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Abstract – Regioselective introduction of various electrophiles (aldehydes, 

ketones, and imines) into piperidine skeleton at the 4-position was achieved with 

a catalytic amount of Pd(OAc)2/PPh3 in the presence of excess Et2Zn. In addition, 

enantioselective introduction of benzaldehyde into piperidine derivatives was 

accomplished by using chiral phosphine ligand with moderate enantioselectivity. 

Piperidines possessing substituents at the 4-position are useful synthetic intermediates for a variety of 

natural products and drug candidates.1 Accordingly, it is worthwhile to develop convenient methods for 

introduction of substituents at the 4-position of piperidine skeleton. Although some methods for the 

nucleophilic substitution are known,2 the electrophilic substitution has not been reported to date. We wish 

to report herein regioselective introduction of various electrophiles (aldehydes, ketones, and imines) into 

piperidine derivatives at the 4-position. Our strategy for generation of nucleophilic species from 

piperidine derivatives is shown in Scheme 1. First, electrochemical preparation of 

N-protected 2,3-didehydro-4-acetoxypiperidine 2, followed by generation of π-allyl palladium 3 from 2 

by Pd(OAc)2/PPh3 and then, successive umpolung of 3 mediated by Et2Zn.3 
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Compounds 2 were prepared as follows (Eq. 1). Electrochemical oxidation of N-protected piperidines 1 

afforded 2-methoxypiperidines 5. Subsequent removal of methanol from 5, followed by 

bromomethoxylation and dehydrobromination gave N-protected 2-methoxy-3,4-didehydropiperidines 6,4 

which were treated with AcOH to afford compounds 2 quantitatively. 
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With N-benzoyl-2,3-didehydro-4-acetoxypiperidine (2a)5 in hand, we first examined the reaction of 2a 

with benzaldehyde using a catalytic amount of Pd(OAc)2/PPh3 in the presence of excess Et2Zn in toluene 

(Eq. 2).6 The reaction proceeded smoothly within 2 h to afford 4-substituted piperidine 4a as a major 

product in 81% and 2-substituted 7a as a minor product in 11% yields.  
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In order to improve the regioselectivity, we screened a variety of N-protecting groups of 2 shown in Table 

1 (Eq. 3). p-Chlorobenzoylated piperidine 2b or p-trifluoromethylbenzoylated 2c mainly afforded 

4-substituted piperidine 4b or 4c along with some amount of 2-substituted 7b or 7c, respectively (entries 

1 and 2). However the reaction of p-nitrobenzoylated one (2d) with benzaldehyde did not proceed at all 

(entry 3). On the other hand, compound 2e protected with p-methoxybenzoyl group gave exclusively 

4-substituted piperidine 4e in excellent yield (entry 4), and 2f protected with methoxycarbonyl group also 

gave 4-substituted 4f in moderate yield (entry 5).  
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Next, the electrophilic substitution of 2e with various electrophiles was examined (Eq. 4). These results 

are summarized in Table 2. Some aromatic (entries 1-3) and aliphatic aldehydes (entry 4) gave the 

corresponding coupling products 8e-11e in good yields. Styrene oxide, which was transformed into 

phenylacetaldehyde under the reaction conditions, afforded 12e in 80% yield (entry 5). Moreover, acyclic 

(entries 6-8) and cyclic ketones (entry 9) gave 4-substituted products 13e-16e in good to high yields, 

while benzylideneaniline gave amine 17e in high yield (entry 10). 
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The reaction of pipecolinic acid derivative 18 with acetone proceeded regio- and stereo-selectively to 

afford cis-2,4-disubstituted product 19 in high yield (Eq. 5).7 The relative stereoconfiguration of 19 was 

deduced by NOE correlation.8 
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Chiral phosphine ligand A9 was used to introduce chirality in product 4e.10 Use of toluene as a solvent 

gave diastereomer mixture of 4e in low enantioselectivities, while CH2Cl2 led to moderate improvement 

in enantioselectivities of 4e (Eq. 6).12  
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In summary, efficient regioselective introduction of various electrophiles into piperidine skeleton at the 

4-position was achieved with a catalytic amount of Pd(OAc)2/PPh3 in the presence of excess Et2Zn. In 

addition, enantioselective introduction of benzaldehyde into 2e at the 4-position was accomplished by use 

of chiral phosphine ligand A with moderate enantioselectivity. Further improvement of diastereo- and 

enantio-selectivity is underway. 
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