Identification and Characterization of a Fimbrial Gene Cluster of Edwardsiella tarda Expressing Mannose－resistant Hemagglutination

Takamitsu Sakai ${ }^{1}$ ，Kinya Kanai ${ }^{2 *}$ ，Kiyoshi Osatomi ${ }^{2}$ and Kazuma Yoshikoshi ${ }^{2}$
${ }^{1}$ Graduate School of Science and Technology，Nagasaki University， Nagasaki，852－8521，Japan
${ }^{2}$ Faculty of Fisheries，Nagasaki University，Nagasaki， 852－8521，Japan

（Received December 5，2003）

Abstract

We determined the nucleotide sequence of a 8.6 kb DNA region containing etfA encoding a putative fimbrial major subunit from chromosomal DNA of Edwardsiella tarda KG8401 which expresses mannose－resistant hemagglutination（MRHA）．This region contained three novel genes，etfBCD，at the downstream region of etfA．The deduced amino acid sequences of EtfABCD contained conserved fimbrial domains；fimbrial protein，fimbrial chaperone，fimbrial usher and fimbrial protein，respectively．Escherichia coll transformed with the cloned etf operon expressed MRHA and fimbriae that reacted with rabbit antiserum against the fimbrial major subunit of E ．tarda，showing the implication of the fimbriae in the hemagglutination of E ．tarda．

Key words：Edwardsiella tarda，mannose－resistant hemagglutination，fimbriae，gene cluster

Edwardsiella tarda has a wide host range，having been isolated from a variety of animals including fish， birds，mammals and reptiles（White et al．，1973；Owens et al．，1974；van Damme and Vandepitte，1980； Goldstein et al．，1981）．Edwardsiellosis in Japanese flounder Paralichthys olivaceus，red sea bream Pagrus major and Japanese eel Anguilla japonica is character－ ized by skin lesions and formation of abscesses and granulomas in internal organs such as liver，kidney and spleen（Miyazaki and Kaige，1985；Rashid et al．，1997） and causes serious damage to their aquaculture industry （Wakabayashi and Egusa，1973；Nakatsugawa，1983； Miyazaki and Kaige，1985；Kusuda and Salati，1993）

Pathogenicity of E ．tarda seems to be multifacto－ rial．Several virulence properties and factors have been reported，namely dermonecrotic and lethal toxins （Ullah and Arai，1983；Suprapto et al．，1996），anti－phago－ cyte killing（Ainsworth and Chen，1990；lida and Wakabayashi，1993），hemolysins（Janda and Abbott， 1993；Chen et al．，1996；Hirono et al．，1997；Strauss et al．， 1997），siderophore（Igarashi et al．，2002），serum resis－ tance and the ability to invade epithelial cells（Janda et al．， 1991；Ling et al．，2000）．However，very little is known

[^0]about the roles of these factors in disease occurrence and the bacterial invasion process，and also the portal of entry of E ．tarda into hosts has not been shown precisely．

For many pathogenic bacteria，adherence to host is mediated by adhesin existing on the tip of fimbriae （Hoepelman and Tuomanen，1992；Kuehn et al．，1992； Jones et al．，1995）．Although E．tarda has fimbriae that exhibit mannose－resistant hemagglutination against guinea pig erythrocytes，hemagglutinin has not been identified（Nowotarska and Mulczyk，1977）．In the pre－ vious paper，we identified a gene，etfA，encoding a 19.3 kDa protein that was associated with the possession of hemagglutinating activity among E ．tarda strains（Sakai et al．，2003）．The predicted amino acid sequence of EtfA has a significant homology with type－1 fimbrial ma－ jor subunits of Serratia marcescens（Nichols et al．，1990） and Escherichia coli O157：H7（Perna et al．，2001）and long polar fimbrial major subunit of Salmonella typhimurium（Bäumler and Heffron，1995）．Type－1 and P fimbriae of E ．coli are constructed with several thou－ sands copies of the major subunit，forming helical fila－ ment，and several minor subunits，and carbohydrate－ binding adhesin is located at the distal end of the fimbria （Lindberg et al．，1987；Gong and Makowski，1992； Kuehn et al．，1992；Jones et al．，1995）．Genes encod－ ing fimbrial subunits and accessory proteins participating
in the formation of fimbriae constitute an operon, and the gene encoding adhesin is located downstream in a fimbrial gene cluster (Boyd and Hartl, 1998).

In this study, we determined the DNA sequence of a fimbrial gene cluster, etfABCD, from chromosomal DNA of E. tarda and showed that E. coli harbored a DNA fragment containing etfABCD expressed mannose-resistant hemagglutination against guinea pig erythrocytes.

Materials and Methods

Bacterial strains and growth conditions

E. tarda KG8401 isolated from Japanese eel was cultured at $28^{\circ} \mathrm{C}$ for 24 h on yeast extract agar, consisted of 1% polypepton, 0.5% Bacto-yeast extract (Difco Laboratories, USA), $0.5 \% \mathrm{NaCl}$ and 1.5% agar at pH 7.2 . E. coli JM109 was grown in Luria-Bertani (LB) medium (Sambrook et al., 1989).

Hemagglutination and hemagglutination inhibition test

Hemagglutination test and hemagglutination inhibition test were performed according to Sakai et al. (2003). Briefly, a $3 \%(\mathrm{v} / \mathrm{v})$ formalin-fixed erythrocyte suspension in phosphate-buffered saline containing 1% bovine serum albumin (PBS-BSA) was added to serial twofold dilution of bacterial cells suspended in PBS-BSA at 0.1 g (wet wt) bacteria/mL. Hemagglutination titer was defined as the reciprocal of the highest dilution of a test sample that showed complete hemagglutination. For hemagglutination inhibition test, serial twofold dilution of bacterial cells was prepared in PBS-BSA contained 1% D-mannose or 1% fetuin (Sigma Aldrich, USA).

DNA manipulation

Preparation of chromosomal DNA, restriction endonuclease digestion, ligation, transformation and DNA electrophoresis were performed as described by Sambrook et al. (1989). Plasmid DNA was purified using Quantum Prep Plasmid Miniprep Kit (Bio-Rad Laboratories, USA).

Southern hybridization and colony hybridization were performed according to the DIG systems user's guide (Roche Applied Science, Germany). The oligonucleotide probe was end-labeled with digoxigenin (DIG) using DIG Oligonucleotide 3'-End Labeling Kit (Roche Applied Science, Germany).

Nucleotide sequences were determined by the dideoxy chain termination method with BigDye Terminator Cycle Sequencing Kit and ABI 377 DNA sequencer (Applied Biosystems, USA).

Computerized sequence analysis

The nucleotide sequence data was analyzed using the DNASIS program (Hitachi Software, Japan) and the GENETYX sequence analysis program (Software Development, Japan). Analysis of a signal sequence of the
deduced aimino acid sequence was performed with the SOSUI program available at the Tokyo University of Agriculture and Technology website (http://sosui. proteome.bio.tuat.ac.jp/sosuimenu0.html). Homology searching was performed using the FASTA program served by Genome Net (Bioinfomatics Center, Institute for Chemical Research, Kyoto University, http://fasta. genome.ad.jp/SIT/FASTA.html). The conserved domain database (CDD) and CD-Search service at the National Center for Biotechnology Information (http:// www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) were used to identify the conserved domains present in protein sequences.

Expression of EtfABCD in E. coli JM109

A DNA fragment containing etfABCD was PCR amplified with sense primer, 5'-CACTTTCCGCAACC-ATGATC-3' (positions 1574 to 1593 in Fig. 2), and antisense primer, 5'-CTCTCCTTGTCACAATAACGC-3' (positions 7290 to 7310 in Fig. 2). PCR was performed with TaKaRa LA PCR Kit (TaKaRa Bio Inc., Japan) according to the following amplification protocol: after an initial denaturation step $\left(94^{\circ} \mathrm{C}, 2 \mathrm{~min}\right), 30$ cycles of denaturation ($94^{\circ} \mathrm{C}, 30 \mathrm{~s}$), annealing ($65^{\circ} \mathrm{C}, 30 \mathrm{~s}$) and extension $\left(72^{\circ} \mathrm{C}, 7 \mathrm{~min}\right)$, followed by a final extension step $\left(72^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$. The PCR product was ligated into a pGEM-T Easy vector (Promega, USA) and transformed into E. coli JM109. Hemagglutinating acitivity and fimbrial formation of cells transformed with recombinant plasmid DNA were then examined.

Immunogold electron microscopy

Bacterial cells were incubated for 1 h at room temperature in rabbit anti-19.3-kDa protein (EtfA) serum (Sakai et al., 2003) diluted to 1:100 in PBS-BSA at 10 mg (wet wt) bacteria/mL. After washed thrice with PBSBSA, bacterial cells were incubated for 1 h at room temperature in goat anti-rabbit IgG-gold (10 nm; Sigma USA) diluted to 1:100 in PBS-BSA. After washed thrice with 2% ammonium acetate, bacterial cells were negatively stained with 1% sodium phosphotungstate (pH 7.0) and examined under a JEM 100 S electron microscope (JEOL, Japan) at 80 kV .

Results and Discussion

Cloning and sequencing of the etf operon

Two oligonucleotide probes were designed based on the nucleotide sequence of a $3.0-\mathrm{kb}$ Smal -Accl fragment containing etfA (Sakai et al., 2003), pNUF1 in Fig. 1. Hybridized $2.5-\mathrm{kb}$ Pst I and $4.4-\mathrm{kb}$ EcoR I-Sph I fragments from chromosomal DNA were each subcloned into pUC18, designated pNUF2 and pNUF3 (Fig. 1), respectively, and sequenced. And also, a $1.7-\mathrm{kb}$ Acc 1 fragment hybridized with an oligonucleotide probe designed from the nucleotide sequence of the EcoR I-

1 kb
Fig. 1. Restriction and genetic map of the E. tarda KG8401 chromosome DNA surrounding effA. Boxes and arrows indicate the open reading frames and the direction of transcription, respectively. The positions of the DNA fragments cloned in 5 recombinant plasmid DNA derivatives (pNUF1, pNUF2, pNUF3, pNUF4 and pNUF5) are given at the bottom of the figure. Triangles indicate the site of the oligonucleotide probes.

Sph 1 fragment was cloned into pUC18, designated pNUF4 (Fig. 1). The nucleotide sequence of a 8,627 bp DNA region consisted of these overlapping fragments was determined (Fig. 2). This region contained 4 open reading frames, designated etfABCD, and a complete open reading frame, designated orf1, and a partial open reading frame, designated orf2, were found at the sides of the etf genes (Figs. 1 and 2). Start and stop codons of the etf genes were separated by only a few base pairs. Furthermore, putative ribosome binding sites (Shine and Dalgarno, 1975) were identified at the upstream regions of each gene from etfA to etfD (Fig. 2). And also, putative promoter sequences located at the upstream regions of etfA and orf2 (Fig. 2). It is suggested that the etf genes constitute an operon. The positions of etfABCD and sizes of the predicted polypeptides are shown in Table 1 and Fig. 1. All predicted polypeptides were found to contain acceptable signal sequences.

Homology of EtfABCD to other fimbrial proteins

The deduced amino acid sequences of all 4 etf genes showed homology to proteins from various bacterial fimbrial systems. EttABCD revealed homology with type 1 fimbrial major subunit (FimA) of S. marcescens (68.9% identity; E value, 4.7e-42) (Nichols et al., 1990), a putative long polar fimbrial chaperone protein (LpfB) of E. coli (38.4% identity; E value, $2.7 \mathrm{e}-26$), F1C fimbrial usher protein (FocD) of E. coli (39.2% identity; E value, 3.3e-99) (Welch et al., 2002) and a fimbrial protein of E. coli (26.3\% identity; E value, 2.5) (Hayashi et al., 2001), respectively. The deduced amino acid sequences of Orf1 and Orf2 revealed homology with inosine kinase of Yersinia pestis (85.7% identity; E value, $1.5 \mathrm{e}-155$) (Parkhill et al., 2001) and UDP-sugar hydrolase of Photorhabdus luminescens subsp. laumondii (72.4\% identity; E value, 2.7e-135) (Duchaud et al., 2003),
respectively. And also, the domains of fimbrial proteins participating in the formation of fimbriae were shown in the deduced amino acid sequences of mature EtfABCD on the CD-search (Table 2). It is suggested that EtfA, EtfB, EtfC and EtfD function as a fimbrial major subunit, fimbrial chaperone, fimbrial usher and fimbrial subunit, respectively. It is known that long polar fimbriae and F1C fimbriae of E. coli are synthesized by chaperoneusher fimbrial biosynthesis system (Soto and Hultgren, 1999). Fimbriae of E. tarda may consist of fimbrial subunits, EtfA and EtfD, mediated by fimbrial chaperone, EtfB, and fimbrial usher, EtfC.

Electron microscopic observation and hemagglutination

 of E. coli harbored the etf fimbrial operonImmunogold-labeling electron microscopy revealed that gold particles attached to the fimbrial structure of E. coli JM109 harbored plasmid DNA containing the etf operon (pNUF5) (Fig. 3A). On the contrary, no gold particles were observed on the fimbrial structure of E. coli JM109 lacking pNUF5 (Fig. 3B).
E. coli JM109 harbored pNUF5 acquired hemagglutinating activity, which was not inhibited by D-mannose but was strongly inhibited by fetuin like E. tarda KG8401 (Table 3). It is suggested that fimbriae encoded in the etf gene cluster participate in the mannose-resistant hemagglutination of E. tarda.

Adherence of pathogenic bacteria to host is considered to be the first step in infection. Although adherence of E. tarda on the gill and body surface has been observed in experimentally infected fish (Ling et al., 2001), the factors associated with the adherence were not identified. For many pathogenic bacteria, it has been shown that adherence to host is mediated by fimbriae possessing hemagglutinating activity (Beachey, 1981). In this study, we identified an etf gene cluster associated with the formation of fimbriae expressing

1 CTGCAGCAGCTGGTCGCGGTACCCGCCGCGTAGGATGCCCGCTGACGCGGCCGGGGGGAGTGTGCIATHCTAGCCCGCTCCCTMTTCIHITGCCGATAACACAGATGA
GATGAAATTCCCCGGT
$\left.\begin{array}{lllll}M & K & F & P & G\end{array}\right)$
120
121 CAACGCAAGTCCAAACACTATITCCCGGTTAATGCCCGCGATCCGCTGCTGCAAAAGACGCAGCATAATGAAATTGATAAAGCCTACGTCGTGGGTATCGATCAGACGCTGGTGGATATT 240

 361 ACCCATGAGTITGCCGGGGGCACGATCGGCAATACCCTGCACAACTACTCCGTGCTGGCCGACGATCGCTCGGTTCTGCTGGGGGTGATGTGCGAAAACGTCAAAATCGGCAGCTATGCC

481 TACCGCTATCTGTGTAACACCTCAAGCCGCACCGATCTGGACCATTTGCAGGGCGTCGATGGCCCTATCGGGCGCTGTTTACCCTGATCACCGATAACGGCGAACGCACCTTTGCCATT

601 AGCCCGGGCATGATGAACCAGCTGCGCCCGGAAAGCATTCCCGAGGCGGTGATCGCCGGTGCCTCGGCGCTGGTGCTGACGGCCTATCTGGTGCGCTGTAAGCCGGGCGAGCCGATGCGC

721 GATGCGACCATGCAGGCGATCGCCTATGCCAAAAAGCACCACGTTCCGGTGGTGCTGACCCTGGGCACCAAGTATGTGATCGCCGACGATCCGCAGITCTGGCGCGATITCCTGCGCGAT 840

841 CACGTCACCATTGTGGCGATGAACGAAGAAGAGGCTCAGGAGCTGACCGGGCTGTCCGATCCGCIGGCGGCCTCGGACAGGGCGCTGGAGTGGGTGATCTGGTGCTGTGCACCGCCGGG
 961 CCGGTCGGCCTGTATATGGCGGGCTATACCGAAGATGACGGCAAGCGCAAAACCCAGCATCCGCTGCTGCGGGGGTGATCCCTGAGTCAACCTGTACGAGTTTAGCCGGGCGATGCGT 108O

1081 CGCGCCATGTGCGACGCGCCGTGCCGGATCTACTCGCATATTGCGCCCTATATGGGGGGCCCGGAGAAGATCATGAACACCAACGGCGCCGGAGATGGCGCGCTCTCTGCGCIGCTGCAT I200
 1201 GATATCGCGGCCAATGAGTTTCACCGTACCAATGTGCCTAACTCCAGTAAGCATGAGCGTAGCTATCTGACTTACTCCTCCCTGGCGCAGGTGTGCAAATATGCTAACCGCGTCAGCTAT I320

1441 CTTACGGAGATACGCCGGCGCAGCGCCGGCGTTTTCTTTTCTCGCGCTCGGCGTTATCTGCGCGGAGTCGGTGGCTAAAGAGGGCGAAAAGGCTAGAAACGATCICATTTCCCCTAAGCG 1560
1561 GAATACCCCTTTTCACTTTCCGCAACCATGATCAAAGAGCAATTITCTTGATTATTGGTAATGTCATACAAATAAAAAATATGATGTAAAACAATGAATTGATTICITHITTGCAITIGA IG8O 1681 TCAAAATCTATTAAATTTAACTATCTTTAAAATTAATCAATTATTTGTTTTTTATCAGTHTTATTGATITTACTGTHTCTCGTCGGACAATTAATCTITGCGCAAGTTTTTACATTAATA 1800 1801 AAATAAATATCCTTGCTGTAATATCAGTGAGTGGATATATGCCCTGACAATATATTCAATATTGCGATICGCATTGCGCCATATTAATAGCGCAGTGCCAATITITGCTATITTAAATAA I920 1921 ATCCTTTACCTCGATTGGATTHATGTATTTCGGCATAAATCCATCATTMTATGCGCTGTCGGGATAAAGATMTHTCTCGTCGGCTCTCTACGCGAAATATRATCGCAGCCTCGTTCOGC 2040 2041 GCCAACCTAGCGGTCGGATATITTTAATTGATAAACGGAGTTATGATAATGA

2161 GGTAAAGTTGAGTTTACGGGTGAAATCGTTAACTCCACCTGCCAGGTAAGCAGCGACTCTCAAAATATCAACGTGTATITGGGTAAATATCCGACCTCTGCATITAAAGCGGTTGGCGAT 22BO

2281 AAGTCCGCATCCAAGGCTTTCCAGATCAACCTGGAGCAGTGTGAGCCGGGGAGCTACACCGTACGITTCGATGGCAATACCGTTGCCGGTCATCCTGACCIGCTGGCCGTCTCCAGCAGC 24OO

2401 GGTGCCACCGCGGCGGCGAAAGGCGTGGGTATCGAAATMACGGACGTYAACGGCAAGCCGTTCCCGATCGCCGATCAGAGCCAGGGCGATGTGCCCACGGTGACGGTTGTTAGCGATAAG 2520

2521 AAGGCGATATTTAACCTGCAGGCGCGCTATCGCTCTTACGCCAACACGGTTACAGCCGGTCTGGCCAACGCGACCAGCCCGTTCACCATCGAATATAAATAAITATTCGTCGGAATATTC 2640

2641 GGCCAGGGACGGTCCGTATAGAGGAATAAGATGAAAAGAATCGTTGCCGCATTATTACTGGTGAGCGCATITGCTGCCCACGCAGGAATICAGGTIGATGCTACGCGCGITATITATAAC 2760

2761 GGCGATGAAAAGTCAGCGTCACTGCCTATCCACAATGACAGCGCGGATGCCTATATGGTGCAGACCTGGCTGGATAAAGGGGATAGCACCAAGGTAGAGAATAAGITACCGATGGITGTG 288O
 2881 GTGCCGCCGATIGITAAGCTGGATGCGCAAAAATCGGCAATHTACGCITCATCTATHCTGGGCAGGGITITCCGCAGGATCAGGAAACGCTGCTGTGGGTCAACGTGCAGGAATTCCG 3000
 3001 CCGACGCCCAAGCAAGAAAACGTATTACAGGTTGCCGTGCGCACGCGGATTAAGCTGTTTTATCGCCCGAGTTCGCTGCATACCACCCTGGATGAGCAGGTGCATAAGCTGCGCTGGCAG 3120

 $3361 \overline{A G A G A A G C G G G A T G G C G C A A C A A C A A C G G A C A G T A T C A C T G A A G A C A G A G C C G A C A C G C T G G A T G T G C C T G G C G T T T G C C G C C G G T A G C C T G T C C C T G G G G T G C A G C G C A T C G G C C T G G G ~} 3480$

3601 AGGTCGACAACAAAGTCATCCGCTTCACGGCGAAAGAGGGCGCCGCCGCCCAGCCCTGTCTGACGGTGGAAGATCTGCITAACTATGGGGTGAAACTGCCCGATACGCICACGCCGGGCA 3720
 3721 GCIGCGTCGACGTGGCCGCCGCCGTCAATGGCGCGACGCTCTCCTTCGATCCGGCGGTGCAGCAGATAGACCITTCTGTGCCGCAGGTCATGCTGGCGCAGCACGCGCGCGGCGCCATTC 384O

3841 CGACGACCCTGTACGATCAGGGGATCAACGCCGCCTTTAGCAACTACAGCCTGAACTATAACCGTAACAGCAGCCAGCGCCAGAGCGGCCAAAACAGCGAATATACCTTTCTCTCCCTGA 3960

3961 ATAACGGTCTTAACCTGTGGAACTGGCGTCTGCGCAATAACATGACCATGAATAAAGTCAGCGGTCAGGCGGCACAGTGGGACAATATCGCGACCIGGGCGGAGACGGATATTGCGTCCT 4080

4081 GGCGCAGTCGACTGCAGCTGGGGCAGGCCAGCACCAATAATACCGTTTTTAATAGCATTCAGTTTCGCGGTGCCCAGCTTTCCAGCGTGGATGACATGCTGCCCGAAAGCCTGCGCGGCT 42OO

4201 ATGCGCCGGTGGTGCGCGGCGTCGCCGCCACCAACGCCCGCGTCGACATTCGTCAGAACGGCTACGTGGTGTACAGCACCAACGTGGCGCCGGGGCCCITITGAGATCCGCGATATCTATC 4320

4321 CGCACTCCAACAGCGGTGACCTGCAGGTAACGGTCAATGAGGCCGATGGTACGCGTAAGCACTTTACCGTTTCTTACTCCTCTATCGCCAACATGCTGCGCGAAGGGATCTGGAACTATC 4440

4442 AGCTGACGGCGGGTCGCTACCAGAACGGCGATACCCGCTATACCCCTAACFFATGCAGGGGACGCTGGCGCGCGGCATCGCCFATGGTCTGACGCCCTATGGCGGGCTGATCGTGGCGG 4560

4561 ATAACTACCGCGCCGCCGCGCTGGGCGTCGCTAAAAATATGGGGGATGGGGCGCCATCTCCATCGATGGTTCCTATFCCGATACTACGCTGGCCAACGGCGAGCGCGCCCGCGGGCAGA 4 G8O

4681 GCTACCGCTTTCTCTATTCCAAGTCCCTGAACCAGATGGGCACCAACGTGCAGCTGGCAGGCTATCGCTATGCGACGTCGGGCTATTATGACITTGCCGATGCGGTCGAGGAGCGCAGCC 4800

4801 GCTGGCGGCAGGGGATATATGAGAACAACTACTATAATCCGGGCGATGAGCAGACCGGGATCCCCGATCTGGACGATCGCAACCAGCACCGCGIGTATACCTCGCGCTATGCCAACAAGC 4920

4921 GCGAGCGCGTGGATGTCTCCATTAACCAGCAGCTGTGGCAGGGGCGACGCTGTATGCCAACGTCAGTAGCCAGAGCTACTGGGGCGGCGGTGGTCGGGATCGTACCGTCCAGCTGGGCT 5040

5041 ACAACGACGCCTITRAGCGCATTAGCTATGGCGTATACCTGCAGGATACGCGCAGCCAGTATGGCTACGCCGATCGCAGCATCAACCTGTCGGTGTCGATTCCGITGAACTGGGGACGCG 5160
 5161 AAAACCACTCGGCCTCGCTGAACGTCAGCGGAACCCACAGCCGCCAGAGCGGAGATAGCTATAACACCGGTATCAGCGGAACGGCGCTGAGCGATCAGCGGCTGAGCTACGCCCTGAGCA 5280
 5281 CCGGCCATACCGAGTCGGCGGGACAGAGCAGCGCGCTGAACCTGGGCTACCGCGGCGCCTATGGCAACCTGGACAGCAGCTATAGCTACAGCAACAGCTATAACCAGCTGGGGCTGGGGC 54O0
 5401 TCTCCGGCGGCGTCTTGCTTCACTCTGGCGGCGTGACGCTGTCGCAGCCGCTGCAGAATACGGTGATTCTGGTCGAAGCGAAGCACGCCAGCGGCGTTCGCCTGGATAACCAGACCGGCG 5520
 5521 TGGCCATCGATCCCTITGGCTATGCGGTCGTCCCCTCAGCGACGCCATACCGATTCAACGCGGTGGCGCTGCATACGCAGGACTMTGAGCCGGGCCTGGACGTGCCGGTGGCCAGCAAGC 5640

 5761 TTAACCCGCAGGGGCGTAACAGCGGAACCGTGGGGCTPAACGGCGATCTGTATGTATCCGGGGCACAGCCGGGCGAGACGCTGACCCTGCGCTGGGGCAACCAGCCGGGCCAGCAGTGCA 5880

5881 CGCTGACGCTGCCGTCCGATCTGTCGATGCGGAACACCACGGCCGGCTACCAGGAACTCACTCTACCCTGTGAGACTCAATAAGGTGACGGATIAATGAAAAGCCTAAGTATAAAACAGG 6000

6001 CGCTGGCATTCACGCTGCTACTGCTGCTGGGCCTMTGCGTCAGCCGCCAGGCGTCCGCGCTCTCCTGCCGAGAGGGCAGTAATGCAGGGAGCTGGTCGCCCATCGGGAGTATTTATCAGC 6120

6121 GCATCGATATCGGGCGGCCGATTATCCTGTCCGCCGCCGACTMTACCGCCGGTAACCPGATTGGCGTTCGCAGAACITTACCACCACCTITACCTGITGGGATAACTGGAATACTGGAA G24O

6241 GGGGAGAGCACGCCTACAIFTACTGGAACCCGAAGGATGCGTTCGGGAGCCTGCACCGTTCGCTGTCGGTTGGGGTTTCGATCAACGGGATCGACTATGATGCGATTAACCTCAGACAGA 6360

6361 GCGGCAGCCGGCCCAGTGGCCCCGATCTGGGTGAGGGGACCTCAAACAGCGGCGGCGGCGTCGCCAGACCGCGTACGGTCACCGTCAGCTATPCGGTGTACATCAAGGCCACCGGCATCA 6480

6481 CGCCGCCGGCGGGTAACTTCCCGGCGCIGGGGCTGCCGTCGCTGTHTCAAATTGACGGCGTGGGCGGCTTGGACGCGCGCCCCAACGGCAACITTAACGCCTATATCTCCGGGCTGGATA 6GOQ

6602 AGATCCAGGTGATCCACTGCAACCCGCAGATCAGCGTGCTGGCGAATAACGGCAACAGTATCGACTTTGGTACGCTGAGCGCCGCCGGCGCGCGTCCGGGGGTTATCGCTCGCCAGATAC 6720

6721 CGTTCAGCATCAAGGCGACGCTGCGCGGCGGCGAGTGGGGCGGGCAGCAGCTACAGGCCAGCTTCAGCACCCTGAGGCCGGACGTCAGCGATCGATCGCTGATCCTGCCGGATACCAACC 6840

6841 CCGGCGTGGGGATTTTCCTGACGAAGGCGGGCGATACCAGCGCTACGCCGATCCCGCTGCAGACCAATGTCGACTTCGGCGGTCGGCTGCAGGATAAGCAGAATGAGGTGAGCGAGAACT 6960

 7081 CGGGTCACCTCCGCGGCGGCITTTTGGCCGTCGCCCGCCCGATCCTCTCCCCGITTTAGCATGCGCTGCATGTAACTCTAGAGTCTTTAATGCATTGTTAGGTGAGTCACGTCACAATAA 7200 7201 ATGGCTGATTTACAACATAATCACCGCCTGATTCAGGGTAAGATAAGGGCGTTCGCCGCCGTGCCTCCCCCGTGGCTGACATGAGCGGCGCGTTATIGTGACAAGGAGAGAGGGCAATG ATGA 7320 - M

7321 AATFTACCTATCGGGGTGCCGCCTGCGCGATCGCGCTAACGCTGGCGCTGACGCCAGGCTGGTCGCTGGCCTGGGAAAAAGATAAAACCTATAACCTGACCATTCTGCATACCAACGATC 7440

7441 ACCACGGCCACTTCTGGCAGAGCGAGCAGGGCGAATATGGCCTGGCTGCCCAGAAAACGCTGGTGGATCGCCTGCGCGCCGAGATTGCCGCCGAGGGCGGCAGCGTGCTGCTGCTGTCGG 7560

7561 GCGGCGATATCAATACCGGGGTGCCGGAGTCCGATCTGCAGGATGCCGAGCCCGATHITCGCGGCATGAACCTGGTGGGCTACGATGCGATGGCCATCGGCAACCACGAGTICGACAATC 7680

7681 CGCTGAGCGTGCTGCGCCAGCAGCAGAAGTGGGCCGATITCCCGCTGCTGTCGGCCAATATCTATGCGCAGGATAGCGGCAAGCGCCTGTTCCAACCITATCAGATGLTCGATCGCCAGG 7800

7801 GGATCCGCATTGCGGTGATCGGCCTGACCACCGACGATACGGCCAAGATAGGCAACCCTGAATACCTGAAGAACATCGAGTTCCGCCCCCCGGCGGCGGAGGCCAAGGGCGTGGTCGAAC 7920

7921 AGCTGCGGGCCAACGAGAAGCGTGATGTGGTGATCGCCGCGACGCACATGGGTCACTACGACAACGGCGAGCACGGCTCCAACGCCCCGGGCGATGTTGAGATGGCGCGCGCGCTGCCGG 8040

8041 CGGGCTACCTCGATATGATCGTTGGCGGTCACTCGCAGGATCCGGIGIGCATGGCACAGGAAAACCGIAAGCAGGCGAACTATGTCCCCGGTACGCCCTGCGCGCCGGATCGCCAGAATG B1GO
 8161 GGACCTGGATTGTACAGGCCCATGAGTGGGGGAAATATGTCGGGCGGGCCGACTICACCTTCCGTAACGGGGAGCTGACCCTGCAGCGCTACCAGCTGATCCCGGTGAACCTCAATCGGC 828O

8281 AGGAGAAGCAGGCCGACGGTTCGAAGACGCGGATCTACTATACCGAGGCGATCCCGCAGGATACGGCGATGCTGAAGCTGCTGACGCCGTTCCAGGATCAGGGGCAGGCCGCGCTGGGGG 8400

8401 TGAAGATCGGCAGCGTAGAGGGGCGTCTGGAGGGGGATCGCAGCAAGGTTCGCTHTGAGCAGACCAACATGGGGCGCCTGCTGCTGGCGGCGCAGATGGAGCGAACCCATGCCGACCTGG 8520
 8521 GCGTGATGAGCGGCGGCGGCGTGCGTGACTCGATGGACAGCGGCGATATCAGCTATAAGGATGTGCTTAAGGTGCAGCCGTTCGGCAATACCGTCGCCTATGTCGAC

Fig. 2. Nucleotide sequence of the 8,627 -bp DNA fragment encoding etf genes. The numbers on the sides indicate the positions of the first and the last nucleotide in each line. The deduced amino acid sequence is shown below the nucleotide sequence. Stop codon is indicated by asterisk. The Shine-Dalgarno motifs (SD) (Shine and Dalgarno, 1975) and -35 and -10 promoter motifs are overscored. A putative signal peptide is dotted line. The DDBJ accession number is AB100170.

Table 1. Size and positions of genes and gene products of the eff operon

ORF	Position (bp)*	Length of polypeptide (amino acids)	Signal sequence (amino acids)	Calculated mass of mature protein
etfA	$2089-2622$	177	$1-22$	16,246
etfB	$2671-3357$	228	$1-18$	23,162
etfC	$3372-5963$	863	$1-35$	90,336
etfD	$5976-7046$	356	$1-26$	35,045

* Position in the nucleotide sequence shown in Fig. 1.

Table 2. Protein domain conserved in the deduced amino acid sequences of EtfABCD

Protein	Position (amino acids)	Domain name $\left(\right.$ CDD * accession no.)	Function	E-value
	$17-169$	Fimbrial (981)	Fimbrial protein	$4 \mathrm{e}-30$
EtfB	$19-221$	FimC (12460)	P pilus assembly protein	$7 \mathrm{e}-47$
EtfC	$38-841$	Usher (16770) Fimbrial (981)	Fimbrial usher protein	$2 \mathrm{e}-172$
EtfD	$228-356$	Fimbrial protein	0.43	

* Conserved domain database served by NCBI.

Fig. 3. Immunogold electron micrographs showing E. coli (pNUF5) (A) and E. coli JM109 (B). Bars; 100 nm .
mannose-resistant hemagglutination. Futher studies are needed to determine the roles of fimbriae in disease occurrence and the bacterial invasion process in piscine edwardsiellosis.

Table 3. Hemagglutinating activity of E. coli harbored recombinant plasmid, pNUF5, and E. tarda KG8401

Bacteria	Hemagglutination titer $\left(\mathrm{log}_{2}\right)$		of cells with

* NT; not tested.

References

Ainsworth, A. J. and D. X. Chen (1990): Differences in the phagocytosis of four bacteria by channel catfish neutrophils. Dev. Comp. Immunol., 14, 201-209.
Bäumler, A. J. and F. Heffron (1995): Identification and sequence analysis of $I p f A B C D E$, a putative fimbrial operon of Salmonella typhimurium. J. Bacteriol., 177, 2087-2097.
Beachey, E. H. (1981): Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J. Infect. Dis., 143, 325-345.
Boyd, E. F. and D. L. Hartl (1998): Diversifying selection governs sequence polymorphism in the major adhesin proteins FimA, PapA, and SfaA of Escherichia coli. J. Mol. Evol., 47, 258-267.
Chen, J. D., S. Y. Lai and S. L. Huang (1996): Molecular cloning, characterization and sequencing of the hemolysin gene from Edwardsiella tarda. Arch. Microbiol., 165, 9-17.
Duchaud, E., C. Rusniok, L. Frangeul, C. Buchrieser, S. Taourit, S. Bocs, C. Boursaux-Eude, M. Chandler, J. F. Charles, E. Dassa, R. Derose, S. Derzelle, G. Freyssinet, S. Gaudriault, C. Medigue, A. Lanois, K. Powell, P. Siguier, R. Vincent, V. Wingate, M. Zouine, P. Glaser, N. Boemare, A. Danchin and F. Kunst (2003): Complete genome sequence of the entomapathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol., 21, 1307-1313.

Goldstein, E. J. C., E. O. Agyare, A. E. Vagvolgyi and M. Halpern (1981): Aerobic bacterial oral flora of garter snakes: development of normal flora and pathogenic potential for snakes and humans. J. Clin. Microbiol., 13, 954-956.
Gong, M. and L. Makowski (1992): Helical structure of P pili from Escherichia coli. Evidence from X-ray fiber diffraction and scanning transmission electron microscopy. J. Mol. Biol., 228, 735-742.
Hayashi, T., K. Makino, M. Ohnishi, K. Kurokawa, K. Ishii, K. Yokoyama, C. G. Han, E. Ohtsubo, K. Nakayama, T. Murata, M. Tanaka, T. Tobe, T. Iida, H. Takami, T. Honda, C. Sasakawa, N. Ogasawara, T. Yasunaga, S. Kuhara, T. Shiba, M. Hattori and H. Shinagawa (2001): Complete genome sequence of enterohemorrhagic Escherichia coll O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res., 8, 11-22.
Hirono, I., N. Tange and T. Aoki (1997): Iron-regulated hemolysin gene from Edwardsiella tarda. Mol. Microbiol., 24, 851-856.
Hoepelman, A. I. M. and E. I. Tuomanen (1992): Consequences of microbial attachment: directing host cell functions with adhesins. Infect. Immun., 60, 1729-1773.
Igarashi, A., T. lida and J. H. Crosa (2002): Iron-acquisition ability of Edwardsiella tarda with involvement in its virulence. Fish pathol., 37, 53-57.
lida, T. and H. Wakabayashi (1993): Resistance of Edwardsiella tarda to opsonophagocytosis of eel neutrophils. Fish pathol., 28, 191-192.
Janda, J. M. and S. L. Abbott (1993): Expression of an ironregulated hemolysin by Edwardsiella tarda. FEMS Microbiol. Lett., 111, 275-280.
Janda, J. M., S. L. Abbott, S. Kroske-Bystrom, W. K. W. Cheung, C. Powers and R. P. Kokka (1991): Pathogenic properties of Edwardsiella species. J. Clin. Microbiol., 29, 1997-2001.
Jones, C. H., J. S. Pinkner, R. Roth, J. Heuser, A. V. Nicholes and S. N. Abraham (1995): FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. USA, 92, 2081-2085.
Kuehn, M. J., J. Heuser, S. Normark and S. J. Hultgren (1992): P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature, 356, 252-255.
Kusuda, R. and F. Salati (1993): Major bacterial diseases affecting mariculture in Japan. Ann. Rev. Fish Dis., 3, 69-85.
Lindberg, F., B. Lund, L. Johansson and S. Normark (1987): Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature, 328, 84-87.
Ling, S. H. M., X. H. Wang, L. Xie, T. M. Lim and K. Y. Leung (2000): Use of green flourescent protein (GFP) to study the invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models. Microbiology, 146, 7-19.
Ling, S. H. M., X. H. Wang, T. M. Lim and K. Y. Leung (2001): Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol. Lett., 194, 239-243.
Miyazaki, T. and N. Kaige (1985): Comparative histopathology of edwardsiellosis in fishes. Fish Pathol., 20, 219-227.
Nakatsugawa, T. (1983): Edwardsiella tarda isolated from cultured young flounder. Fish Pathol., 18, 99-101. (in Japanese)
Nichols, W. A., S. Clegg and M. R. Brown (1990): Characterization of the type 1 fimbrial subunit gene (fimA) of Serratia marcescens. Mol. Microbiol., 4, 2119-2126.
Nowotarska, M. and M. Mulczyk (1977): Fimbriae and haemagglutinating properties in Edwardsiella and Levinea. Acta

Microbiol. Pol., 26, 249-253.
Owens, D. R., S. L. Nelson and J. B. Addison (1974): Isolation of Edwardsiella tarda from swine. Appl. Microbiol., 27, 703-705.
Parkhill, J., B. W. Wren, N. R. Thomson, R. W. Titball, M. T. Holden, M. B. Prentice, M. Sebaihia, K. D. James, C. Churcher, K. L. Mungall, S. Baker, D. Basham, S. D. Bentley, K. Brooks, A. M. Cerdeno-Tarraga, T. Chillingworth, A. Cronin, R. M. Davies, P. Davis, G. Dougan, T. Feltwell, N. Hamlin, S. Holroyd, K. Jagels, A. V. Karlyshev, S. Leather, S. Moule, P. C. Oyston, M. Quail, K. Rutherford, M. Simmonds, J. Skelton, K. Stevens, S. Whitehead and B. G. Barrell (2001): Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 413, 523-527.
Perna, N. T., G. Plunkett III, V. Burland, B. Mau, J. D. Glasner, D. J. Rose, G. F. Mayhew, P. S. Evans, J. Gregor, H. A. Kirkpatrick, G. Posfai, J. Hackett, S. Klink, A. Boutin, Y. Shao, L. Miller, E. J. Grotbeck, N. W. Davis, A. Lim, E. T. Dimalanta, K. D. Potamousis, J. Apodaca, T. S. Anantharaman, J. Lin, G. Yen, D. C. Schwartz, R. A. Welch and F. R. Blattner (2001): Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature, 409, 529-533.
Rashid, M. M., T. Nakai, K. Muroga and T. Miyazaki (1997): Pathogenesis of experimental edwardsiellosis in Japanese flounder Paralichthys olivaceus. Fish. Sci., 63, 384-387.
Sakai, T., K. Kanai, K. Osatomi and K. Yoshikoshi (2003): Identification of a $19.3-\mathrm{kDa}$ protein in MRHA-positive Edwardsiella tarda: putative fimbrial major subunit. FEMS Microbiol. Lett., 226, 127-133.
Sambrook, J., E. F. Fritsch and T. Maniatis (1989): Molecular cloning. A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Shine, J. and L. Dalgarno (1975): Determinant of cistron specificity in bacteria! ribosomes. Nature, 254, 34-38.
Soto, G. E. and S. J. Hultgren (1999): Bacterial adhesins: common themes and variations in architecture and assembly. J. Bacteriol., 181, 1059-1071.

Strauss, E. J., N. Ghori and S. Falkow (1997): An Edwardsiella tarda strain containing a mutation in a gene with homology to $s h / B$ and $h p m B$ is defective for entry into epithelial cells in culture. Infect. Immun., 65, 3924-3932.
Suprapto, H., T. Hara, T. Nakai and K. Muroga (1996): Purification of a lethal toxin of Edwardsiella tarda. Fish Pathol., 31, 203-207.
Ullah, M. A. and T. Arai (1983): Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathol., 18, 65-70.
Van Damme, L. R. and J. Vandepitte (1980): Frequent isolation of Edwardsiella tarda and Plesiomonas shigelloides from healthy Zairese freshwater fish: a possible source of sporadic diarrhea in the tropics. Appl. Environ. Microbiol., 39, 475-479.
Wakabayashi, H. and S. Egusa (1973): Edwardsiella tarda (Paracolobactrum anguillimortiferum) associated with pond-cultured eel disease. Bull. Jpn. Soc. Sci. Fish., 39, 931-936.
Welch, R. A., V. Burland, G. Plunkett III, P. Redford, P. Roesch, D. Rasko, E. L. Buckles, S. R. Liou, A. Boutin, J. Hackett, D. Stroud, G. F. Mayhew, D. J. Rose, S. Zhou, D. C. Schwartz, N. T. Perna, H. L. Mobley, M. S. Donnenberg and F. R. Blattner (2002): Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA, 99, 17020-17024.
White, F. H., C. F. Simpson and L. E. Williams (1973): Isolation of Edwardsiella tarda from aquatic animal species and surface water in Florida. J. Wildl. Dis., 9, 204-208.

[^0]: ＊Corresponding author
 E－mail：kanai＠net．nagasaki－u．ac．jp

