An Inequality on the Exponential Function

Kenzō Adachi* and Shigeto Kawamoto**
*Department of Mathematics, Faculty of Education, Nagasaki University
**Kyushusangyo High School
(Received October 31, 2008)

Abstract

In this paper we prove an inequality concerning the exponential function.

1 Introduction and Proof

The purpose of the present paper is to prove the following theorem:
Theorem 1 For $0 \leq \varepsilon \leq \pi$ and $\theta \in \mathbb{R}$,

$$
\left|1-e^{\varepsilon e^{i \theta}}\right| \geq 1-e^{-\varepsilon}
$$

Proof Since

$$
\left|1-e^{\varepsilon e^{i \theta}}\right|^{2}=1-2 e^{\varepsilon \cos \theta} \cos (\varepsilon \sin \theta)+e^{2 \varepsilon \cos \theta}
$$

it is sufficient to show that

$$
f(\theta)=e^{2 \varepsilon \cos \theta}-2 e^{\varepsilon \cos \theta} \cos (\varepsilon \sin \theta)-e^{-2 \varepsilon}+2 e^{-\varepsilon} \geq 0
$$

for $0<\theta<2 \pi$. A simple calculation shows that

$$
f^{\prime}(\theta)=2 \varepsilon \sin \theta e^{2 \varepsilon \cos \theta}\left(\frac{\sin (\theta+\varepsilon \sin \theta)}{\sin \theta e^{\varepsilon \cos \theta}}-1\right)
$$

We put

$$
g(\theta)=\frac{\sin (\theta+\varepsilon \sin \theta)}{\sin \theta e^{\varepsilon \cos \theta}}
$$

Then

$$
g^{\prime}(\theta)=\frac{-\sin (\varepsilon \sin \theta)+\varepsilon \sin \theta \cos (\varepsilon \sin \theta)}{\sin ^{2} \theta e^{\varepsilon \cos \theta}}
$$

First we assume that $0<\theta<\pi$. Put $t=\varepsilon \sin \theta$ and

$$
h(t)=t \cos t-\sin t
$$

Then $0 \leq t \leq \pi$. Since $h^{\prime}(t)=-t \sin t \leq 0$ and $h(0)=0$, we have $h(t) \leq 0(0 \leq t \leq \pi)$. Therefore $g^{\prime}(\theta) \leq 0(0<\theta<\pi)$ and

$$
g(0)=\lim _{\theta \rightarrow 0} \frac{\sin (\theta+\varepsilon \sin \theta)}{\sin \theta e^{\varepsilon \cos \theta}}=\frac{1+\varepsilon}{e^{\varepsilon}} \leq 1
$$

Hence $g(\theta) \leq 1$ for $0<\theta<\pi$. Then

$$
f^{\prime}(\theta)=2 \varepsilon e^{2 \varepsilon \cos \theta} \sin \theta(g(\theta)-1) \leq 0
$$

Therefore, $f(\theta)$ is monotonically decreasing for $\theta \in[0, \pi]$. Since $f(\pi)=0$, it follows that $f(\theta) \geq 0$ for $\theta \in[0, \pi]$. A similar argument tells us that $g(\theta)$ is monotonically increasing on $[\pi, 2 \pi]$, and $g(2 \pi)=g(0) \leq 1$, and hence $g(\theta) \leq 1$ for $\theta \in[\pi, 2 \pi]$. Therefore $f(\theta)$ is monotonically increasing for $\theta \in[\pi, 2 \pi]$ and $f(\pi)=0$. Thus we obtain $f(\theta) \geq 0$ for $\theta \in[\pi, 2 \pi]$. This completes the proof of Theorem 1 .

