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ABSTRACT 

 

 To find an appropriate method for age determination in the marbled sole 

Pseudopleuronectes yokohamae in Tokyo Bay, Japan, sagittal otoliths of 1343 

individuals were observed by surface-reading and cross-section methods and the results 

were compared. Opaque zones occurred once a year and were regarded as annuli in both 

methods. The surface-reading method sometimes provided a lower count of the number 

of annuli than the cross-section method, and the frequency of this discrepancy was 

highest in older fish (males above 5 years, females above 4 years). The oldest female 

fish was estimated to be age 10 years by the cross-section method but 8 years by the 

surface-reading method. The cross-section method could provide a more accurate 

estimate of age and is therefore likely to be indispensable to estimations of longevity. In 

contrast, the surface-reading method is superior in terms of cost and time efficiency but 

is likely to underestimate the ages of older fish. However, growth equations based on 

age estimated by the surface-reading method were sufficiently accurate if males ≥ 5 

years and females ≥ 4 years were combined as specific, single age groups of 5+ and 4+, 

respectively. 
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INTRODUCTION 

 

The marbled sole Pseudopleuronectes yokohamae distributed in Japan from southern 

Hokkaido to Oita Prefecture in Kyushu, as well as in the Yellow Sea, the Bohai Sea, and 

the northern part of the East China Sea [1]. In Tokyo Bay, Japan, P. yokohamae is the 

dominant species in the megabenthic assemblage and is a highly valued fish species 

exploited by commercial fishers in the bay [2, 3]. However, despite the importance of P. 

yokohamae as a commercial resource, the abundance of this species has markedly 

decreased since the late 1980s. According to statistics from the Shiba Branch of 

Yokohama City Fisheries Cooperative Association, the annual catch of P. yokohamae in 

Tokyo Bay exceeded approximately 500 t in the mid 1980s, but by the 2000s it had 

decreased substantially to around 50 t. Therefore, there is a need for elucidation of the 

cause of the decline of P. yokohamae for the recovery of the stock in the bay. 

 To understand mechanisms of the population dynamics of P. yokohamae in 

Tokyo Bay, we have to clarify the critical life-history stage (or stages) that determine 

the year-class strength, and identify factors that affect mortality during the critical 

life-history stage, as well as consideration of changes in life history traits (e.g., 

reproduction), which may contribute to the population decline. In studying these matters, 

age and growth is one of important life history traits [4, 5]. 

 For the estimation of age and growth, establishment of an accurate aging 

procedure is indispensable. Age and growth of P. yokohamae have previously been 

investigated in several regions around Japan [3, 6-9]. These studies applied the 

surface-reading method for age determination, in which annuli visible on the surface of 

the sagittal otolith are examined. Recently, however, it has been reported that counting 
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annuli on a cross-section of the otolith (“cross-section method”) is more accurate than 

the surface-reading method for estimating the age of fish [10-17]. In P. yokohamae, 

determination of age by the cross-section method has not yet been reported. In this study, 

we compared the surface reading method and the cross-section method for age 

determination of P. yokohamae in Tokyo Bay in order to determine which method was 

more appropriate. 

 

MATERIALS AND METHODS 

 

For the comparison of aging methods, 1022 specimens (453 males, 569 females) were 

obtained from fishermen’s unions at Yokosuka (gill net fishery) and Shiba and 

Koitogawa (bottom trawl fisheries; Fig. 1). In addition, 321 specimens (155 males, 166 

females) were collected from Tokyo Bay by bottom trawl surveys in February, May, 

August, and October in 2003; February, May, August, and November in 2006 and 2007; 

and February 2008 (Fig. 1). Detailed methods of the bottom trawl surveys have been 

described by Kodama et al. [2]. The specimens were brought back to the laboratory 

without any fixation. Standard length (SL) was measured to the nearest 1 mm. Sex was 

determined by external observation and histological examination of the gonad. 

Histological examination was conducted according to the procedure given by Kume et 

al. [3]. Sagittal otoliths were dissected out, cleaned with ethanol (70%), and stored dry 

in well plates for later processing. 

 The opaque and translucent zones of the sagittal otoliths were observed by 

using two age determination methods (surface-reading method and cross-section 

method). For the surface-reading method, blind-side otoliths were used for observation 
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from the following reasons; firstly, the annuli on the blind side otoliths are more visible 

along various direction of the axis compared with those on the ocular side otoliths of P. 

yokohamae, as reported in other flatfish species [18, 19]. This would facilitate reading 

annuli on the otolith by checking growth zones in various directions, which contributes 

increasing accuracy of the reading. Secondly, crystallization, by which annuli become 

invisible, has sometimes been observed in ocular side otoliths of P. yokohamae in Tokyo 

Bay as observed in Pacific halibut Hippoglossus stenolepis [20]. Meanwhile, no 

crystallization has occurred in blind side otoliths in the present study. The otoliths were 

immersed in 50% glycerol solution and observed under reflected light against a dark 

background using a stereomicroscope at 16× magnification (SZX-ILLB100, Olympus 

Optical Co., Ltd, Japan). After completing the examination of all otoliths by the 

surface-reading method, the same otoliths were examined by the cross-section method. 

In the observation by the surface-reading method, the surfaces of some blind-side 

otoliths (n = 30) were ground with sandpaper until the opaque and transparent zones 

were clearly visible. Because these blind-side otoliths were not useable for the 

cross-section method, we used the ocular-side otoliths instead. There was no difference 

in the number of opaque rings between these blind- and ocular-side otoliths (n = 30), 

therefore, we assumed both otoliths have identical number of annulus. Otoliths were 

placed on clay and embedded in polyester resin, and each resin block was sectioned 

transversely through the core at a thickness of 300 µm by using a saw microtome 

(SP1600, Leica Microsystems, Heerbrugg, Switzerland). The sectioned otoliths were 

then mounted on glass slides using sticky wax and ground almost to the core with 

lapping film sheets (60, 30 and 12 µm, 3M, Tokyo, Japan). To enhance the contrast 

between the opaque and translucent regions, sectioned otoliths were etched with 0.1 N 
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HCl solution for 30 s, and then covered with transparent enamel. The sectioned otoliths 

were observed through a microscope at 40× magnification under transmitted light 

(BX40 F-3, Olympus Optical Co., Ltd, Japan). 

 All otoliths were examined twice each by two readers who had no knowledge 

of each fish’s SL or sex. To examine the degree of reproducibility of the aging results, 

the percent agreement (PA) and average percent error (APE) were calculated for both 

methods. PA was the ratio of the number of agreements between results to the total 

number of readings made by two readers. APE, which was used to assess the 

consistency of the results of the two counts by each reader, was calculated by using the 

equation given by Beamish and Fournier [21]: 

 

APE =  
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where N is number of fish examined, R is number of age counts for the jth fish (here R = 

2), and Xij and Xj are the ith age determination of the jth fish and mean age of the jth fish, 

respectively. Haas and Recksiek [12] and Powers [22] suggest that APE values below 

10% are within an acceptable level of reproducibility for the results of an aging method 

used in stock assessment. 

 To determine the age of P. yokohamae, we assumed that the age of all 

individuals increased by 1 year on 1 January, because the spawning season of P. 

yokohamae in Tokyo Bay lasts from late November to February [3]. The age of each 

individual was calculated by the following equation: 
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t = O + (M − 1)/12 

 

where t, O, and M are the age (years), number of opaque zones on the otolith, and 

month of sampling, respectively. The innermost opaque region was excluded from the 

counting of opaque zones. When there was a difference in the age estimated by the two 

readers, those data were excluded from the growth analysis. 

 To estimate the growth of P. yokohamae in Tokyo Bay, the von Bertalanffy 

growth equation was fitted to mean SL at each age separating by the two aging methods: 

 

SLt = SL∞{1 − exp[−K (t − t0)]} 

 

where SLt is standard length at age t, and SL∞, K, and t0 are the asymptotic length, the 

growth coefficient, and the hypothetical age when standard length would be zero, 

respectively. We did not use back-calculated SL for the growth equation. Parameters of 

the von Bertalanffy growth equation were estimated by using the Solver on MS-Excel 

(Microsoft, Redmond, WA, USA), which implements a quasi-Newton method for 

nonlinear least-squares parameter estimation [23, 24]. To examine differences in the 

growth equations between the sexes or between different age-determination methods, 

we conducted an F-test in accordance with the method of Akamine [25]. 

 

RESULTS 

 

Opaque and translucent zones are clearly visible on the blind-side sagitta observed by 

both the surface-reading and the cross-section methods (Fig. 2a, b). When viewed from 
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the external or internal side of the fish, the otolith grows almost elliptically with faster 

increment toward the antero-posterior direction than toward the dorso-ventral direction, 

and the focus remains in the central region (Fig. 2a). On the other hand, observation 

from the anterior or posterior side of the fish showed that otolith grows faster toward the 

internal side than the external side (Fig. 2b). As the otolith grows, the width of the 

growth band (i.e. a pair of adjacent opaque and translucent zones) becomes narrower 

(Fig. 2a, b), and the direction of the growth along the dorso-ventral axis curves to the 

internal side of the fish (Fig. 2b). 

 Opaque and translucent regions for age estimation were observable in 99.8% of 

samples by both the surface-reading and the cross-section methods. PA by the two 

readers was recorded as 99.6% for the surface-reading method and 99.7% for the 

cross-section method. For APE, the values for the surface-reading and cross-section 

methods by reader 1 were 0.4% and 0.2%, and by reader 2 were 0.2% and 0.1%, 

respectively. 

 We determined the monthly changes in the percentage occurrence of otoliths 

with opaque zones at their margins (Fig. 3). Data for both sexes were combined, 

because no significant differences in the percentage occurrence of individuals with 

opaque zones at the outer edge of the otolith were found between males and females by 

either aging method (G-test: surface-reading method, G = 0.41, P = 0.52; cross-section 

method, G = 0.36, P = 0.55). Also, there were no significant differences between the 

surface-reading method and cross-section method in terms of opaque edge in sex 

(G-test: male, G = 0.001, P = 0.98; female, G = 0.02, P = 0.89). The opaque zone at the 

outer edge of the otolith appeared from January to July. The peak percentage occurrence 

of the opaque zone was observed in April. No individuals with opaque zones at their 
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otolith edges were found between August and December. These results suggest that the 

opaque zone is formed only once a year. Therefore, we regarded the opaque zone as a 

suitable annulus for age determination. We assumed the region from the innermost 

opaque zone to the outer margin of the first translucent zone as indicating 0 years of age, 

and the region from the inner margin of the second opaque zone to the outer margin of 

the second translucent zone as 1 year of age, and so on. 

 The surface method sometimes provided fewer counts in the number of annuli 

than did the cross-section method. The oldest fish in this study was estimated to be 10 

years old by the cross-section method, whereas it was 8 years old by the surface-reading 

method using the same otolith (Fig. 2a, b). In the present study, we evaluated the 

degrees of discrepancy in ages determined by the surface-reading method and the 

cross-section method (Fig. 4). For males, the frequency of 1-year age discrepancies 

between the two methods ranged from 0% to 7.5% in individuals aged 0 to 4 years, 

whereas it was 100% in 5- and 6-year-olds, although only one individual was examined 

in each of the latter age groups. In females, the frequency of 1-years age discrepancies 

was 0% to 28.6% in individuals aged 0 to 5 years, whereas it was 67% in 6-year-old 

females. A 2-year age discrepancy was found in one 10-year-old female. 

 Parameters of von Bertalanffy growth equations estimated for males and 

females for the two aging methods are shown in Table 1. Significant differences in 

growth equations were found between males and females within each aging method 

(F-test: surface-reading method, F (degree of freedom; 3, 88) = 18.84, P < 0.001; 

cross-section method, F (3, 91) = 19.78, P < 0.001). Therefore, the von Bertalanffy 

growth curves were separated by sex. In contrast, the growth equations for males and 

females did not differ significantly between the two aging methods (F-test: males, F (3, 
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88) = 0.09, P > 0.05; females, F (3, 91) = 0.41, P > 0.05). 

 Since proportion of discrepancy in estimated age between the surface-reading 

and the cross-section methods increased in older fish (Fig. 4), we combined males aged 

5-years and older and females age 4-aged and older into single age categories of 5+ and 

4+, respectively, in the surface-reading method, and tried to make new growth equations. 

The new equations derived using ages based on the surface-reading method and 

including these age categories (male: L∞ = 301.5 mm, K = 0.545 per year, t0 = −0.407 

year; female: L∞ = 349.7 mm, K = 0.497 per year, t0 = −0.300 year) are also not 

significantly different from those derived using ages based on the cross-section method 

(male: F (3, 89) = 0.04, P > 0.05; female: F (3, 83) = 0.37, P > 0.05). 

 Growth for both males and females was similar up to age 2 years; SL on the 

growth curves at age 2 years was about 230 mm for males and 240 mm for females (Fig. 

5). However, females aged 3 years or older attained a larger SL than males of the same 

age. The growth rates of both sexes decelerated as fish aged. The maximum SL we 

recorded for P. yokohamae males was 314 mm, and for females, 400 mm. 

 

DISCUSSION 

 

We conducted age determinations by two different methods, a surface-reading method 

and a cross-section method. The PAs for the number of annuli counted by two readers 

were high. In addition, the APEs for the two readers for the two methods were low (less 

than 1%)—well below the threshold value (10%) for consistency of the results [12, 22]. 

Therefore, these results suggest that both methods provide consistent counts of the 

annuli of P. yokohamae among readers. 
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 We observed discrepancies in age between the two aging methods. The 

discrepancies were found in individuals aged 3 years or more, and the proportion of 

discrepancies increased with age, especially from 5 years for males and 4 years for 

females. Underestimations of age by the surface-reading method compared with the 

cross-section method have been reported in many species [10-17]. For example, the 

maximum discrepancy in age reached 4 years for Pseudopleuronectes americanus [12], 

9 years for Parapristipoma trilineatum [17] and 23 years for Sebastes vulpes [15]. 

Underestimations in the number of annuli by the surface-reading method were probably 

related to the developmental patterns of the otolith. In general, there is a positive 

relationship between somatic growth rate and otolith increments [6, 7]. However, 

Beamish [10] reported that otoliths of older individuals of Merluccius productus 

appeared to increase in the thickness, but not in the height or length. Similar result has 

been reported for Paralichthys olivaceus [16]. From the observation of the transverse 

section of sagittal otolith of P. yokohamae, we also found that the otolith develops in a 

curve toward the internal (proximal) side of the fish with age (Fig. 2). Provided that the 

direction of the growth in other part of the otolith (e.g., the anterior and posterior 

region) is the same, two or more annuli could seem to overlap each other when observed 

by the surface-reading method. These characteristics might have caused the 

underestimation in the count of annuli by the surface-reading method. Therefore, the use 

of the cross-section method would be indispensable in estimating the age of older 

individuals or the longevity in P. yokohamae. In the present study, we observed only 

dorso-ventral section of the otoliths in the cross-section method. The most appropriate 

direction of the sectioning needs to be clarified in future. 

 The surface-reading method could have advantages over the cross-section 
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method in terms of efficiency in time and cost, although it sometimes leads to age 

underestimation in older fish. However, the surface-reading method could be still 

applicable to analysis of the growth of P. yokohamae, because there were no significant 

difference in the growth curves between the two different aging methods even in the 

case where combined age groups were applied in the surface-reading method (5+ and 

4+ for males and females, respectively, in which proportion of discrepancies in 

estimated age between the two aging methods increased). However, the number of 

specimens of older fish showing poor accuracy of the age estimation by the 

surface-reading method was very small in the present study. Therefore, we need to 

reconsider the validity of the surface-reading method in the case where the number of 

older fish specimens is increased. 

 In present study, we could not obtain large number of specimens for 5 years of 

age and older, resulting in some uncertainty in the reliability of the results on age 

determination for old individuals. The present conclusion regarding the superiority of 

the cross-section method, however, might be probable because (1) the direction of the 

growth of the otolith curves as the fish become older, resulting in difficulties in reading 

annuli on the periphery of the otolith by the surface-reading method as described earlier, 

and (2) when the discrepancies in ages were found, the numbers of annuli by the 

surface-reading method were never higher than those by the cross-section method. To 

improve the reliability of results in the present study, we need to collect more specimens 

of old age fish, although it might be difficult to collect sufficient number of old 

individuals from Tokyo Bay under the current low stock-size condition. 
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FIGURE CAPTIONS 

 

Fig. 1 Locations of sampling stations used for bottom trawl surveys [2] (black circles), 

and three fisheries ports (black triangles) in Tokyo Bay, Japan 

 

Fig. 2 Example of different aging results obtained for the same sagittal otolith of 

Pseudopleuronectes yokohamae in Tokyo Bay by (a) surface-reading method and (b) 

cross-section method. White dots indicate annuli and broken line indicates the 

sectioning line. Bars are 1 mm 

 

Fig. 3 Monthly changes in percentage occurrences of opaque (■) and translucent (□) 

zones at otolith edges in Pseudopleuronectes yokohamae in Tokyo Bay, as estimated by 

(a) surface-reading method and (b) cross-section method. n indicates sample size 

 

Fig. 4 Frequencies of occurrence of discrepancies in age for (a) males and (b) females 

as determined by the surface-reading method and cross-section method. Age 

discrepancy was obtained by subtracting the age estimated by the surface-reading 

method from that estimated by the cross-section method. n indicates sample size 

  

Fig. 5 The von Bertalanffy growth curves for (a) male and (b) female 

Pseudopleuronectes yokohamae in Tokyo Bay. Symbols and vertical bars denote mean 

standard length and standard deviation, respectively, at each age. Solid and dashed lines 

indicate growth curves based on ages as determined by the surface-reading method and 

the cross-section method, respectively
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Table 1 Parameters of the von Bertalanffy growth curve for males and females of 

Pseudopleuronectes yokohamae in Tokyo Bay, based on ages as estimated by two age 

determination methods 

 

Method Sex L∞ (mm) K (per year) t0 (years) 

Surface-reading     

 Males 301.1 0.590 − 0.245 

 Females 449.0 0.257 − 0.826 

Cross-section     

 Males 305.6 0.533 − 0.355 

 Females 409.9 0.321 − 0.634 
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