-propanol containing a 5 wt% hydrocarbon-type ionic polymer with quaternary ammonium salts (MO or N/MO powder : ACP = 95 : 5 in weight) [15, 16]. The paste obtained was applied on the surface of both sides of an ACP membrane (A201, Tokuyama Corp., a polyolefin polymer film which consists of hydrocarbon main chain and quaternary ammonium salts, thickness: ca. 30 µm [15, 16]) as sensing and counter electrodes by blade coating, and then it was dried at ca. 50°C for 30 min. The sensor element fabricated with MO or N/MO powder was denoted as EC(MO) or EC(N/MO), respectively (EC stands for electrochemical cell). In addition, the sensor element was also fabricated by utilizing commercial Au paste (TR-1403, Tanaka Kikinzoku Kogyo K.K.) or Pt paste (TR-7907, Tanaka Kikinzoku Kogyo K.K.) as a blade-coating material, and it was denoted as EC(Au) or EC(Pt), respectively.

A schematic drawing of a gas-sensing measurement system with two electrode compartments is shown in Fig. 1(b). The fabricated sensor element was sandwiched with Au

meshes (Nilaco, 100 mesh) as a current collector and was set up in a gas-sensing measurement system with two electrode compartments. Electromotive force (*E*) of all sensors to CO or H₂ (10–3000 ppm) balanced with wet synthetic air (O₂: 20%, N₂: 80%, relative humidity: 57%RH at 30°C), which was flowed over the sensing electrode, was measured at 30°C by using a digital electrometer (ADCMT, 8240), while the wet synthetic air was flowed over the counter electrode. The magnitude of response was defined as a change in *E* value induced by a sample gas (ΔE_{SG} , SG (sample gas): CO or H₂). CO selectivity against H₂ was defined as a ratio of CO response to H₂ response ($\Delta E_{CO}/\Delta E_{H_2}$).

3. Results and Discussions

3.1. CO-sensing properties of EC(MO) sensors and effects of Au or Pt loading onto MO

Figure S1 shows XRD spectra of all MO powders, together with their crystallite sizes (CS) which were calculated from (120), (111), (222), (110), and (110) diffraction peaks of Bi₂O₃, CeO₂, In₂O₃, SnO₂, and V₂O₅ powders, respectively. In addition, Figure S2 shows N₂ adsorption-desorption isotherms and pore-size distributions of their powders, together with their specific surface areas (SSA). The XRD spectrum of each MO powder, which was prepared with a Bi(NO₃)₃, Ce(NO₃)₃, In(NO₃)₃, SnCl₄, or NH₄VO₃ aqueous solution was attributed to a single phase of Bi₂O₃ (JCPDS No. 71-2274), CeO₂ (JCPDS No. 65-5923), In₂O₃ (JCPDS No. 89-4595), SnO₂ (JCPDS No. 41-1445), or V₂O₅ (JCPDS No. 41-1426), respectively. The CS value of the prepared Bi₂O₃, CeO₂, In₂O₃, SnO₂, or V₂O₅ powder was ca. 54.5, 25.5, 19.8, 8.9, or 71.6 nm, respectively. On the other hand, the SSA value of the prepared Bi₂O₃, CeO₂, In₂O₃, 19.3, 37.6, 41.4, 2.49 m² g⁻¹, respectively. The N₂ adsorption-desorption isotherms of the CeO₂, In₂O₃, and SnO₂ powders, which had relatively large SSAs, belong to "Type IV" according to the BET classification [24], because of an abrupt and quite small increase in volume of adsorbed N₂ at low *P*/*P*₀ range (\leq 0.2), small positive

slope at a medium P/P_0 range and the abrupt and large increase in volume of adsorbed N₂ and hysteresis at a high P/P_0 range. The hysteresis behavior is associated with capillary condensation and evaporation of N₂ in and from their well-developed ink-bottle mesopores, respectively, and thus these powders showed relatively large SSAs. Besides, the size of mesopores of the In₂O₃ powder was the largest, followed by those of the SnO₂ and CeO₂ powders. On the other hand, the N₂ adsorption-desorption isotherms of the Bi₂O₃ and V₂O₅ powders, which had quite small SSAs, basically belong to "Type II" [24], and thus the number of pore volumes of their mesopores were extremely small. However, the dependence of CS on the kinds of MO was not necessarily correspondent on that of SSA. Therefore, the geometric surface areas (GSAs) of the MO powders were calculated from CSs obtained from their XRD spectra (Fig. S1) and their densities (8.90, 7.22, 7.18, 6.95, and 3.36 g cm⁻³ for Bi₂O₃, CeO₂, In₂O₃, SnO₂, and V₂O₅, respectively [25]), assuming that the morphology of their crystallites is spherical, and the relationship between two kinds of surface areas (SSA and GSA) and CS of all the MO powders is shown in Fig. S3. The ratios of GSA to SSA (GSA/SSA values) of the CeO₂, In₂O₃, and SnO₂ powders with relatively large SSAs were quite small, which indicated that many voids among their meso-sized crystallites were the origins of well-developed inkbottle mesopores. Especially, the smallest GSA/SSA value of the In₂O₃ powder (ca. 1.1) showed that most all of the crystallites did not strongly agglomerate each other and thus gaseous species was easily able to access to the most surface and boundary of the crystallites. On the other hand, the Bi₂O₃ and V₂O₅ powders showed quite large GSA/SSA values as well as small SSAs. This means that most of their large crystallites agglomerated each other and there were little voids forming mesopores.

Figures 2 and 3 show response transients of all EC(MO), EC(Au/MO), and EC(Pt/MO) sensors to 500 ppm CO and 500 ppm H₂, respectively, at 30°C in wet synthetic air (57%RH), and Table S1 summaries the magnitude of their CO and H₂ responses and CO selectivity against

H₂. Among all the EC(MO) sensors, the EC(Bi₂O₃) sensor showed relatively large responses to both CO and H₂. The magnitude of CO response (ΔE_{CO} : ca. 30 mV) was quite similar to that of H₂ (ΔE_{H_2} : ca. 30 mV, the largest among all the EC(MO) sensors), which indicated that the EC(Bi₂O₃) had no CO selectivity against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 1.0). Considering the large CS, small SSA, and undeveloped pore-size distribution (small pore volume) of the Bi₂O₃ powder, the responses to both CO and H_2 of EC(Bi₂O₃) sensor may arise only from the relatively large electrocatalytic activity of CO and H₂ oxidation over Bi₂O₃ even at lower temperatures. However, the loading of Au or Pt onto Bi₂O₃ slightly increased the electromotive force (*E*) of the EC(Bi₂O₃) sensor in synthetic air, only slightly increased or decreased the magnitude of both CO or H₂ responses, respectively, and hardly improved the response and recovery speeds as well as the CO selectivity against H₂. Namely, the loading of Au or Pt onto Bi₂O₃ was less effective in improving the CO-sensing properties of the EC(Bi₂O₃) sensor. The EC(CeO₂) sensor showed the largest CO response (ΔE_{CO} : ca. 33 mV) among all the EC(MO) sensors, probably because of the relatively large electrocatalytic activity of CO oxidation over CeO₂ [26]. However, the response and recovery speeds of the $EC(CeO_2)$ sensor were much slower than those of the EC(Bi₂O₃) sensor. The magnitude of H₂ response was quite small (ΔE_{H_2} : ca. 3) mV), and thus the sensor showed the largest CO selectivity against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 11) among all the EC(MO) sensors. The Au loading onto the CeO₂ slightly improved the magnitude of CO response (ΔE_{CO} : ca. 36 mV) and moderately enhanced the magnitude of H₂ response (ΔE_{H_2} : ca. 17 mV), and thus decreased the CO selectivity against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 1.9). However, the Pt loading was ineffective in improving the sensing behavior to CO and H₂. The EC(V₂O₅) sensor showed no CO and H₂ responses and the loading of Au or Pt onto the V₂O₅ did not improve the sensing behavior to CO and H₂ at all. In addition, the electromotive force of some EC(MO) and EC(N/MO) sensors in base gas (especially, MO: CeO₂ and V₂O₅) often shifted irregularly and unsteadily, due to the quite large resistance of CeO₂ and V₂O₅ at 30°C.

On the other hand, both the EC(In₂O₃) and EC(SnO₂) sensors hardly showed CO and H₂ responses, but the loading of Au or Pt onto both In₂O₃ and SnO₂ drastically improved the CO and/or H₂ responses in some cases. The Au loading onto In₂O₃ and SnO₂ largely improved the CO responses of the EC(In₂O₃) and EC(SnO₂) sensors (ΔE_{CO} : ca. 90 mV for the EC(Au/In₂O₃) sensor, ca. 100 mV for the EC(Au/SnO₂) sensor), respectively, with the slight overshooting behavior [17, 18]. However, the CO selectivity of the EC(Au/In₂O₃) and EC(Au/SnO₂) sensors against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 2.4 and ca. 2.3, respectively) was much smaller than we had expected, because the magnitude of H₂ response of the EC(Au/In₂O₃) and EC(Au/SnO₂) sensors was also moderately large (ΔE_{H_2} : ca. 37 mV and ca. 44 mV, respectively). Meanwhile, the Pt loading onto In₂O₃ was hardly effective in improving the CO-sensing properties. However, the Pt loading onto SnO₂ drastically enhanced the magnitude of CO response ($\Delta E_{CO}:$ ca. 120 mV), and the CO selectivity of the EC(Pt/SnO₂) sensor against H₂ was quite large ($\Delta E_{H_2}:$ ca. 10), since the magnitude of H₂ response was quite small ($\Delta E_{H_2}:$ ca. 12 mV). It is interesting to note that the response and recovery speeds of the EC(Pt/SnO₂) sensor to CO was slower than those of the EC(Au/SnO₂) sensor.

3.2. Sensing mechanism of EC(N/MO) sensors to CO and H₂

XPS analyses of representative N/MO powders (N: Au or Pt, MO: Bi₂O₃, In₂O₃, SnO₂) were conducted in order to clarify the effects of the loading of Au or Pt on the CO-sensing properties of the EC(N/MO) sensors. Figures 4, 5, and 6 show their XPS spectra of N (Au and Pt) 4f_{7/2} and 4f_{5/2}, M (Bi 4f_{7/2}, In 4f_{7/2}, and Sn 3d_{5/2}), and O 1s, respectively. Most of Au atoms of these Au/MO powders existed as a metal. However, the binding energy of Au of Au/Bi₂O₃ was the largest among them, and the binding energy of Au of Au/In₂O₃ was slightly smaller than that of Au/SnO₂. This indicates that the electron density of Au particles loaded on the surface of Au/In₂O₃ was the largest, followed by those of Au/SnO₂ and Au/Bi₂O₃. On the other hand, most

of Pt atoms of these Pt/MO powders were basically oxidized, and the oxidation state was largely dependent on the kinds of the oxides. Pt of Pt/SnO2 was most oxidized among them, and the Pt/SnO₂ had a large amount of Pt⁴⁺ and a medium amount of Pt²⁺, together with a quite small amount of Pt metal. Hübner et al. [27] and Murata et al. [28] have investigated the composition and chemical state of thick Pt/SnO₂ films which were fabricated by screen printing and thin Pt-SnO₂ composite films which were fabricated with magnetron sputtering using a Pt/SnO₂ target, respectively, and they have suggested that the relatively large amount of Pt was doped into the SnO₂ lattice and the Ptⁿ⁺ species (the doping amount: \leq ca. 10 at%, according to the results by Murata et al. [28]) were located at the Sn position in the rutile structure. Considering the analyses of the Pt-SnO₂ composite films with X-ray adsorption fine structure (XAFS) spectroscopy and XPS by Murata et al., the preparation technique of the Pt/SnO₂ powder in this study, and the radii of 6-coordinate ions (Pt^{4+} : 0.625 Å, Pt^{2+} : 0.80 Å, Sn^{4+} : 0.83 Å [29]), it was expected that most of Pt⁴⁺ and Pt²⁺ were doped into the Sn⁴⁺ sites in the lattice at the SnO₂ surface and a slight number of Pt-based nanoparticles, which had oxidized surface such as PtO and/or PtO₂, were loaded onto the SnO₂ surface. On the other hand, the main peaks of both Pt/Bi_2O_3 and Pt/In_2O_3 originated from Pt^{2+} , and the ratio of the amount of Pt^{2+} to the amount of Pt⁴⁺ of Pt/Bi₂O₃ seemed to be larger than that of Pt/In₂O₃. Since the radii of 6-coordinate Bi³⁺ and In³⁺ species (Bi³⁺: 1.03 Å, In³⁺: 0.800 Å [29]) are larger than that of 6-coordinate Pt⁴⁺ and Pt^{2+} species, both the Pt^{4+} and Pt^{2+} species can be doped also into the Bi^{3+} and In^{3+} sites in the lattice at the Bi₂O₃ and In₂O₃ surfaces, respectively. As the small peak of Pt metal was also clearly confirmed in the XPS spectra of both Pt/In2O3 and Pt/Bi2O3, a small number of Pt metal nanoparticles were loaded on both the surfaces and the surface of the Pt metal nanoparticles may be also oxidized to be PtO and PtO₂. Besides, the electron density of all the Pt species on the surface of Pt/SnO₂ was the largest, followed by those of Pt/In₂O₃ and Pt/Bi₂O₃, according to their binding energies.

On the other hand, the binding energy of Bi 4f of N/Bi₂O₃ was independent of the kind of N and the binding energy of Sn 3d of Pt/SnO₂ was slightly larger than that of Au/SnO₂, while the binding energy of In 4f of Pt/In₂O₃ was much larger than that of Au/In₂O₃ (namely, the electron density of In³⁺: Au/In₂O₃ > Pt/In₂O₃), as shown in Fig. 5. In the O 1s spectra, a large peak derived from lattice oxygen species and a small peak derived from adsorbed oxygen species and/or hydroxyl group were confirmed as shown in Fig. 6. In addition, their binding energies (N/Bi₂O₃ < N/In₂O₃ < N/SnO₂) are also dependent on the kinds of oxides (namely, the electron density: N/Bi₂O₃ > N/In₂O₃ > N/SnO₂). The kind of noble metal (N, Au or Pt) had no effect on the spectra of N/Bi₂O₃ and N/SnO₂, while the binding energy of Pt/In₂O₃ was larger than that of Au/In₂O₃.

On the basis of sensing properties to CO and H₂ and surface analyses by XPS, the gas-sensing mechanism was discussed as follows. Our previous studies have already demonstrated that the mixed potential resulting from electrochemical oxygen reduction (eq. (1)) and electrochemical CO oxidation (eq. (2)) generally determines the sensing-electrode potential of the potentiometric gas sensors in CO balanced with wet synthetic air [21, 22].

$$(1/2)O_2 + H_2O + 2e^- \rightarrow 2OH^-$$
(1)

$$CO + 2OH^{-} \rightarrow CO_{2} + H_{2}O + 2e^{-}$$
(2)

Actually, the relationship between the magnitude of CO response and the concentration in synthetic air was quite linear [21, 22]. The Au loading largely improved both the CO responses of only the EC(In₂O₃) and EC(SnO₂) sensors among all the EC(MO) sensors and the magnitude of these CO responses was much larger than that of these H₂ responses, as shown in Figs. 2 and 3. In addition, we have already reported that the Au species was uniformly loaded as nano-sized particles on the surface of In₂O₃ and SnO₂ powders [21, 22], and the XPS analyses (Fig. 4) showed that the electron density of Au nanoparticles loaded on the Au/In₂O₃ surface. CO molecules

are well known to be adsorbed on the step, edge, and corner sites of Au nanoparticles as well as Au/MO interfaces, while O₂ molecules are activated at the Au/MO interfaces by the reaction with water molecules. Thereafter, these CO adsorbates reacted with the activated oxygen species at the Au/MO interfaces, to form CO₂ [30–32]. Based on this mechanism of catalytic CO oxidation under gaseous atmosphere, CO molecules should be adsorbed on Au nanoparticles on the surface of In₂O₃ and SnO₂, also in this study. In addition, it was also confirmed that the binding energies of In 4f and O 1s of Au/In₂O₃ were smaller than those of Pt/In₂O₃ (namely, electron density of In³⁺ and O²⁻ of Au/In₂O₃ was larger than that of Pt/In₂O₃.). These results indicate that the loading of Au nanoparticles partially and slightly reduced the surface of In₂O₃ and SnO₂ and/or formed oxygen vacancies at the surface in some cases, especially around the Au/MO interfaces. Therefore, the Au/MO interfaces worked as electrochemically active redox sites, where the oxidation of the large number of CO adsorbates on the surface of Au and the Au/MO interfaces and the reduction of oxygen adsorbates simultaneously proceeded.

H₂ molecules are electrochemically oxidized in alkaline media, as shown below.

$$H_2 + 2OH^- \rightarrow 2H_2O + 2e^-$$
(3)

It was already reported that the rate of dissociative adsorption of H₂ molecules is quite slow on the surface of Au nanoparticles [33] and the dissociation mainly proceeds at Au/MO interfaces, together with adsorption and activation of oxygen molecules at the same sites [34]. Actually, the Au loading improved the H₂ responses of the EC(In₂O₃) and EC(SnO₂) sensors. Therefore, the Au/MO interfaces must work as electrochemically oxidation sites for adsorbed hydrogen species, also in this study. However, the magnitude of these H₂ responses was smaller than that of these CO responses, as shown in Figs. 2 and 3, probably because the number of hydrogen adsorbates at the Au/MO interfaces was much smaller than that of CO adsorbates on the Au surface as well as at the Au/MO interfaces.

On the other hand, the EC(Bi₂O₃) sensor showed the largest CO and H₂ responses among all the EC(MO) sensors. The Bi₂O₃, which has some oxygen vacancies in the lattice [35], has been applied as a component of various oxidation catalysts to organic molecules [36], CO [37], and H₂S [38]. We also have reported that the Bi₂O₃ addition into Pt electrode largely enhanced the CO-sensing properties of NASICON-based solid electrolyte gas sensors at RT [39]. These properties support that the electrochemical oxidation activity of both CO and H₂ are relatively active over the Bi₂O₃ surface (e.g., via oxygen vacancy [40]). However, the Au loading was ineffective in improving the CO and H₂ responses of the EC(Bi₂O₃) sensor. Fig. 4(a)(i) showed that electron density of Au nanoparticles on the Bi₂O₃ surface was smaller than that on In₂O₃ and SnO₂. This result shows that the chemical and electrical interaction is really small between Au and Bi₂O₃. Therefore, the number of CO adsorbates and dissociatively adsorbed hydrogen species as well as the number of activated oxygen adsorbates was quite small at Au/Bi₂O₃ interfaces, and the CO molecules adsorbed on the Au surface were not also effectively oxidized at the Au/Bi₂O₃ interfaces. The inactive Au/Bi₂O₃ interfaces are probably the most important key in eliminating the effect of the Au loading on the CO and H₂ responses of the EC(Bi₂O₃) sensor.

The Pt loading onto SnO₂ drastically improved the EC(SnO₂) sensor as shown in Fig. 3, while Fig. 4(b) showed that most of Pt was oxidized at the Pt/SnO₂ surface (main and sub chemical states: Pt⁴⁺ and Pt²⁺, respectively) and these oxidized Pt species were expected to be doped into the Sn⁴⁺ sites in the lattice at the SnO₂ surface [27, 28]. On the other hand, the Pt loading onto Bi₂O₃ and In₂O₃ was ineffective in improving the EC(Bi₂O₃) and EC(In₂O₃) sensors, respectively, as shown in Figs. 2 and 3, while Fig. 4(b) showed that most of Pt existed mainly as Pt²⁺ species at both the Pt/Bi₂O₃ and Pt/In₂O₃ surfaces and they were also expected to be doped into the Sn⁴⁺ sites in the lattice at the SnO₂ surface. In addition, the fact that electron density of all the Pt species of Pt/SnO₂ was larger than those of Pt/Bi₂O₃ and Pt/In₂O₃ (see Fig.

4(b)) indicates that Pt/SnO₂ has the relatively large number of oxygen vacancies near Pt species in the surface lattice. Moreover, CO molecules can be directly adsorbed on the active sites, while H₂ molecules should be dissociatively adsorbed on the active sites. Considering these results and discussion, CO molecules were adsorbed just on the top of Pt⁴⁺ and/or via oxygen vacancies next to Pt⁴⁺ at the surface lattice of SnO₂, and then the CO adsorbates electrochemically reacted with adjacent OH⁻ adsorbates, to form CO₂. O₂ molecules also were adsorbed at the same electrochemically active sites, and then they were reduced, to form OH⁻. However, H₂ molecules, which need to be dissociatively adsorbed on the active sites, are difficult to be adsorbed just on the individually (singly) dispersed Pt⁴⁺ sites at the surface lattice. Therefore, the EC(Pt/SnO₂) sensor showed only the quite small H₂ response.

3.3. Sensing properties of EC(N) sensors (N: Au or Pt) to CO and H₂

In order to remove the effect of the base oxide materials (MO) on the sensing properties to both CO and H₂, response transients of EC(Au) and EC(Pt) sensors to 500 ppm CO and H₂ were investigated at 30°C in wet synthetic air (57%RH), as shown in Fig. 7. The magnitude of their CO and H₂ responses and CO selectivity against H₂ were summarized in Table S2. The magnitude of CO and H₂ responses of the EC(Au) sensor (ΔE_{CO} : ca. 38 mV, ΔE_{H_2} : ca. 30 mV) was larger than that of the EC(Pt) sensor (ΔE_{CO} : ca. 7.2 mV, ΔE_{H_2} : ca. 8.8 mV), and both the sensors showed poor CO selectivity against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 1.3 for the EC(Au) sensor and ca. 0.82 for the EC(Pt) sensor), which was much smaller than those of the EC(Pt/SnO₂) sensor as well as the EC(Au/SnO₂) sensor. For both the EC(Au) and EC(Pt) sensors, the electrochemical oxidation of CO (eq. (1)) and H₂ (eq. (3)) and the electrochemical reduction of O₂ (eq. (2)) at the Au and Pt sensing electrodes are expected to proceed at triple-phase boundaries consisting of gas, liquid (ACP membrane), and solid (Au and Pt). In addition, it is well known that the exchange current density of oxygen reduction at a Au electrode is much smaller than that at a Pt electrode [41]. Therefore, the larger responses of the EC(Au) sensor to CO and H₂ than those of the EC(Pt) sensor and the quite poor CO selectivity of both the sensors against H₂ are because the electrochemical oxidation rate of CO at such triple-phase boundaries was relatively comparable to that of H₂ and the electrochemical reduction rate of O₂ at triple-phase boundaries of the Au electrode is generally much smaller than that of the Pt electrode. On the other hand, both the CO responses of the EC(Au/MO) sensor (MO: In₂O₃ or SnO₂) and the EC(Pt/SnO₂) sensor were much larger than those of the EC(Au) and EC(Pt) sensors, whereas the H₂ responses of the EC(Au/MO) sensor (MO: In₂O₃ or SnO₂) and the EC(Pt/SnO₂) sensor were comparable to those of the EC(Au) and EC(Pt) sensors, respectively. Therefore, these results indicate that the oxide surface of the Au/MO (MO: In₂O₃ or SnO₂) and Pt/SnO₂ sensing electrodes serves a quite important function as a part of the reaction sites especially for the electrochemical CO oxidation, and thus the combination of the oxide surface with Au or Pt nanoparticles at these sensing electrodes enhanced only the magnitude of CO responses for the EC(Au/MO) sensor (MO: In₂O₃ or SnO₂) and the EC(Pt/SnO₂) sensors.

3.4. Sensing properties of EC(N/SnO₂) sensors to CO and H₂

Effects of the kinds of noble metal (N) loaded onto SnO₂ on the sensing properties of EC(N/SnO₂) sensors to CO and H₂ were also investigated in this study. Figure 8 shows response transients of all the EC(N/SnO₂) sensors to 500 ppm CO and H₂ at 30°C in wet synthetic air (57%RH). The magnitude of their CO and H₂ responses and CO selectivity against H₂ were summarized in Table S3. The EC(Au/SnO₂) and EC(Pt/SnO₂) sensors showed large CO responses with relatively small H₂ responses, as shown in Section 3.2. On the other hand, the other EC(N/SnO₂) sensors (N: Ag, Ir, Rh, and Ru), which did not involve the EC(Pd/SnO₂) sensor, showed little CO and H₂ responses. The EC(Pd/SnO₂) sensor unstably showed the large CO response (ΔE_{CO} : ca. 56 mV) with too large overshooting behavior. In addition, the

electromotive force (E) of the sensor in wet synthetic air (base gas) gradually tended to shift positively after exposure to CO, and the E value attained to ca. 111 mV in wet synthetic air, before the H₂-sensing property of the sensor was measured. The magnitude of H₂ response of this sensor toward the E value (ΔE_{H_2} : ca. 95 mV) was larger than that of the CO response, and thus the CO selectivity against H₂ was quite small ($\Delta E_{\rm CO}/\Delta E_{\rm H_2}$: ca. 0.59). These results indicate that the exposure to reducing gases such as CO and H₂ in wet synthetic air changed the chemical states of Pd species and/or SnO₂. Actually, the color of the Pd/SnO₂ sensing electrode largely changed from gray to black after the measurement, even though the color of the counter electrode only after exposure to a base gas (wet synthetic air) didn't change. Therefore, XPS analyses of the sensing electrodes of the EC(Pd/SnO₂) sensor were performed before and after exposure to 3000 ppm CO and H₂ balanced with wet synthetic air for 2 h, as shown in Fig. 9 and Fig. S4. XPS spectra of Sn 3d_{5/2} and O 1s of all the sensing electrodes were hardly influenced even by exposure to the highly concentrated CO and H₂ atmospheres balanced with wet synthetic air (Fig. S4). However, the binding energies of both the XPS spectra of both the components of all the electrodes were smaller than those of the Au/SnO₂ and Pt/SnO₂ powders (see Figs. 5 and 6), because of the large number of oxygen vacancies as well as the large electron density of Sn and O species by the loading of Pd species on the SnO₂ surface. On the other hand, XPS spectra of Pd 3d of the sensing electrodes was sensitive to the gaseous atmosphere. Namely, most of the Pd component on the SnO₂ surface was PdO before exposure to CO or H₂, but the exposure to CO or H₂ surprisingly oxidized a part of the PdO species to form PdO₂. The electrochemical oxidation of CO or H2 and electrochemical reduction of O2, which simultaneously proceed at the sensing electrode under the gaseous atmospheres, must have induced the oxidation from PdO to PdO₂, but we don't have sufficient information to understand the mechanism at present. However, the change in the chemical states of the Pd species can explain a rise in the electromotive force (E) of the EC(Pd/SnO₂) sensor with exposure to CO

and H₂ balanced with wet synthetic air, because the standard redox potentials of Pd/PdO and PdO/PdO₂ are +0.896 and +1.283 V (vs. SHE), respectively. As such increase in the electromotive force was not confirmed when carbon black was utilized as a base electrode material for the Pd loading in spite of SnO_2 [19, 20], the chemical properties of the SnO_2 surface have a large influence on the stability of PdO species in CO or H₂ balanced with wet synthetic air.

Our previous studies have demonstrated that heat treatment of the Au/SnO2 powder under H₂ atmosphere at 250°C reduced the magnitude of H₂ response of the EC(Au/SnO₂) sensor, while maintaining the large CO response, and thus it drastically improved the CO selectivity against H₂ [22]. Therefore, all the N/SnO₂ powders prepared in this study were also heat-treated at the same reducing condition (in H₂ at 250°C for 2 h), the effects of the heat treatment of the N/SnO₂ powders on the CO-sensing properties. Figure 10 shows response transients of all the EC(N/SnO₂-h) sensors to 500 ppm CO and H₂ at 30°C in wet synthetic air (57%RH), and Table S3 summarizes the magnitude of their CO and H₂ responses and CO selectivity against H₂. The heat treatment of the Au/SnO₂ powder in H₂ drastically decreased the H₂ response (ΔE_{H_2} : ca. 3 mV), with maintaining the magnitude of CO response (ΔE_{CO} : ca. 100 mV) and thus the EC(Au/SnO₂-h) sensor showed excellent CO selectivity against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 33), also as shown in our previous report [22]. The only decrease in the H₂ response may arise from a decrease in the number of dissociatively adsorbed hydrogen species at Au/SnO2 interfaces. On the other hand, the CO and H₂ responses of the EC(Pt/SnO₂-h) sensor (ΔE_{CO} : ca. 221 mV, ΔE_{H_2} : ca. 118 mV) were much larger than those of the EC(Pt/SnO₂) sensor (ΔE_{CO} : ca. 120 mV, ΔE_{H_2} : ca. 12 mV, see Fig. 3), but thus the CO selectivity the EC(Pt/SnO₂-h) sensor against H₂ was quite small ($\Delta E_{\rm CO}/\Delta E_{\rm H_2}$: ca. 1.9), in comparison with that of the EC(Pt/SnO₂) sensor $(\Delta E_{\rm CO}/\Delta E_{\rm H};$ ca. 10). These results indicate that the surface of Pt metal nanoparticles and/or the Pt/SnO₂ interfaces, which were produced by heat treatment in H₂ at 250°C for 1 h, worked as electrochemically active sites for CO and H₂ oxidation and the electrochemical oxidation activities at these reaction sites of the Pt/SnO₂-h sensing electrode against CO and H₂ were much larger than those at the PtOx-based reaction sites of the Pt/SnO₂ sensing electrode. For the EC(Pd/SnO₂-h) sensor, the electromotive force was quite stable in comparison of that of the EC(Pd/SnO₂) sensor, but both the CO and H₂ responses were much smaller than those of the EC(Pd/SnO₂) sensor. In addition, three kinds of the EC(N/SnO₂-h) sensors (N: Ag, Ir, and Rh) hardly showed CO and H₂ responses, as is the case with the EC(N/SnO₂) sensors (N: Ag, Ir, and Rh). The electrochemical O2 reduction activity may be too much larger than the electrochemical CO and H₂ oxidation activities at the reaction sites of these N/SnO₂ electrodes and thus these electrode potentials were not able to shift to the negative direction. Except for the EC(N/SnO₂-h) sensors (Au and Pt), only the EC(Ru/SnO₂-h) sensor showed relatively large CO and H₂ responses (ΔE_{CO} : ca. 40 mV, ΔE_{H_2} : ca. 19 mV), but the CO-sensing properties (CO selectivity against H₂ ($\Delta E_{CO}/\Delta E_{H_2}$: ca. 2.1) as well as the magnitude of the CO response) of the EC(Ru/SnO₂-h) sensor were far inferior to those of the EC(Au/SnO₂-h) sensor. Hereafter, we will clarify the effects of the N loading onto the MO surface (MO: SnO₂, especially) on the sensing properties of the EC(N/MO) and EC(N/MO-h) sensors to CO and H₂, to design highly CO sensitive and selective electrochemical gas sensors using an ACP electrolyte and oxidebased electrodes.

4. Conclusions

CO-sensing properties of EC(MO) and EC(N/MO) sensors were measured in wet synthetic air (57%RH) at 30°C, and effects of the kinds of MO as a base electrode material and N loaded on the MO surface on their CO-sensing properties were investigated in this study. The EC(CeO₂) and EC(Bi₂O₃) sensors showed relatively large CO response and only the EC(Bi₂O₃) sensor responded to H₂, among all the EC(MO) sensors. However, the loading of Au or Pt onto CeO₂ and Bi₂O₃ was not effective in improving these sensing properties. On the other hand, the EC(In₂O₃) and EC(SnO₂) sensors hardly showed both CO and H₂ responses. However, the Au loading was quite effective in improving the magnitude of CO and H₂ responses of both the EC(In₂O₃) and EC(SnO₂) sensors ($\Delta E_{CO} > \Delta E_{H_2}$). This result indicates that the oxidation of CO and hydrogen adsorbates and the reduction of oxygen adsorbates electrochemically proceeded at the Au/MO interfaces and the number of CO adsorbates was larger than that of hydrogen adsorbates. On the other hand, the Pt loading largely enhanced the magnitude of CO response of the EC(SnO₂) sensor, but was not so much effective in improving the magnitude of H₂ response. Therefore, the EC(Pt/SnO₂) sensor showed the most excellent CO selectivity against H₂, among all the sensors in this study. The XPS spectra of the Pt/SnO₂ and the sensing properties of the EC(Pt/SnO₂) sensor suggest that the large number of CO molecules was easily adsorbed on Pt⁴⁺ sites and/or via oxygen vacancies next to Pt⁴⁺ at the surface lattice of SnO₂. Among other EC(N/SnO₂) sensors, only the EC(Pd/SnO₂) sensor showed large CO and H₂ responses, together with the operating instability which was caused by the oxidation of Pdbased reaction sites. The heat treatment of N/MO powders in H₂ 250°C had various impacts on their CO and H₂ responses in some cases. Namely, the heat treatment largely reduced the CO and H₂ responses of the EC(Pd/SnO₂) sensor, moderately increased the CO and H₂ responses of the EC(Ru/SnO₂) sensor, improved the CO selectivity of the EC(Au/SnO₂) sensor against H₂ together with a considerable decrease in the H₂ response, and enhanced both CO and H₂ responses of the EC(Pt/SnO₂) sensor, leading to a decrease in its CO selectivity against H₂.

References

- [1] WHO Regional Office for Europe, Copenhagen, Denmark, Air quality guidelines for Europe, 2nd edition (CD ROM version), WHO Regional Publications, European Series, No. 91 (2000).
- [2] D. Koziej, N. Bârsan, K. Shimanoe, N. Yamazoe, J. Szuber, U. Weimar, Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol, Sens. Actuators B 118 (2006) 98–104.
- [3] J. W. Fergus, Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases, Sen. Actuators B 122 (2007) 683–693.
- [4] N. Izu, I. Matsubara, T. Itoh, W. Shin, Performance of a carbon monoxide sensor based on zirconia-doped ceria, J. Asian Ceram. Soc. 4 (2016) 205–208.
- [5] Y. Shimizu, S. Yamamoto, S. Takase, A thick-film impedancemetric carbon monoxide sensor using layered perovskite-type cuprate, Sens. Actuators B 249 (2017) 667–672.
- [6] T. Goto, T. Itoh, T. Akamatsu, T. Sekino, W. Shin, Relationship between the CO sensing performance of micro-thermoelectric gas sensors and characteristics of PtPd/Co₃O₄ and PtPd/SnO₂ catalysts, Sens. Actuators B 243 (2017) 847–855.
- [7] N. Miura, H. Kato, H. Yamazoe, T. Seiyama, A proton conductor gas sensor operative at ordinary temperature, Denki Kagaku (presently Electrochemistry) 50 (1982) 858–859.
- [8] N. Miura, H. Kato, N. Yamazoe, and T. Seiyama, An improved type of proton conductor sensor sensitive to H₂ and CO at room temperature, Chem. Lett. 12 (1983) 1573–1576.
- [9] P. D. van del Wal, N. F. de Rooij, M. Koudelka-Hep, Extremely stable Nafion based carbon monoxide sensor, Sens. Actuators B 35 (1996) 119–123.
- [10] R. J. Mortimer, A. Beech, AC impedance characteristics of solid-state planar electrochemical carbon monoxide sensors with Nafion[®] as solid polymer electrolyte, Electrochim. Acta 47 (2002) 3383–3387.

- [11] K. Mochizuki, T. Kikuchi, M. Sudoh, Y. Ishiguro, T. Suzuki, Performances of fuel-celltype CO sensors using each of polybenzimidazole and Nafion membranes, J. Electrochem. Soc. 158 (2011) J71–J75.
- [12] Y. Guan, M. Dai, T. Liu, Y. Liu, F. Liu, X. Liang, H. Suo, P. Sun, G. Lu, Effect of the dispersants on the performance of fuel cell type CO sensor with Pt–C/Nafion electrodes, Sens. Actuators B 230 (2016) 61–69.
- [13] Y. Guan, F. Liu, B. Wang, X. Yang, X. Liang, H. Suo, P. Sun, Y. Sun, J. Ma, J. Zheng, Y. Wang, G. Lu, Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials, Sens. Actuators B 239 (2017) 696–703.
- [14] K. Izawa, Introduction of carbon monoxide gas sensors and their application, Chemical Sensors 34 (2018) 8–13.
- [15] H. Yanagi, K. Fukuda, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS Trans. 16(2) (2008) 257–262.
- [16] K. Fukuta, H. Inoue, S. Watanabe, H. Yanagi, In-situ observation of CO2 through the selfpurging in alkaline membrane fuel cell (AMFC), ECS Trans. 19(31) (2009) 23–27.
- [17] K. Matsumoto, T. Fujigaya, H. Yanagi, N. Nakashima, Very high performance alkali anion-exchange membrane fuel cells, Adv. Funct. Mater. 21 (2011) 1089–1094.
- [18] T. Hyodo, C. Ishibashi, H. Yanagi, K. Kaneyasu, Y. Shimizu, Potentiometric hydrogen sensors using an anion-conducting polymer as an electrolyte, Reports of the Faculty of Engineering, Nagasaki University 42(79) (2012) 42–47.
- [19] T. Goto, T. Hyodo, K. Kaneyasu, H. Yanagi, and Y. Shimizu, CO sensing properties of electrochemical gas sensors using an anion-conducting polymer as an electrolyte, ECS Trans. 50(12) (2013) 267–272.
- [20] T. Hyodo, C. Ishibashi, K. Matsuo, K. Kaneyasu, H. Yanagi, Y. Shimizu, CO and CO₂

sensing properties of electrochemical gas sensors using an anion-conducting polymer as an electrolyte, Electrochim. Acta 82 (2012) 19–25.

- [21] T. Goto, T. Hyodo, T. Ueda, K. Kamada, K. Kaneyasu, Y. Shimizu, CO-sensing properties of potentiometric gas sensors using an anion-conducting polymer electrolyte and Auloaded metal oxide electrodes, Electrochim. Acta 166 (2015) 232–243.
- [22] T. Hyodo, T. Goto, T. Ueda, K. Kaneyasu, Y. Shimizu, Potentiometric carbon monoxide sensors using an anion-conducting polymer electrolyte and Au-loaded SnO₂ electrodes, J. Electrochem. Soc. 163 (2016) B300–B308.
- [23] L.-F. Gutierrez, S. Hamoudi, K. Belkacemi, Synthesis of gold catalysts supported on mesoporous silica materials: recent developments Catalysts 1 (2011) 97–154.
- [24] K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 54 (1982) 2201–2218.
- [25] Kurt J. Lesker Co., Installation and operation manual of FTC-2800 (thin film deposition controller), Ver. 6.10 (2009).
- [26] T. Ueda, H. Takeda, K. Kamada, T. Hyodo, Y. Shimizu, Enhanced CO response of NASICON-based gas sensors using oxide-added Pt sensing electrode at low temperature operation, Electrochemistry 85 (2017) 174–178.
- [27] M. Hübner, D. Koziej, M. Bauer, N. Barsan, K. Kvashnina, M. D. Rossell, U. Weimar, J. D. Grunwaldt, The structure and behavior of platinum in SnO₂-based sensors under working conditions, Angew. Chem. Int. Ed. 50 (2011) 2841–2844.
- [28] N. Murata, T. Suzuki, M. Kobayashi, F. Togoh, K. Asakura, Characterization of Pt-doped SnO₂ catalyst for a high-performance micro gas sensor, Phys. Chem. Chem. Phys. 15 (2013) 17938–17946.
- [29] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32 (1976) 751–767.

- [30] M. Daté, Y. Ichihashi, T. Yamashita, A. Chiorino, F. Boccuzzi, M. Haruta, Performance of Au/TiO₂ catalyst under ambient conditions, Catal. Today 72 (2002) 89–94.
- [31] T. Fujitani, I. Nakamura, Mechanism and active sites of the oxidation of CO over Au/TiO₂, Angew. Chem. Int. Ed. 50 (2011) 10144–10147.
- [32] M. Haruta, Chance and necessity: My encounter with gold catalysts, Angew. Chem. Int.Ed. 53 (2014) 52–56.
- [33] B. Hammer, J. K. Norskov, Why gold is the noblest of all the metals, Nature 376 (1995)238–241.
- [34] T. Fujitani, I. Nakamura, T. Akita, M. Okumura, M. Haruta, Hydrogen dissociation by gold clusters, Angew. Chem. Int. Ed. 48 (2009) 9515–9518.
- [35] P. Torruella, C. Coll, G. Martín, L. López-Conesa, M. Vila, C. Díaz-Guerra, M. Varela,
 M. L. Ruiz-González, J. Piqueras, F. Peiró, S. Estradé, Assessing oxygen vacancies in
 bismuth oxide through EELS measurements and DFT simulations, J. Phys. Chem. C 121
 (2017) 24809–24815.
- [36] T. Sakamoto, M. Egashira, T. Seiyama, New catalytic aromatization of lower olefins over bismuth phosphate catalyst, J. Catal. 16 (1970) 407–409.
- [37] Y. Lou, L. Wang, Z. Zhao, Y. Zhang, Z. Zhang, G. Lu, Y. Guo, Y. L. Guo, Lowtemperature CO oxidation over Co₃O₄-based catalysts: Significant promoting effect of Bi₂O₃ on Co₃O₄ catalyst, Appl. Catal. B 146 (2014) 43–49.
- [38] Y.-G. Cho, B.-H. Hwang, D.-W. Park, H.-C. Woo, J.-S. Chung, Phase cooperation of V₂O₅ and Bi₂O₃ in the selective oxidation of H₂S containing ammonia and water, Korean J. Chem. Eng. 19 (2002) 611–616.
- [39] H. Takeda, T. Ueda, K. Kamada, K. Matsuo, T. Hyodo, Y. Shimizu, CO-sensing properties of a NASICON-based gas sensor attached with Pt mixed with Bi₂O₃ as a sensing electrode, Electrochem. Acta 155 (2015) 8–15.

- [40] E. N. Voskresenskaya, L. I. Kurteeva, A. G. Anshits, Solid solutions of bismuth oxide as promising catalysts for oxidative coupling of methane, Appl. Catal. A 90 (1992) 209–216.
- [41] C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, in: J. Zhang (Ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers, Springer, Berlin, 2008, pp. 89–134.

Figure Captions

- Fig. 1. Schematic drawings of (a) sensor element and (b) gas-sensing measurement system with two electrode compartments.
- Fig. 2. Response transients of EC(MO) and EC(N/MO) sensors (MO: Bi₂O₃, CeO₂, In₂O₃, SnO₂, and V₂O₅, N: Au and Pt) to 500 ppm CO in wet synthetic air at 30°C (57%RH).
- Fig. 3. Response transients of EC(MO) and EC(N/MO) sensors (MO: Bi₂O₃, CeO₂, In₂O₃, SnO₂, and V₂O₅, N: Au and Pt) to 500 ppm H₂ in wet synthetic air at 30°C (57%RH).
- Fig. 4. XPS spectra of Au 4f and Pt 4f of N/MO powders (N: Au and Pt, MO: Bi₂O₃, In₂O₃, and SnO₂).
- Fig. 5. XPS spectra of Bi 4f_{7/2} of N/Bi₂O₃ powder, In 4f_{7/2} of N/In₂O₃ powder, and Sn 3d_{5/2} of N/SnO₂ powder (N: Au and Pt).
- Fig. 6. XPS spectra of O 1s of N/MO powders (N: Au and Pt, MO: Bi₂O₃, In₂O₃, and SnO₂).
- Fig. 7. Response transients of EC(Au) and EC(Pt) sensors to 500 ppm CO and 500 ppm H₂ in wet synthetic air at 30°C (57%RH).
- Fig. 8. Response transients of EC(N/SnO₂) sensors (N: Ag, Au, Ir, Rh, Ru, Pd, and Pt) to (a) 500 ppm CO and (b) 500 ppm H₂ in wet synthetic air at 30°C (57%RH).
- Fig. 9. XRD spectra of Pd 3d of Pd/SnO₂ sensing electrode of EC(Pd/SnO₂) sensor before and after exposure to 3000 ppm CO and H₂ balanced with wet synthetic air for 2 h.
- Fig. 10. Response transients of EC(N/SnO₂-h) sensors (N: Ag, Au, Ir, Rh, Ru, Pd, and Pt) to(a) 500 ppm CO and (b) 500 ppm H₂ in wet synthetic air at 30°C (57%RH).

Fig. 1. Hyodo et al.

Fig. 2. Hyodo et al.

Fig. 3. Hyodo et al.

Fig. 4. Hyodo et al.

Fig. 5. Hyodo et al.

Fig. 6. Hyodo et al.

Fig. 7. Hyodo et al.

Fig. 8. Hyodo et al.

Fig. 9. Hyodo et al.

Fig. 10. Hyodo et al.

Supporting Information

Potentiometric CO sensors using anion-conducting polymer electrolyte: effects of the kinds of noble metal-loaded metal oxides as sensing-electrode materials on CO-sensing properties

Takeo Hyodo*, Mari Takamori, Toshiyuki Goto, Taro Ueda, and Yasuhiro Shimizu

Graduate School of Engineering, Nagasaki University 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

*Corresponding author: hyodo@nagasaki-u.ac.jp

Figure S1. XRD spectra of all metal-oxide (MO) powders, together with crystallite sizes (CSs). *: Diffraction peaks utilized for calculation of CSs.

Figure S2. N_2 adsorption-desorption isotherms with specific surface areas (SSAs) and pore-size distributions of all MO powders.

Figure S3. Relationship between two kinds of surface areas (SSA and GSA) and CS of all MO powders.

Figure S4. XPS spectra of Sn $3d_{5/2}$ and O 1s of Pd/SnO₂ sensing electrode of EC(Pd/SnO₂) sensor before and after exposure to 3000 ppm CO and H₂ balanced with wet synthetic air for 2 h.