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SUMMARY The wall admittance of an arbitrarily shaped
microstrip antenna is generally formulated. As examples, ellip-
tical microstrip antennas with and without a circular slot are
calculated. The wall admittance is determined by the spectral
domain analysis in order to consider the effect of the dielectric
substrate. The electromagnetic fields within the cavity are ex-
panded in terms of the eigenfunctions in the cylindrical coordi-
nate system and their expansion coefficients are determined by
applying the impedance boundary condition at the aperture in
the sense of the least squares. The calculated input impedance
and axial ratio agree fairly well with the experimental data. The
proposed method is valid for the microstrip antennas with a patch
whose geometry deviates from the particular coordinate system,
such as single-feed circularly polarized microstrip antennas.
key words: microstrip antenna, wall admittance, spectral do-

main, cavity model, least squares

1. Introduction

In the analysis of a microstrip antenna (MSA) by the
cavity model [1], MSA is divided into two regions. The
inside region of the cavity is assumed as the region en-
closed above and below by the conducting plates and
on the side by the admittance wall. The other is the
outside region of the cavity. The electromagnetic fields
within the cavity are expanded in terms of the eigen-
functions. Their expansion coefficients are determined
by the impedance boundary condition at the side aper-
ture. The contribution from the outside region of the
cavity is taken into account by the wall admittance at
the aperture. The accuracy of wall admittance depends
on the analytical model of the outside region of the
cavity and affects the resonant frequency and the input
impedance of MSA. The wall admittances have been
investigated for MSA with a patch of simple configu-
ration, such as rectangular MSA [2]–[4], circular MSA
[5]–[7] and circular ring MSA [7], [8].

The authors have proposed the formulation
method for the wall admittance of arbitrarily shaped
MSA and calculated the circular MSA as an example
[9]. The wall admittance in [9] is defined by the mag-
netic field produced by the equivalent magnetic current
on the aperture from the continuity condition on the
tangential component of the magnetic field on the aper-
ture. The outside region of the cavity is modeled as a
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layered medium consisting of the free space, the dielec-
tric substrate with a magnetic dipole and the ground
plane. The magnetic field is derived using Green’s func-
tions obtained by the spectral domain analysis. The
wall conductance obtained by the spectral domain anal-
ysis includes the conductance due to the surface wave.
The contribution of the surface wave conductance to
the wall conductance is significant around the resonant
frequency of the first mode and at higher frequencies.
The contribution increases as the dielectric constant
and thickness of the substrate increase. The method
of moments in the spectral domain is often applied to
an arbitrarily shaped MSA [10]. The proposed method
is simpler than the method of moments in the spectral
domain because it is not necessary to solve the integral
equation for unknown electric currents on the patch.
The calculated input impedances agree fairly well with
the experimental data for the dielectric substrate thick-
ness up to 0.048 λg (λg is the wavelength within the
dielectric at the resonant frequency of MSA).

In this paper, the wall admittance of the arbitrarily
shaped MSA proposed in [9] is generalized and the ellip-
tical MSAs with and without a circular slot are calcu-
lated. Most single-feed circularly polarized MSAs have
a patch whose geometry deviates from the particular
coordinate system. In this paper, a cavity model appli-
cable to such MSAs is proposed. Shen represented the
electromagnetic fields within the cavity of the elliptical
MSA in terms of Mathieu functions and used the wall
admittance of the circular MSA [11]. In this paper, the
electromagnetic fields within the cavity of the elliptical
MSAs with and without a circular slot are expanded in
terms of the eigenfunctions in the cylindrical coordinate
system, which are more easily treated compared with
Mathieu functions. Their expansion coefficients are de-
termined by applying the impedance boundary condi-
tion at the apertures in the sense of the least squares
[12]. In order to ascertain the validity of the proposed
method, the calculated input impedance and axial ratio
are compared with the experimental data.

2. Fields within Cavity

Figure 1 shows the geometry and coordinate system of
an arbitrarily shaped MSA. The radius of the circum-
scribed circle of the patch is a0 and that of the inscribed
circle of the slot is a1. The relative dielectric constant
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Fig. 1 Geometry of arbitrarily shaped MSA.

and thickness of the substrate are εr and h, respectively.
The antenna is excited at r = d0, φ = φ0 by a coaxial
feeder through the dielectric substrate. n and t are the
unit normal vector outward from the aperture and the
tangential vector along the aperture. The electromag-
netic fields within and outside the cavity are denoted
by Ed, Hd and Ee, He, respectively.

The thickness of the substrate is assumed to be
much smaller than the wavelength, so the electromag-
netic fields within the cavity do not vary along the z
direction. The electric field within the cavity Ed is ex-
pressed in terms of the eigenfunctions in the cylindrical
coordinate system (r, φ, z) as

Ed = Ed
z iz =

N∑
n=0

(EcJ
zn + E

sJ
zn + E

cN
zn + EsN

zn )iz (1)

In Region 1 (a1 ≤ r ≤ d0)

EcJ
zn = AnJn(k1r) cos(nφ) (2)

EcN
zn = BnNn(k1r) cos(nφ) (3)

EsJ
zn = CnJn(k1r) sin(nφ) (4)

EsN
zn = DnNn(k1r) sin(nφ) (5)

In Region 2 (d0 ≤ r ≤ a0)

EcJ
zn = FnJn(k1r) cos(nφ) (6)

EcN
zn = GnNn(k1r) cos(nφ) (7)

EsJ
zn = KnJn(k1r) sin(nφ) (8)

EsN
zn = LnNn(k1r) sin(nφ) (9)

where k1 = ω
√
µ0ε1 = ω

√
µ0εrε0. Jn(k1r) and

Nn(k1r) are Bessel and Neumann functions of order n,

respectively. ir, iφ and iz are unit vectors of the cylin-
drical coordinate system (r, φ, z). {An}–{Dn}, {Fn},
{Gn}, {Kn} and {Ln} are unknown coefficients.

In terms of Eqs. (1)–(9) and Maxwell’s equations,
the magnetic field within the cavity Hd is expressed as

Hd =
N∑

n=0

(Hd
rnir +H

d
φniφ) (10)

In Region 1 (a1 ≤ r ≤ d0)

Hd
rn =

−jn
ωµ0r

[{AnJn(k1r) +BnNn(k1r)} sin(nφ)

− {CnJn(k1r) +DnNn(k1r)} cos(nφ)](11)

Hd
φn =

−jk1
ωµ0

[{AnJ
′
n(k1r) +BnN

′
n(k1r)} cos(nφ)

+ {CnJ
′
n(k1r) +DnN

′
n(k1r)} sin(nφ)](12)

In Region 2 (d0 ≤ r ≤ a0)

Hd
rn =

−jn
ωµ0r

[{FnJn(k1r) +GnNn(k1r)} sin(nφ)

− {KnJn(k1r) + LnNn(k1r)} cos(nφ)](13)

Hd
φn =

−jk1
ωµ0

[{FnJ
′
n(k1r) +GnN

′
n(k1r)} cos(nφ)

+ {KnJ
′
n(k1r) + LnN

′
n(k1r)} sin(nφ)](14)

where the prime denotes the derivative with respect to
the argument.

The unknown coefficients are determined from the
boundary conditions between regions 1 and 2 (r = d0),

Ed
z (region1) = E

d
z (region2)

or Hd
r (region1) = H

d
r (region2) (15)

Hd
φ (region2) −Hd

φ (region1) =
I0
d0
δ(φ− φ0), (16)

and the impedance boundary conditions at aperture 1,

N∑
n=0

{ycJ
n (1)E

cJ
zn + y

cN
n (1)EcN

zn + ysJ
n (1)EsJ

zn

+ ysN
n (1)EsN

zn +HcJ
tn (1, 2) +H

cN
tn (1, 2)

+HsJ
tn (1, 2) +H

sN
tn (1, 2)} −Hd

t = 0, (17)

and at aperture 2,

−
N∑

n=0

{ycJ
n (2)E

cJ
zn + y

cN
n (2)EcN

zn + ysJ
n (2)EsJ

zn

+ ysN
n (2)EsN

zn +HcJ
tn (2, 1) +H

cN
tn (2, 1)

+HsJ
tn (2, 1) +H

sN
tn (2, 1)} −Hd

t = 0. (18)

I0 is the total current at the feed point. H
p
tn(i, j) in-

dicates the magnetic field at aperture i produced by
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the magnetic current Mp
n(j) at aperture j. The super-

script p expresses cJ , cN , sJ and sN . The superscripts
cJ , cN , sJ and sN in Htn(i, j) mean the magnetic
fields corresponding to electric fields EcJ

zn, E
cN
zn , E

sJ
zn

and EsN
zn , respectively. ypn(i) is the self-admittance of

order n at aperture i and is defined by Eq. (28) in the
next section. Hd

t is given by

Hd
t = Hd · t =

N∑
n=0

(Hd
rnir +H

d
φniφ) · t. (19)

Since the geometry of the patch does not coincide with
the coordinate system (r, φ, z), the impedance bound-
ary conditions (17) and (18) are applied in the sense of
the least squares [12]. Rearranging Eqs. (17) and (18) in
terms of the coefficients {Fn}, {Gn}, {Kn} and {Ln},
the impedance boundary conditions are summarized as

T =
∫

C

∣∣∣∣∣
N∑

n=0

{Fnfn(t) +Gngn(t) +Knkn(t)

+ Lnln(t) + in(t)}
∣∣∣∣∣
2

dt → minimum. (20)

Integration interval C is the circumference of the aper-
tures. t represents any position at the apertures. fn(t),
gn(t), kn(t), ln(t) and in(t) are derived from Eqs. (17)
and (18) straightforwardly and expressed in terms of
Bessel, Neumann and trigonometric functions. The
unknown coefficients {Fn}, {Gn}, {Kn} and {Ln} in
Eq. (20) are obtained by the simultaneous equations

∂T

∂Fn
∗ =

N∑
m=0

[Fm(fn∗, fm) +Gm(fn∗, gm)

+Km(fn∗, km) + Lm(fn∗, lm)
+ (fn∗, im)] = 0, n = 0, 1, 2, . . . , N

(21)

∂T

∂Gn
∗ =

N∑
m=0

[Fm(gn∗, fm) +Gm(gn∗, gm)

+Km(gn∗, km) + Lm(gn∗, lm)
+ (gn∗, im)] = 0, n = 0, 1, 2, . . . , N

(22)

∂T

∂Kn
∗ =

N∑
m=0

[Fm(kn∗, fm) +Gm(kn∗, gm)

+Km(kn∗, km) + Lm(kn∗, lm)
+ (kn∗, im)] = 0, n = 0, 1, 2, . . . , N

(23)

∂T

∂Ln
∗ =

N∑
m=0

[Fm(ln∗, fm) +Gm(ln∗, gm)

+Km(ln∗, km) + Lm(ln∗, lm)
+ (ln∗, im)] = 0, n = 0, 1, 2, . . . , N.

(24)

The inner product (fn∗, gm) is defined as

(fn∗, gm) =
∫

C

fn
∗(t)gm(t)dt, (25)

where fn∗ represents the complex conjugate of fn.

3. Wall Admittance of Arbitrarily Shaped Mi-
crostrip Antenna

Applying the equivalence theorem to the cavity, the
equivalent magnetic current M at the aperture is ex-
pressed as

M = Ed × n = Ed
z iz × n

=
N∑

n=0

{M cJ
n (i) +MsJ

n (i)

+McN
n (i) +MsN

n (i)}t, (26)

Mp
n(i) =

{
−Ep

zn : aperture 1 (i = 1)
Ep

zn : aperture 2 (i = 2), (27)

where the superscript p indicates cJ , sJ , cN and sN .
In order to obtain the wall admittance of an arbitrar-
ily shaped MSA easily, the patch is divided into short
straight segments and magnetic currents at the aper-
tures are approximated by the superposition of the
piecewise triangle functions [13]. From the continuity
condition on the tangential component of the magnetic
field on the aperture, the wall admittance ypn(i) at any
point on the aperture is defined by the magnetic field
Hp

tn(i, i) produced by the equivalent magnetic current
Mp

n(i) on the aperture i,

ypn(i) = −H
p
tn(i, i)
Mp

n(i)
. (28)

The local coordinate system (X, Y, Z) with the origin
located at any point of the aperture on the ground
plane z = 0 is used in order to derive the tangential
component of the magnetic field on the aperture. The
local coordinate system is shown in Fig. 2. The posi-
tive X direction is defined by the tangential t direction.
Unit vectors of the local coordinate system (X, Y, Z)
are iX , iY and iZ . Since the thickness of the substrate
is assumed to be much smaller than the wavelength,
the patch may be neglected in the externally equiva-
lent problem. The magnetic field Hp

tn produced by the
equivalent magnetic current Mp

nt is expressed by ap-
plying the transverse potential to the vector potential
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Fig. 2 Local coordinate system with origin located at antenna
aperture.

Fig. 3 Geometry of elliptical patch.

[10],

Hp
tn = −jω

∫
S

t · (iXGXX
F + iYGY X

F )Mp
ndS

′

+
1
jω

∫
S

t · (∇GV )(∇′ ·Mp
nt)dS

′. (29)

S denotes the surfaces on the apertures. GXX
F and

GY X
F are X and Y components of Green’s function for

the vector potential due to the X-directed magnetic
dipole, respectively. GV is Green’s function for the
scalar potential. ∇ and ∇′ are the derivative opera-
tors at the observation and source points, respectively.
Green’s functions GXX

F , GY X
F and GV are obtained by

spectral domain analysis [9].

4. Results and Discussion

4.1 Elliptical Microstrip Antenna

Figure 3 shows the geometry and coordinate system of
the elliptical MSA. The semimajor axis of the ellipse
is a0 and its semiminor axis is b0. The antenna is ex-
cited at φ0 = 45◦ from the semimajor axis by a coaxial
feeder through the dielectric substrate. Substituting
{Bn} = 0 and {Dn} = 0 into Eqs. (2)–(5), (11) and
(12), the electromagnetic fields within the cavity are
obtained. Substituting HcJ

tn (2, 1) = 0, HcN
tn (2, 1) = 0,

HsJ
tn (2, 1) = 0 and HsN

tn (2, 1) = 0 into Eq. (18), the
impedance boundary conditions are obtained.

Figures 4(a) and (b) show the wall conductances
gcJ
1 and gsJ

1 and the wall susceptances bcJ
1 and bsJ

1 of the
first mode on the elliptical MSA, respectively. ycN

1 and

(a) Wall conductances

(b) Wall susceptances

Fig. 4 Wall admittances of first mode on elliptical MSA
(a0 = 9.0mm, b0/a0 = 0.97, h = 0.764mm, εr = 2.15, fre-
quency=6.5GHz).

ysN
1 are the same as ycJ

1 and ysJ
1 , respectively. When

the number of segments per wavelength of the magnetic
current is around 32, the magnetic fields at the aper-
tures produced by the magnetic currents converge. In
these figures, the wall admittances of the circular MSAs
with radii a0 and b0 are also shown for comparison [9].
The elliptic coordinate system (u0, v, z) is used on the
aperture.

u0 = tanh−1
(
b0
a0

)
(30)

v = tan−1
(
a0
b0
tanφ

)
(31)

Although the wall admittances of the circular MSA are
constant along the circumference, those of the ellipti-
cal MSA depend on the distance from the origin. The
contributions to the magnetic fields from the magnetic
currents M cJ

1 and MsJ
1 at the aperture of the elliptical

MSA are different from those of the circular MSAs with
radii a0 and b0, respectively. Therefore, ycJ

1 at φ = 0◦

and ysJ
1 at φ = 90◦ do not coincide with the wall ad-

mittances of the circular MSAs with radii a0 and b0,
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(a) Wall conductances

(b) Wall susceptances

Fig. 5 Wall admittances of elliptical MSA at v = 0◦ (a0 =
9.0mm, b0/a0 = 0.97, h = 0.764mm, εr = 2.15).

respectively. Similarly, the difference between ycJ
1 and

ysJ
1 is due to the difference of the contributions to the
magnetic fields from the magnetic currents M cJ

1 and
MsJ
1 .
Figures 5(a) and (b) show gcJ

n and bcJ
n at v = 0◦

on the aperture, respectively. These wall conductances
include the surface wave conductance [9]. The wall con-
ductances decrease as the mode becomes higher. There-
fore, the sum of the radiation loss and the surface wave
loss of the higher order modes is smaller than that of the
lower order modes. The wall susceptances of the lower
order modes are positive and those of the higher or-
der modes are negative around the resonant frequency
6.5GHz. This indicates that the fringe fields of the
lower order modes in the neighborhood of the aperture
are capacitive and those of the higher order modes are
inductive.

The relative error of the electric field within the
cavity is defined as

relative error =
| IN | − | I10 |

| I10 |
× 100 [%], (32)

where

Fig. 6 Relative errors of electric field of elliptical MSA at v =
0◦ (a0 = 9.0mm, b0/a0 = 0.97, d0 = 6.0mm, h = 0.764mm,
εr = 2.15, frequency = 6.5GHz).

Fig. 7 Input impedance of elliptical MSA (a0 = 9.06mm,
b0/a0 = 0.97, d0 = 6.33mm, h = 0.764mm, εr = 2.15,
tan δ = 0.001).

IN =

∣∣∣∣∣
N∑

n=0

Ed
zn(a0, 0)

∣∣∣∣∣ . (33)

The calculated electric fields within the cavity become
stationary as N is increased from 10 to 15. Therefore,
the electric field at N = 10 is used as the reference
value. Figure 6 shows the relative error of the elliptical
MSA. When N ≥ 5, the relative error is less than 0.3%.
When the geometry of the elliptical patch is slightly
different from that of a circle, circularly polarized waves
are radiated. Therefore, the calculated electric field
quickly converges for N .

Figure 7 shows the calculated and measured input
impedances of the elliptical MSA. The input impedance
is derived from Poynting’s theorem in order to consider
the conductor loss and dielectric loss which are not in-
cluded in the cavity model [9]. Moreover, the calcu-
lated input impedance includes the surface wave loss
in addition to the radiation loss. The antenna is made
of copper-clad glass-fiber PTFE. The calculated input
impedance agrees fairly well with the measured data.
The relative error of the measured resonant frequency
to the calculated one is 1.4%.

Figure 8 shows the calculated and measured axial
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Fig. 8 Axial ratio of elliptical MSA (a0 = 9.06mm, b0/a0 =
0.97, d0 = 6.33mm, h = 0.764mm, εr = 2.15, tan δ = 0.001).

Fig. 9 Geometry of elliptical patch with a circular slot.

ratios of the elliptical MSA. The calculated minimum
axial ratio is 0.6 dB at 6.46GHz and the measured value
is 1.7 dB at 6.38GHz.

4.2 Elliptical Microstrip Antenna with a Circular Slot

Figure 9 shows the geometry and coordinate system of
the elliptical MSA with a circular slot. The semimajor
axis of the ellipse is a0, its semiminor axis is b0 and the
radius of the circular slot is a1. The antenna is fed at
φ0 = 45◦ from the semimajor axis.

Figures 10(a) and (b) show the self-conductances
gcJ
1 and gsJ

1 and the self-susceptances bcJ
1 and bsJ

1 of
the first mode, respectively. The self-admittances at
the outer aperture vary depending on the observation
point and the magnetic current distributions. The self-
susceptances at the outer aperture are capacitive and
those at the inner aperture are inductive.

Figure 11 shows the absolute values of the mag-
netic fields of the first mode on the apertures. Since
|HcJ
1 (1, 2)| is about 20% of |HcJ

1 (1, 1)|, the mutual cou-
pling between the outer aperture and the inner slot can-
not be neglected in the calculation.

The left-hand side of Eq. (17) denotes He
φ − Hd

φ.
The relative error of the real part at aperture 1 is de-
fined as

relative error =
real part (He

φ −Hd
φ)

maximum value of real part (He
φ)

× 100 [%]. (34)

(a) Self-conductances

(b) Self-susceptances

Fig. 10 Self-admittances of first mode on elliptical MSA with
a circular slot (a0 = 8.04mm, b0/a0 = 0.98, a1 = 2.02mm,
h = 0.764mm, εr = 2.15, frequency = 6.7GHz).

Fig. 11 Magnetic fields at aperture of elliptical MSA with a
circular slot (a0 = 8.04mm, b0/a0 = 0.98, a1 = 2.02mm, d0 =
6.0mm, h = 0.764mm, εr = 2.15, frequency = 6.7GHz).

Similarly, the relative error of the imaginary part at
aperture 1 and those at aperture 2 are defined. Fig-
ures 12(a) and (b) show the relative errors of boundary
conditions (17) and (18), respectively. As the relative
errors oscillate along the circumferences, the integral
of the magnetic field satisfies the boundary conditions
[14]. Since the electromagnetic fields at the elliptical
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(a) Aperture 1

(b) Aperture 2

Fig. 12 Relative errors of boundary conditions (17) and (18)
on elliptical MSA with a circular slot (a0 = 8.04mm, b0/a0 =
0.98, a1 = 2.02mm, h = 0.764mm, εr = 2.15, N = 5,
frequency = 6.7GHz).

aperture are expressed by the cylindrical coordinate
system, the relative errors at aperture 2 are bigger than
those at aperture 1.

Figures 13 and 14 show the calculated and mea-
sured input impedances and axial ratios of the ellipti-
cal MSA with a circular slot, respectively. The relative
error of the measured resonant frequency to the cal-
culated one is 1.7%. The calculated minimum axial
ratio is 0.24 dB at 6.72GHz and the measured value is
1.35 dB at 6.78GHz. The calculated results agree fairly
well with the measured data.

5. Conclusion

The wall admittance of the arbitrarily shaped MSA has
been generally formulated, and the elliptical MSAs with
and without a circular slot are calculated. The wall
admittance is defined by the magnetic field produced
by the equivalent magnetic current on the aperture.
The magnetic fields have been derived using Green’s
functions obtained by the spectral domain analysis. In
the spectral domain analysis, the outside region of the
cavity is modeled as a layered medium consisting of
the free space, the dielectric substrate with a magnetic

Fig. 13 Input impedance of elliptical MSA with a circular slot
(a0 = 8.04mm, b0/a0 = 0.98, a1 = 2.02mm, d0 = 6.0mm,
h = 0.764mm, εr = 2.15, tan δ = 0.001).

Fig. 14 Axial ratio of elliptical MSA with a circular slot
(a0 = 8.04mm, b0/a0 = 0.98, a1 = 2.02mm, d0 = 6.0mm,
h = 0.764mm, εr = 2.15, tan δ = 0.001).

dipole and the ground plane.
Although the wall admittances are constant in the

circular slot, those at the elliptical aperture vary de-
pending on the observation point and the magnetic cur-
rent distributions. The wall susceptances of the lower
order modes on the elliptical MSA are capacitive and
those of the higher order modes are inductive around
the resonant frequency. This indicates that the fringe
fields of the lower order modes in the neighborhood of
the aperture are capacitive and those of the higher or-
der modes are inductive. The self-susceptances of the
first mode on the elliptical MSA with a circular slot
become capacitive at the outer aperture and inductive
at the inner aperture.

In this paper, the cavity model has been extended
to the MSA with a patch whose geometry deviates from
a particular coordinate system. The electromagnetic
fields within the cavity of elliptical MSAs with and
without a circular slot are expanded in terms of the
eigenfunctions in the cylindrical coordinate system and
their expansion coefficients are determined by applying
the impedance boundary condition at the apertures in
the sense of the least squares. The calculated input
impedance and axial ratio of the elliptical MSAs with
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and without a circular slot agree fairly well with the
experimental data. The relative errors of the measured
frequencies at resonance and minimum axial ratio to
the calculated ones are almost the same. This error is
due to the assumption that the electromagnetic fields
within the cavity are uniform in the z direction [9].
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