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Characteristic Comparison between Electric Currents on Upper
and Lower Surfaces of Patch Conductor in a Microstrip Antenna

Takafumi FUJIMOTO†a), Kazumasa TANAKA††, and Mitsuo TAGUCHI††, Members

SUMMARY The electric currents on the upper, lower and side surfaces
of the patch conductor in a circular microstrip antenna are calculated by us-
ing the integral equation method and the characteristic between the electric
currents on the upper and lower surfaces is compared. The integral equa-
tion is derived from the boundary condition that the tangential component
of the total electric field due to the electric currents on the upper, lower and
side surfaces of the patch conductor vanishes on the upper, lower and side
surfaces of the patch conductor. The electric fields are derived by using
Green’s functions in a layered medium due to a horizontal and a vertical
electric dipole on those surfaces. The result of numerical calculation shows
that the electric current on the lower surface is much bigger than that on
the upper surface and the input impedance of microstrip antenna depends
on the electric current on the lower surface.
key words: microstrip antenna, integral equation method, Green’s function
in layered medium, electric currents, input impedance

1. Introduction

In the analysis of a microstrip antenna (MSA) by the integral
equation method [1], [2], the patch conductor of the MSA is
assumed to be infinitely thin and the total electric current
on the upper and lower surfaces of the patch conductor is
derived. However, since the thickness of the real patch con-
ductor is finite, the electric currents flow on the upper, lower
and side surfaces of the patch conductor separately.

The authors have analyzed MSAs by using the cavity
model [3]–[5]. In the cavity model, the MSA is divided into
two regions. The one is the inside region of the cavity which
is bounded above and below by the conducting plates and on
the side by the admittance wall. The other is the outside re-
gion of the cavity. Although the electric current exists on
the upper surface of the patch conductor in the outside re-
gion of the cavity, the electric current on the upper surface
was neglected in the cavity model. In [3]–[5], however, the
calculated input impedances agreed well with the measured
data. The authors estimated that the electric current on the
upper surface of the patch conductor didn’t influence the in-
put impedance of the MSA.

The electric currents on the upper, lower and side sur-
faces of the patch conductor haven’t been investigated to the
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authors’ knowledge. For the improvement of the antenna
performance and the design of antenna for new applications,
it is important to understand the accurate electric current dis-
tributions and characteristics. Moreover, when an assump-
tion and approximation are used in the theoretical analysis
of the antennas, some reason is needed. The validity of a
treatment of the electric current on the upper surface in the
cavity model can be proved by deriving the electric current
distributions on the upper, lower and side surfaces.

In this paper, the electric currents on the upper, lower
and side surfaces of the patch conductor in a circular MSA
are derived by using the integral equation method and the
characteristic between the electric currents on the upper and
lower surfaces is compared. The integral equation is derived
from the boundary condition that the tangential component
of the total electric field due to the electric currents on the
upper, lower and side surfaces of the patch conductor van-
ishes on those surfaces of the patch conductor. In the con-
ventional integral equation method [1], [2], Green’s func-
tions produced by a horizontal electric dipole in a layered
medium are used. However, the electric current on the side
surface flows to the vertical direction. In this paper, there-
fore, Green’s functions produced by a horizontal and a ver-
tical electric dipole in the layered medium are used. Green’s
functions in the spectral domain are derived by the boundary
conditions at the interfaces between the free space, dielec-
tric and ground plane and the radiation condition. Scalar po-
tentials of point charges associated with the horizontal and
vertical electric dipoles are in general different [6]. Mixed-
potential integral equation available for such case has been
proposed by Michalski et al. [7]. In [7], the mixed-potential
integral equation has been derived by introducing the vec-
tor potential which comprises the additional vector function
called “correction term.” In this paper, the mixed-potential
integral equation for an arbitrarily shaped conductor in the
layered medium proposed by Michalski et al. is applied to
the circular MSA to derive the electric currents on the upper,
lower and side surfaces of the patch conductor.

In order to investigate the effects of the electric cur-
rents on the upper, lower and side surfaces to the input
impedances of the MSA, the input impedances due to those
electric currents are calculated.

2. Mixed-Potential Integral Equation

Figure 1 shows the geometry of a circular MSA and its coor-
dinate system. The radius and thickness of the circular patch
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Fig. 1 Geometry of circular microstrip antenna.

Fig. 2 Electric current distributions on the surfaces of the patch
conductor.

conductor are a0 and δz, respectively. The relative dielectric
constant and thickness of the dielectric substrate are εr and
h, respectively. The antenna is excited at r = d0, φ = 0◦ by
a coaxial feeder through the dielectric substrate.

Figure 2 shows the electric current distributions on the
surfaces of the patch conductor. The electric currents on the
upper, lower and side surfaces of the patch conductor are
denoted by JU , JL and JS , respectively. In the case of the
thin patch conductor, the electric currents on the surfaces
of the patch conductor follow closely the behavior of the
corresponding eigenmode within the cavity bounded above
and below by the conducting plates and on the side by the
admittance wall [3]. Therefore, JU , JL and JS are expressed
as

JU,L = JU,L
r ir + JU,L

φ iφ

=

M∑
m=0

N∑
n=0

AU,L
mn FU,L

rmn(r, φ)ir

+

M∑
m=0

N∑
n=1

BU,L
mn FU,L

φmn(r, φ)iφ (1)

FU,L
rmn = Um

(
r
a0

){
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(
r
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)2}νU,L
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(
r
a0
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(
r
a0
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JS = JS
z iz + JS

φ iφ

=
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mnFS
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mnFS
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FS
zmn = Um
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(
1 − 2z

δz
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× cos(nφ), m + n = even (5)

FS
φmn = Tm

(∣∣∣∣∣∣1 −
2z
δz
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){

1 −
(
1 − 2z

δz

)2}νS−1

× sin(nφ), m + n = odd (6)

where νS is assumed to be equal to νU for δz/2 � z � δz

and νL for 0 � z � δz/2. Tn and Un are Chebyshev poly-
nomials of the first and second kinds, respectively. ir, iφ
and iz are unit vectors of the cylindrical coordinate system
(r, φ, z). {Ap

mn} and {Bp
mn}(p = U, L, S ) are unknown coef-

ficients. Since the electric currents must be continuous at
the center (x = 0, y = 0) of the circular patch conductor,
the sums of m and n with respect to the r and φ components
of the electric currents are even and odd, respectively. The
edge conditions of the metallic 90◦ corner are used. There-
fore, νU is 0.667 and νL is 0.603 for εr = 2.15 [8].

The electric fields on the upper, lower and side surfaces
of the patch conductor produced by Jp(p = U, L, S ) are de-
noted by EU(Jp), EL(Jp) and ES (Jp), respectively. The ex-
citation fields on the upper, lower and side surfaces of the
patch conductor due to the feed current Je are denoted by
EU(Je), EL(Je) and ES (Je), respectively. The boundary con-
ditions on the upper, lower and side surfaces of the patch
conductor are expressed as{ ∑

p=U,L,S

Eq(Jp) + Eq(Je)

}
× n = 0

on S q, q = U, L, S , (7)

where n is the unit normal vector directed outward from the
patch conductor and S U , S L and S S are the upper, lower
and side surfaces of the patch conductor, respectively (See
Fig. 2).

In the formulation of the electric fields, the local coor-
dinate system (X, Y, Z) with the origin located at the point
(r′, φ′,−h) is used. The prime denotes the source points.
Figure 3 shows the local coordinate system (X, Y, Z). The
positive X direction is defined by the tangential φ′ direction.
Eq(Jp) is expressed by the vector potential Aq(Jp) and the
scalar potential φq

e(Jp);

Eq(Jp) = − jωAq(Jp) − ∇φq
e(Jp). (8)

Since both horizontal and vertical electric dipoles exist in
a layered medium, the vector potential Aq(Jp) is written as
follows [7],

Aq(Jp) =
∫

S p

=

KA ·JpdS ′ (9)
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Fig. 3 Local coordinate system (X,Y, Z).

=

KA=
=

GA +∇P (10)

where
=

GA is dyadic Green’s function and vector function
P is called correction term in [7]. In terms of Sommerfeld

potential [1], the dyadic Green’s function
=

GA is expressed
as follows,

=

GA = (iXGXX
A + iZGZX

A )iX

+(iYGYY
A + iZGZY

A )iY + iZGZZ
A iZ (11)

where GS T
A is the S component of Green’s function for the

vector potential due to a T - directed electric dipole. iX ,
iY and iZ are unit vectors of the local coordinate system

(X, Y, Z). The components of the dyadic function
=

KA are
expressed by using the components of the dyadic Green’s

function
=

GA and the vector function P.

KXX
A = GXX

A (12)

KZX
A = GZX

A (13)

KYY
A = GYY

A (14)

KZY
A = GZY

A (15)

KXZ
A =

∂PZ

∂X
(16)

KYZ
A =

∂PZ

∂Y
(17)

KZZ
A = GZZ

A +
∂PZ

∂Z
(18)

The scalar potential φq
e(Jp) due to Jp is written as follows

[7],

φ
q
e(Jp) = − 1

jω

∫
S p

GU (∇′ · Jp)dS ′

− 1
jω

∫
C

GU JS
z dl′ (19)

where GU is Green’s function for the scalar potential. ∇′ is
the derivative operator at the source point. C is the contour
formed by the intersection of the surface S S with the inter-
face at Z = h. Since JS

z = 0 at Z = h, the second term in the
right side of Eq. (19) vanishes.

By substituting Eqs. (8), (9) and (19) into Eq. (7), the
integral equation is obtained.

n ×
∑

p=U,L,S

{
jω

∫
S p

=

KA ·JpdS ′

− 1
jω
∇

∫
S p

GU(∇′ · Jp)dS ′
}
= n × Eq(Je) (20)

{Ap
mn} and {Bp

mn} are determined by applying the method of
moment to the integral equation (20).

The coaxial feeder is assumed to be an infinitely thin
filament whose end is connected to the patch conductor at
its lower surface. Therefore, the feed current Je entering the
point (r = d0, φ = 0◦) is given by a product of Dirac’s delta
functions.

Je =
δ(r − d0)δ(φ)

r
iz (−h � z � 0) (21)

The matrix elements with respect to the excitation fields in
the matrix equation can be calculated using the reciprocity
theorem [1].

3. Green’s Functions in the Spectral Domain

The Z component of the electric and magnetic fields created
by the T -directed electric dipole are denoted by GZT

E and
GZT

H , respectively. Using the notation “-” for the quantity in

the spectral domain, G
XX
A , G

ZX
A , G

YY
A , G

ZY
A , G

ZZ
A , PZ and GU

are expressed as [1], [7],

G
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kX = kR cosΘ (29)

kY = kR sinΘ. (30)
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In the above expressions, i is zero for the observation point
in the free space and equal to 1 for the observation point in

the dielectric. G
ZX
E , G

ZY
E , G

ZZ
E , G

ZX
H and G

ZY
H are denoted as

ψi. ψi satisfies the wave equation in the spectral domain(
d2

dZ2
− ui

2

)
ψi = contribution of sources. (31)

The boundary conditions at the interface between the free
space and dielectric are expressed as follows,

α0ψ0 = α1ψ1 and
∂ψ0

∂Z
=
∂ψ1

∂Z
, at Z = h (32)

where

αi =

 εi : ψi = G
ZT
E

µ0 : ψi = G
ZT
H

(i = 0, 1),

and at the interface between the dielectric and ground plane,

G
ZT
H = 0 and

∂G
ZT
E

∂Z
= 0, at Z = 0. (33)

By applying the boundary conditions (32) and (33) and the
radiation condition to the solutions of the wave equation

(31), G
ZT
E and G

ZT
H are obtained. The components KS T

A of

the dyadic function
=

KA and Green’s functions for the scalar
potential GU in the spatial domain are derived by applying

the inverse Fourier transform to K
S T
A and GU . The inverse

Fourier transform is defined as [1]
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1
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∫ ∞

0
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∫ 2π

0
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× exp{ jkRR cos(Θ −Φ)}dΘdkR. (34)

Consequently, KS T
A and GU are expressed by the following

equations.
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0
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)
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0
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)
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KYZ
A = −
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2π
sinΦ
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(
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− Q5
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)
J1(kRR)dkR (39)

KZZ
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∂Q3
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× J0(kRR)
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∆E = ε0u1 sinh(u1h) + ε1u0 cosh(u1h) (42)

∆H = u1 cosh(u1h) + u0 sinh(u1h) (43)

R =
√

r2 + r′2 − 2rr′ cos(φ − φ′) (44)

sinΦ =
r′ − r cos(φ − φ′)

R
(45)

cosΦ =
r sin(φ − φ′)

R
(46)

where Jl(kRR) is Bessel function of order l and εri and εr j are
the relative dielectric constant at the observation and source
points, respectively. The expressions of Qk(k = 1, 2, . . . , 5)
are different in the positions of the observation and source
points (See Appendix).

By subtracting the quasi-static terms from the inte-
grands of Eqs. (35)–(41), the remaining integrands decay
faster for larger kR [1], [3]. The poles associated with the
surface waves exist for ∆E = 0. The contributions from the
poles are evaluated analytically by means of the residue cal-
culus technique [1], [3].

4. Results and Discussion

The Eqs. (1)–(6) are applicable to only the MSAs with the
thin patch conductor which can be analyzed using the cav-
ity model. Therefore, the thickness δz � 5.75 × 10−4λg of
the patch conductor calculated in this paper is the range of
validity of the cavity model [3]–[5]. λg is the wave length
within the dielectric at the resonant frequency.

Figures 4(a) and (b) show the calculated JU,L
r and JU,L

φ

and Figs. 4(c) and (d) show the calculated JS
z and JS

φ at the

resonant frequency (6.33 GHz), respectively. JU,L
r = 0 and

JS
z = 0 at φ = 90◦ and Jp

φ (p = U, L, S ) = 0 at φ = 0◦.
The numbers of expansion mode are chosen as M = N = 3.
δz is 5.57 × 10−4λg. In Figs. 4(a) and (b), the intensity of
JL is bigger than that of JU . This is due to the fact that
JL concentrates on the lower surface of the patch conductor
because of the mutual coupling between the patch conductor
and ground plane. The phase of JL is nearly equal to that of
JU . In Figs. 4(a) and (c), the intensity of JS

z is very small
compared with those of JU

r and JL
r . In Figs. 4(b) and (d),

the singularities around the upper and lower edges of JS
φ are

almost equal to those of JU
φ and JL

φ , respectively.

Figure 5 shows the ratio of |JU | to |JL| at the center
(x = 0, y = 0) of the circular patch conductor for vary-
ing the thickness h of the dielectric substrate. The ratios
are calculated at the resonant frequencies for each thick-
ness of the dielectric substrate. The ratio of |JU | to |JL| de-
creases as the thickness of the dielectric substrate decreases.
As mentioned above, this is due to the fact that the mutual
coupling between the patch conductor and ground plane be-
comes stronger with decreasing the thickness of the dielec-
tric substrate and the electric current concentrates on the
lower surface of the patch conductor.

Figures 6(a) and (b) show the calculated input resis-
tances and reactances. In these figures, the measured in-
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Fig. 4 Calculated electric current distributions (a0=9.06 mm, d0=6.0 mm, h=0.764 mm, εr=2.15,
δz=0.018 mm, M=N=3, frequency=6.33 GHz).

Fig. 5 Comparison of electric currents on the upper and lower sur-
faces of the patch conductor as function of the thickness of the dielectric
(a0=9.06 mm, d0=6.0 mm, εr=2.15, δz=0.018 mm, M=N=3).

put impedance is also shown for comparison. The an-
tenna is made of copper-clad Glass-fiber-PTFE. The input

impedance Zin is defined as the ratio of the voltage V0 across
the patch conductor and the ground plane to the feed point
current I0.

Zin =
V0

I0
(47)

V0 = −
∫ 0

−h
E f · izdz (48)

where E f is the electric field at the feed point (r = d0, φ =
0◦). By using the vector and scalar potentials, the electric
field E f at the feed point is given as

E f = E f (JU) + E f (JL) + E f (JS )

= − jωA f (JU) − ∇φ f
e (JU )

− jωA f (JL) − ∇φ f
e (JL)

− jωA f (JS ) − ∇φ f
e (JS ). (49)

The input impedance due to JL is large compared with those
of JU and JS . JU and JS don’t contribute to the input
impedance. This is due to the following facts. The intensity
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Fig. 6 Input impedances of circular MSA (a0=9.06 mm, d0=6.0 mm,
h=0.764 mm, εr=2.15, δz=0.018 mm, M=N=3).

of JU is small compared with that of JL and the thickness of
the patch conductor δz is very small compared with the ra-
dius of the circular patch conductor a0 (δz/a0 � 2.0× 10−3).
The calculated input impedance due to the total electric cur-
rents (JU + JL + JS ) agrees fairly well with the measured
data.

5. Conclusion

The electric currents on the upper, lower and side surfaces
of the patch conductor in the circular MSA have been cal-
culated by the integral equation method and the character-
istic between the electric currents on the upper and lower
surfaces has been compared. The integral equations are de-
rived from the boundary condition on the upper, lower and
side surfaces of the patch conductor. The electric fields on
the upper, lower and side surfaces of the patch conductor are
derived by using Green’s functions in the layered medium
due to the horizontal and vertical electric dipoles on those
surfaces. Green’s functions in the spectral domain produced
by the horizontal and vertical electric dipoles on the upper,
lower and side surfaces of the patch conductor are derived

by the boundary conditions at the interfaces between the free
space, dielectric and ground plane and the radiation condi-
tion.

Since the real patch conductor is very thin, the elec-
tric currents on the surfaces of the patch conductor are as-
sumed to follow closely the behavior of the corresponding
eigenmode within the cavity. Moreover, in the expressions
of the electric current, the edge condition of the metallic
90◦ corner is used. The calculated electric current on the
lower surface is much bigger than that on the upper surface.
Moreover, the ratio of the electric current on the upper sur-
face to that on the lower surface at the center of the circular
patch conductor decreases as the thickness of the dielectric
substrate decreases. This is due to the fact that the electric
current concentrates on the lower surface of the patch con-
ductor because the mutual coupling between the patch con-
ductor and ground plane becomes stronger as the thickness
of the dielectric substrate decreases.

The input impedance of the MSA due to the electric
current on the lower surface is bigger than those due to the
electric currents on the upper and side surfaces. The input
impedance of the MSA depends on the electric current on
the lower surface.
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Appendix: Spectral Domain Green’s Functions for the
Vector and Scalar Potentials and Correc-
tion Term

Green’s functions in the spectral domain G
XX
A , G

ZX
A , G

YY
A ,

G
ZY
A , G

ZZ
A and GU and the correction term PZ are obtained

by substituting G
ZT
E (T = X, Y, Z), G

ZT
H (T = X, Y) into

Eqs. (22)–(27).
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G
XX
A = G

YY
A =

µ0

2π
Q1

∆H
(A· 1)

G
ZX
A =

jµ0kX

2πkR
2

(
Q2

∆H
− Q3

∆E
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(A· 2)

G
ZY
A =

jµ0kY

2πkR
2

(
Q2

∆H
− Q3

∆E

)
(A· 3)

G
ZZ
A = −

µ0

2πui
2
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∆E

∂Q5

∂Z
εri

εr j
(A· 4)

PZ =
µ0

2πkR
2

(
Q4

∆H
− Q5

∆E

)
(A· 5)

GU = − 1

2πεikR
2

(
1
∆H

∂Q2

∂Z
ki

2

ui
2
+

1
∆E

∂Q3

∂Z

)
(A· 6)

In the case of the electric dipole in the dielectric and the
observation point in the dielectric,

Q1 = [u1 cosh{u1(h − Z)} + u0 sinh{u1(h − Z)}]
× sinh(u1Z′)

u1
(A· 7)

Q2 = [u0 cosh{u1(h − Z)} + u1 sinh{u1(h − Z)}]
× sinh(u1Z′) (A· 8)

Q3 = [ε0u1 cosh{u1(h − Z)}
+ ε1u0 sinh{u1(h − Z)}] sinh(u1Z′) (A· 9)

Q4 = [u1 cosh{u1(h − Z)} + u0 sinh{u1(h − Z)}]
× cosh(u1Z′) (A· 10)

Q5 = [ε0u1 sinh{u1(h − Z)}
+ ε1u0 cosh{u1(h − Z)}] cosh(u1Z′) (A· 11)

In the case of the electric dipole in the dielectric and the
observation point in the free space,

Q1 = [cosh{u0(h − Z)} + sinh{u0(h − Z)}]
× sinh(u1Z′) (A· 12)

Q2 = [cosh{u0(h − Z)} + sinh{u0(h − Z)}]
× u0 sinh(u1Z′) (A· 13)

Q3 = [cosh{u0(h − Z)} + sinh{u0(h − Z)}]
× ε0u1 sinh(u1Z′) (A· 14)

Q4 = [cosh{u0(h − Z)} + sinh{u0(h − Z)}]
× u1 cosh(u1Z′) (A· 15)

Q5 = [cosh{u0(h − Z)} + sinh{u0(h − Z)}]
× ε1u0 cosh(u1Z′) (A· 16)

In the case of the electric dipole in the free space and the
observation point in the dielectric,

Q1 = [cosh{u0(h − Z′)} + sinh{u0(h − Z′)}]
× sinh(u1Z) (A· 17)

Q2 = −[cosh{u0(h − Z′)} + sinh{u0(h − Z′)}]
× u1 cosh(u1Z) (A· 18)

Q3 = −[cosh{u0(h − Z′)} + sinh{u0(h − Z′)}]
× ε1u0 cosh(u1Z) (A· 19)

Q4 = −[cosh{u0(h − Z′)} + sinh{u0(h − Z′)}]

× u0 sinh(u1Z) (A· 20)

Q5 = −[cosh{u0(h − Z′)} + sinh{u0(h − Z′)}]
× ε0u1 sinh(u1Z) (A· 21)

In the case of the electric dipole in the free space and the
observation point in the free space,

mZ′ � Z � ∞
Q1 =

[
cosh{u0(Z − h)} − sinh{u0(Z − h)}

]
×

[
u0 sinh(u1h) cosh{u0(Z′ − h)}

+ u1 cosh(u1h) sinh{u0(Z′ − h)}
] 1
u0

(A· 22)

Q2 =
[
cosh{u0(Z − h)} − sinh{u0(Z − h)}

]
×

[
u0 sinh(u1h) cosh{u0(Z′ − h)}

+ u1 cosh(u1h) sinh{u0(Z′ − h)}
]

(A· 23)

Q3 =
[
cosh{u0(Z − h)} − sinh{u0(Z − h)}

]
×

[
ε1u0 cosh(u1h) sinh{u0(Z′ − h)}

+ ε0u1 sinh(u1h) cosh{u0(Z′ − h)}
]

(A· 24)

Q4 =
[
cosh{u0(Z − h)} − sinh{u0(Z − h)}

]
×

[
u0 sinh(u1h) sinh{u0(Z′ − h)}

+ u1 cosh(u1h) cosh{u0(Z′ − h)}
]

(A· 25)

Q5 =
[
cosh{u0(Z − h)} − sinh{u0(Z − h)}

]
×

[
ε1u0 cosh(u1h) cosh{u0(Z′ − h)}

+ ε0u1 sinh(u1h) sinh{u0(Z′ − h)}
]

(A· 26)

h � Z � Z′

Q1 =
[
cosh{u0(Z′ − h)} − sinh{u0(Z′ − h)}

]
×

[
u0 sinh(u1h) cosh{u0(Z − h)}

+ u1 cosh(u1h) sinh{u0(Z − h)}
] 1
u0

(A· 27)

Q2 = −
[
cosh{u0(Z′ − h)} − sinh{u0(Z′ − h)}

]
×

[
u0 sinh(u1h) sinh{u0(Z − h)}

+ u1 cosh(u1h) cosh{u0(Z − h)}
]

(A· 28)

Q3 = −
[
cosh{u0(Z′ − h)} − sinh{u0(Z′ − h)}

]
×

[
ε1u0 cosh(u1h) cosh{u0(Z − h)}

+ ε0u1 sinh(u1h) sinh{u0(Z − h)}
]

(A· 29)

Q4 = −
[
cosh{u0(Z′ − h)} − sinh{u0(Z′ − h)}

]
×

[
u0 sinh(u1h) cosh{u0(Z − h)}

+ u1 cosh(u1h) sinh{u0(Z − h)}
]

(A· 30)

Q5 = −
[
cosh{u0(Z′ − h)} − sinh{u0(Z′ − h)}

]
×

[
ε1u0 cosh(u1h) sinh{u0(Z − h)}

+ ε0u1 sinh(u1h) cosh{u0(Z − h)}
]

(A· 31)
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