REGIOSELECTIVE INTRODUCTION OF ELECTROPHILES INTO PIPERIDINE DERIVATIVES AT THE 4-POSITION ${ }^{\dagger}$

Osamu Onomura,* Noriyuki Fujimura, Takahisa Oda, Yoshihiro Matsumura, and Yosuke Demizu

Department of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

Abstract

Regioselective introduction of various electrophiles (aldehydes, ketones, and imines) into piperidine skeleton at the 4-position was achieved with a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ in the presence of excess $\mathrm{Et}_{2} \mathrm{Zn}$. In addition, enantioselective introduction of benzaldehyde into piperidine derivatives was accomplished by using chiral phosphine ligand with moderate enantioselectivity.

Piperidines possessing substituents at the 4-position are useful synthetic intermediates for a variety of natural products and drug candidates. ${ }^{1}$ Accordingly, it is worthwhile to develop convenient methods for introduction of substituents at the 4-position of piperidine skeleton. Although some methods for the nucleophilic substitution are known, ${ }^{2}$ the electrophilic substitution has not been reported to date. We wish to report herein regioselective introduction of various electrophiles (aldehydes, ketones, and imines) into piperidine derivatives at the 4-position. Our strategy for generation of nucleophilic species from piperidine derivatives is shown in Scheme 1. First, electrochemical preparation of N-protected 2,3-didehydro-4-acetoxypiperidine 2, followed by generation of π-allyl palladium 3 from 2 by $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ and then, successive umpolung of $\mathbf{3}$ mediated by $\mathrm{Et}_{2} \mathrm{Zn} .{ }^{3}$

Scheme 1

Compounds 2 were prepared as follows (Eq. 1). Electrochemical oxidation of N-protected piperidines 1 afforded 2-methoxypiperidines 5. Subsequent removal of methanol from 5, followed by bromomethoxylation and dehydrobromination gave N-protected 2-methoxy-3,4-didehydropiperidines 6, ${ }^{4}$ which were treated with AcOH to afford compounds 2 quantitatively.

With N-benzoyl-2,3-didehydro-4-acetoxypiperidine (2a) ${ }^{5}$ in hand, we first examined the reaction of $\mathbf{2 a}$ with benzaldehyde using a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ in the presence of excess $\mathrm{Et}_{2} \mathrm{Zn}$ in toluene (Eq. 2). ${ }^{6}$ The reaction proceeded smoothly within 2 h to afford 4 -substituted piperidine 4 a as a major product in 81% and 2 -substituted 7 a as a minor product in 11% yields.

$+$

7a, 11\%

In order to improve the regioselectivity, we screened a variety of N-protecting groups of $\mathbf{2}$ shown in Table 1 (Eq. 3). p-Chlorobenzoylated piperidine $\mathbf{2 b}$ or p-trifluoromethylbenzoylated 2c mainly afforded 4 -substituted piperidine $\mathbf{4 b}$ or $\mathbf{4 c}$ along with some amount of 2 -substituted $\mathbf{7 b}$ or $\mathbf{7 c}$, respectively (entries 1 and 2). However the reaction of p-nitrobenzoylated one (2d) with benzaldehyde did not proceed at all (entry 3). On the other hand, compound 2 e protected with p-methoxybenzoyl group gave exclusively 4-substituted piperidine $\mathbf{4 e}$ in excellent yield (entry 4), and $2 f$ protected with methoxycarbonyl group also gave 4 -substituted $\mathbf{4 f}$ in moderate yield (entry 5).

4b-f
$+$

7b-f

Table 1. Effect of N-protecting group on regioselectivity

entry	4-acetate	R	product			
(yield: \%)						
$\mathbf{1}$	$\mathbf{2 b}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathbf{4 b}$	(71)	$\mathbf{7 b}$	(8)
2	2c	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathbf{4 c}$	(66)	$\mathbf{7 c}$	(13)
3	$\mathbf{2 d}$	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathbf{4 d}$	(0)	$\mathbf{7 d}$	(0)
4	$\mathbf{2 e}$	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$\mathbf{4 e}$	(93)	$\mathbf{7 e}$	(0)
5	$\mathbf{2 f}$	OMe	$\mathbf{4 f}$	(54)	$\mathbf{7 f}$	(0)

Next, the electrophilic substitution of $\mathbf{2 e}$ with various electrophiles was examined (Eq. 4). These results are summarized in Table 2. Some aromatic (entries 1-3) and aliphatic aldehydes (entry 4) gave the corresponding coupling products $\mathbf{8 e} \mathbf{- 1 1 e}$ in good yields. Styrene oxide, which was transformed into phenylacetaldehyde under the reaction conditions, afforded $\mathbf{1 2 e}$ in 80% yield (entry 5). Moreover, acyclic (entries $6-8$) and cyclic ketones (entry 9) gave 4 -substituted products $\mathbf{1 3} \mathbf{e}-\mathbf{1 6 e}$ in good to high yields, while benzylideneaniline gave amine $17 \mathbf{e}$ in high yield (entry 10).

Table 2. Introduction of various electrophiles into $\mathbf{2 e}$

The reaction of pipecolinic acid derivative 18 with acetone proceeded regio- and stereo-selectively to afford cis-2,4-disubstituted product 19 in high yield (Eq. 5). ${ }^{7}$ The relative stereoconfiguration of 19 was deduced by NOE correlation. ${ }^{8}$

Chiral phosphine ligand \mathbf{A}^{9} was used to introduce chirality in product $\mathbf{4 e} .^{10}$ Use of toluene as a solvent gave diastereomer mixture of $\mathbf{4 e}$ in low enantioselectivities, while $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to moderate improvement in enantioselectivities of $\mathbf{4 e}$ (Eq. 6). ${ }^{12}$

In summary, efficient regioselective introduction of various electrophiles into piperidine skeleton at the 4-position was achieved with a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ in the presence of excess $\mathrm{Et}_{2} \mathrm{Zn}$. In addition, enantioselective introduction of benzaldehyde into $2 \mathbf{e}$ at the 4 -position was accomplished by use of chiral phosphine ligand A with moderate enantioselectivity. Further improvement of diastereo- and enantio-selectivity is underway.

ACKNOWLEDGEMENTS

This work was supported by a Grant-in-Aid for Scientific Research (C) (19550109) from Japan Society for the Promotion of Science and a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, respectively.

REFERENCES AND NOTES

${ }^{\dagger}$ Dedicated to Professor Ryoji Noyori on the occasion of his 70th birthday.

1. For recent examples, see: C. De Risi, G. Fanton, G. P. Pollini, C. Trapella, F. Valente, and V. Zanirato, Tetrahedron: Asymmetry, 2008, 19, 131; G. S. Kauffman, P. S. Watson, and W. A. Nugent, J. Org. Chem., 2006, 71, 8975; L. F. Solares, I. Lavandera, V. Gotor-Fernández, R. Brieva, and V. Gotor, Tetrahedron, 2006, 66, 3284; Y. Mi and E. J. Corey, Tetrahedron Lett., 2006, 47, 2515; K. Tanaka, T. Kobayashi, H. Mori, and S. Katsumura, J. Org. Chem., 2004, 69, 5906; I. T. Raheem, S. N. Goodman, and E. N. Jacobsen, J. Am. Chem. Soc., 2004, 126, 706.
2. D. Minato, M. Imai, Y. Kanda, O. Onomura, and Y. Matsumura, Tetrahedron Lett., 2006, 47, 5485; M. Ecija, A. Diez, M. Rubiralta, N. Casamitjana, M. J. Kogan, and E. Giralt, J. Org. Chem., 2003, 68, 9541 ; K. S. K. Murthy, A. W. Rey, and M. Tjepkema, Tetrahedron Lett., 2003, 44, 5355; T. Senda, M. Ogasawara, and T. Hayashi, J. Org. Chem., 2001, 66, 6852; Y. Yoshimoto, C. Horikawa, T. Maki, and M. Watanabe, Tetrahedron Lett., 1996, 37, 5715; T. Shono, J. Terauchi, Y. Ohki, and Y. Matsumura, Tetrahedron Lett., 1990, 31, 6385.
3. Y. Tamaru, Eur. J. Org. Chem., 2005, 2647; M. Kimura, M. Shimizu, S. Tanaka, and Y. Tamaru, Tetrahedron, 2005, 61, 3709; M. Kimura, M. Shimizu, K. Shibata, M. Tazoe, and Y. Tamaru, Angew. Chem., Int. Ed., 2003, 42, 3392.
4. Y. Matsumura, D. Minato, and O. Onomura, J. Organomet. Chem., 2007, 692, 654; O. Onomura, Y. Kanda, M. Imai, and Y. Matsumura, Electrochim. Acta, 2005, 50, 4926; T. Shono, Y. Matsumura, O. Onomura, and Y. Yamada, Tetrahedron Lett., 1987, 28, 4073.
5. Characterization data of 2a: Colorless oil. IR (neat): 3447, 2937, 1738, 1645, $1578 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.92-2.21(\mathrm{~m}, 5 \mathrm{H}), 3.41-3.53(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 5.20-5.29 (m, 1H), $6.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29-7.57(\mathrm{~m}, 5 \mathrm{H}) . \mathrm{MS}[\mathrm{HR}-\mathrm{FAB}(+)]: \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}$ $246.1130[\mathrm{M}+\mathrm{H}]^{+}$found 246.1108 .
6. A typical experimental procedure: A solution of piperidine derivative $2 \mathbf{a}(0.3 \mathrm{mmol}, 73.5 \mathrm{mg})$, $\mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 3.4 \mathrm{mg}), \mathrm{PPh}_{3}(0.015 \mathrm{mmol}, 3.4 \mathrm{mg}), 1 \mathrm{M} \mathrm{Et} 2 \mathrm{Zn}$ in hexane $(1.2 \mathrm{mmol}, 1.2$ mL), and benzaldehyde ($0.45 \mathrm{mmol}, 48 \mathrm{mg}$) in toluene (2.0 mL) was stirred for 2 h under a nitrogen atmosphere. The resulting mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{AcOEt}(10 \mathrm{~mL} x \mathrm{3})$. The combined organic layer was dried over MgSO_{4} and concentrated in vacuo, the residue was chromatographed on silica gel (hexane/ $\mathrm{AcOEt}=3 / 1$) to afford $\mathbf{4 a} \mathbf{a} \mathbf{~} 81 \%$ and $\mathbf{7 a}$ in 11% yield as colorless oil, respectively. 4a: IR (neat): $3450,2920,1655,1490 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.92-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.65(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.63(\mathrm{~m}, 1 \mathrm{H})$, 3.95-4.13 (m, 1H), 4.45-4.51 (m, 1H), 5.08-5.15 (m, 1H), 6.45-6.55 (m, 1H), 7.20-7.61 (m, 10H). MS [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2} 294.1494[\mathrm{M}+\mathrm{H}]^{+}$found 294.1493. 7a: IR (neat): 3420,

2931, 1716, $1645 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43-1.73(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.27(\mathrm{~m}, 1 \mathrm{H})$, 3.13-3.25 (m, 1H), 3.25-3.47 (m, 2H), 4.39-4.53 (m, 1H), 4.81-4.92 (m, 2H), 5.82-5.88 (m, 1H), 7.20-7.61 (m, 10H).
7. Characterization data of 19. Colorless oil. IR (neat): 3504, 2959, 1716, 1655, $1448 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 1.2 \mathrm{H}), 1.23(\mathrm{~s}, 1.8 \mathrm{H}), 1.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.72-1.84(\mathrm{~m}, 1 \mathrm{H})$, 2.08-2.14 (m, 1H), 2.39-2.47 (m, 1H), 3.75 (s, 3H), $3.76(\mathrm{~s}, 1.2 \mathrm{H}), 3.80(\mathrm{~s}, 1.8 \mathrm{H}), 4.82-4.85(\mathrm{~m}$, $0.4 \mathrm{H}), 4.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.97-5.00(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, 0.4H). MS [HR-FAB(+)]: m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{5} 258.1341[\mathrm{M}+\mathrm{H}]^{+}$found 258.1339 .
8. NOE correlation was observed between H^{2} and H^{4}.

9. K. Hiroi, Y. Suzuki, and I. Abe, Tetrahedron: Asymmetry, 1999, 10, 1173.
10. It was proposed in ref 11 that a plausible intermediate in the asymmetric reaction of cyclohexenyl acetate with benzaldehyde might be η^{1}-allylpalladium species 21 generated from η^{3}-allylpalladium species $\mathbf{2 0}$ with $\mathrm{Et}_{2} \mathrm{Zn}$.

11. G. P. Howell, A. J. Minnaard, and B. L. Feringa, Org. Biomol. Chem., 2006, 4, 1278.
12. Characterization data of 4 e obtained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (The absolute stereoconfiguration is not determined). Colorless oil. $[\alpha]^{19}{ }_{\mathrm{D}}-9.1$ (c 1.07, CHCl_{3}). IR (neat): $3420,2934,1732,1651 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.99(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.59-2.64(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, 3.99-4.04 (m, 1H), 4.43-4.58 (m, 1H), 5.05-5.19 (br s, 1H), $6.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.22-7.40 (m, 5H), $7.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$. MS [HR-FAB(+)]: m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3} 324.1600$ $[\mathrm{M}+\mathrm{H}]^{+}$found 324.1598 . The diastereoselectivity and optical purity of $\mathbf{4 e}$ were determined by chiral HPLC: Daicel Chiralcel OJ-H column ($4.6 \mathrm{~mm} \phi, 250 \mathrm{~mm}$), n-hexane : $i-\mathrm{PrOH}=3: 1$, wavelength: 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, retention time: Major diastereomer 12.9 min (rich), 22.9 min and minor diastereomer 27.5 min (rich), 38.5 min .

Regioselective Introduction of Electrophiles into Piperidine Derivatives at the 4-Position

Osamu Onomura,* Noriyuki Fujimura, Takahisa Oda, Yoshihiro Matsumura, Yosuke Demizu

