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Wall Admittance of a Circular Microstrip Antenna

Takafumi FUJIMOTO†, Kazumasa TANAKA†, and Mitsuo TAGUCHI†, Members

SUMMARY The formulation of the wall admittance of a
circular microstrip antenna by the spectral domain method is
presented. The circular microstrip antenna is calculated using
the cavity model. The electromagnetic fields within the antenna
cavity are determined from the impedance boundary condition
at the side aperture. The contribution from the region outside
the antenna is taken into account by the wall admittance. The
wall admittance is defined by the magnetic field produced by the
equivalent magnetic current at the aperture. The magnetic field
is calculated by the spectral domain method. The wall admit-
tances obtained by this method are compared with the results
calculated by Shen. The calculated input impedances of the mi-
crostrip antenna agree fairly well with the experimental data for
the substrate thickness of up to 0.048λg. The formulation of
wall admittance presented here is easily applicable to arbitrarily
shaped microstrip antennas.
key words: microstrip antenna, wall admittance, spectral do-

main, cavity model, surface wave

1. Introduction

The cavity model is a simple and efficient analytical
method on microstrip antenna (MSA) of any configu-
ration, where the separation of variables is possible in
the wave equation expressed in the particular coordi-
nate system [1]. In this method, the antenna is treated
as a resonant cavity bounded above and below by the
conducting plates and on the side by the admittance
wall. The electromagnetic fields within the cavity are
expanded in terms of the eigenfunctions. Therefore, the
cavity model is conceptually simple and easily under-
standable compared with the solution obtained by the
method of moments. The electromagnetic fields within
the cavity are determined by the impedance boundary
condition at the side aperture. The contribution from
the region outside the antenna is taken into account by
the wall admittance at the aperture. The accuracy of
wall admittance affects the resonant frequency and the
input impedance of the antenna.

The formulation of wall admittance of the MSA
can be carried out by one of two methods. The first
method is highly simple. The wall conductance of the
rectangular MSA was obtained from the radiated power
at the edge of the antenna and the susceptance from
the capacitance of an open microstrip circuit [2], [3].
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Shen [4] and Yano et al. [5] determined the wall ad-
mittance of a circular MSA from the radiated power
and the fringe field at the edge of the antenna. The
other method is based on the wall admittance defined
by the magnetic field due to the equivalent magnetic
current at the aperture. There are two methods to de-
termine the magnetic fields in the external region. In
the first method, Green’s function in free space is used.
A rectangular MSA and an annular ring MSA were an-
alyzed by this method [6], [7]. The second method is
more general and takes into account the effect of the
dielectric substrate by spectral domain analysis. The
circular and annular ring MSA were analyzed using the
Hankel transform [8]. However, the wall admittance of
arbitrarily shaped MSA cannot be calculated by these
methods.

In this paper, a method for formulation of the wall
admittance of an arbitrarily shaped MSA is proposed.
As an example of arbitrarily shaped MSA, the circular
MSA is calculated. The wall admittance is derived by
spectral domain analysis to accurately estimate the ef-
fect of the dielectric substrate in the external region of
the cavity. The magnetic field is expressed by Green’s
functions for the vector potential and the scalar poten-
tial due to the horizontally directed magnetic dipole. In
order to apply Green’s functions to arbitrarily shaped
MSA, they are represented using the local coordinate
system with the origin located at the antenna aper-
ture. Green’s functions are determined by applying
the boundary conditions at the interfaces between free
space, the dielectric substrate and ground plane to the
solution of the wave equation in the spectral domain.
Green’s functions in the spatial domain are obtained
by applying the inverse Fourier transform. Since the
inverse Fourier transform is expressed by the infinite in-
tegral and contains poles associated with surface waves,
the infinite integral is recast into the sum of closed form
expression and finite integral [9], [10].

In order to ascertain the validity of the wall ad-
mittance obtained by the spectral domain method, the
calculated input impedances of circular MSA are com-
pared with the experimental data.

2. Electromagnetic Fields within the Cavity

Figure 1 shows a circular MSA and its coordinate sys-
tem. The antenna is excited at r = d0, φ = 0 by
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Fig. 1 Geometry of circular microstrip antenna.

a coaxial feeder through the dielectric substrate. The
relative dielectric constant of the substrate is εr. The
electromagnetic fields within and outside the cavity are
denoted by Ed, Hd and Ee, He, respectively.

The thickness of the substrate is assumed to be
much smaller than the wavelength, so the electromag-
netic fields within the cavity do not vary along the z
direction. The z component of the electric field Ed

z

satisfies the following Helmholtz equation in the cylin-
drical coordinate system (r, φ, z),{

1
r

∂

∂r
(r

∂

∂r
) +

1
r2

∂2

∂φ2
+ k1

2

}
Ed
z (r, φ) = 0 (1)

where k1 = ω
√
µ0ε1 = ω

√
µ0εrε0. In terms of Eq. (1)

and Maxwell’s equations, the electromagnetic fields
within the cavity are expressed as,

Ed =
N∑
n=0

izEd
zn(r, φ) (2)

Hd =
N∑
n=0

{irHd
rn(r, φ) + iφH

d
φn(r, φ)} (3)

In Region 1 (0 ≤ r ≤ d0)

Ed
zn(r, φ) = AnJn(k1r) cos(nφ) (4)

Hd
rn(r, φ) = − jn

ωµ0r
AnJn(k1r) sin(nφ) (5)

Hd
φn(r, φ) = − jk1

ωµ0
AnJ

′
n(k1r) cos(nφ) (6)

In Region 2 (d0 ≤ r ≤ a0)

Ed
zn(r, φ) = {BnJn(k1r) + CnNn(k1r)} cos(nφ) (7)

Hd
rn(r, φ) = − jn

ωµ0r
{BnJn(k1r)

+ CnNn(k1r)} sin(nφ) (8)

Hd
φn(r, φ) = − jk1

ωµ0
{BnJ

′
n(k1r)

+ CnN
′
n(k1r)} cos(nφ) (9)

where Jn(k1r) and Nn(k1r) are Bessel and Neumann
functions of order n, respectively. The prime denotes
the derivative with respect to the argument. ir, iφ and
iz are unit vectors of the cylindrical coordinate system
(r, φ, z). {An}, {Bn} and {Cn} are unknown coeffi-
cients to be determined from the boundary conditions
between regions 1 and 2;

Ed
z (region1) = Ed

z (region2),

Hd
r (region1) = Hd

r (region2) : r = d0 (10)

Hd
φ (region2) −Hd

φ (region1) =
I0
d0
δ(φ) : r = d0 (11)

and the impedance boundary condition at the aperture;

Hd
φn = −ysnEd

zn : r = a0, (12)

where I0 is the total current at the feed point and ysn
is the wall admittance of order n.

The equivalent magnetic currentM at the aperture
is given by

M = Ed × n (13)

where n is the unit normal vector directed outward from
the aperture. Substituting Eq. (7) into Eq. (13), the
magnetic current is reduced to

M = iφM =
N∑
n=0

iφMn(φ) (14)

Mn(φ) = {BnJn(k1a0) + CnNn(k1a0)} cos(nφ).
(15)

From the continuity condition on the tangential
component of the magnetic field at the aperture, the
wall admittance ysn is defined by the magnetic field
He

φn produced by the equivalent magnetic current Mn

at the aperture,

ysn = −
He

φn

Mn
. (16)

3. Magnetic Fields Outside the Cavity

In the formulation of the wall admittance, the local
coordinate system (X, Y, Z) with the origin located at
the point (a0, φ′, 0) in the cylindrical coordinate sys-
tem is applied for arbitrarily shaped MSA. Figure 2
shows the local coordinate system. The positive X di-
rection is defined by the tangential φ′ direction. The
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Fig. 2 Local coordinate system with origin located at antenna
aperture.

observation point is located on the ground plane of the
aperture (a0, φ, 0) and the equivalent magnetic current
exists at the aperture (r=a0, 0≤ φ′ ≤ 2π, 0 ≤ z′ ≤ h).
Since the thickness of the substrate is assumed to be
much smaller than the wavelength, the patch may be
neglected in the externally equivalent problem. He is
expressed by using the vector potential F and the scalar
potential φm;

He = −jωF−∇φm. (17)

In terms of the transverse potential, the vector poten-
tial F is written as follows [10],

F =
∫
aperture

(iXGXX
F + iYGYX

F )MdS′ (18)

where GXX
F and GY X

F are X and Y components of
Green’s function for the vector potential due to a X-
directed magnetic dipole, respectively. The scalar po-
tential φm is written as follows,

φm =
1
jω

∫
aperture

M · (∇′GV )dS′ (19)

where GV is Green’s function for the scalar potential.
∇ and ∇′ are the derivative operators at the observa-
tion and source points, respectively. By substituting
Eqs. (18) and (19) into Eq. (17), the magnetic field He

φ

on the ground plane of the aperture (a0, φ, 0) is given
by the following equation,

He
φn = −jωa0

∫ 2π
0

∫ h

0

{cos(φ− φ′)GXX
F

+ sin(φ− φ′)GYX
F }Mn dZ

′dφ′

+
1

jωa0

∫ 2π
0

∫ h

0

∂GV

∂φ

∂Mn

∂φ′ dZ ′dφ′. (20)

The Z component of the electric and magnetic
fields created by a X-directed magnetic dipole are de-
noted by GZX

E and GZX
H , respectively. Using the no-

tation “¯” for quantity in the spectral domain, G
XX

F ,
G
YX

F and GV are expressed as [10],

G
XX

F =
ε1

kR
2U1
2
(ωµ0kX

∂G
ZX

H

∂Z
−jkY U12G

ZX

E )(21)

G
Y X

F =
ε1

kR
2U1
2 (ωµ0kY

∂G
ZX

H

∂Z
+jkXU12G

ZX

E )(22)

GV =
ω

kXU1
2

∂G
ZX

H

∂Z
(23)

U1
2 = kR

2 − k1
2 (24)

kX = kR cosΘ, kY = kR sinΘ. (25)

G
ZX

E or G
ZX

H in free space and the dielectric region are
denoted as ψ0 and ψ1. ψ1 satisfies the wave equation
in the spectral domain,(

d2

dZ2
− U1

2

)
ψ1 = contribution of sources. (26)

The boundary conditions at the interface between free
space and the dielectric are expressed as,

α0ψ0 = α1ψ1 and
∂ψ0
∂Z

=
∂ψ1
∂Z

, atZ = h (27)

where

αi =

{
εi : ψi = G

ZX

E

µ0 : ψi = G
ZX

H

(i = 0, 1),

and at the interface between the dielectric and ground
plane,

G
ZX

H = 0 and
∂G

ZX

E

∂Z
= 0, at Z = 0. (28)

By applying the boundary conditions (27) and (28) to
the solutions of the wave equation (26), G

ZX

E and G
ZX

H

are obtained. Green’s functions in the spatial domain
GXX
F , GYX

F and GV are derived by applying the inverse
Fourier transform toG

XX

F , G
Y X

F andGV (see Appendix
A). By substituting Z = 0 into Eqs. (A· 17)–(A· 19) in
Appendix A, the spatial domain Green’s functions on
the ground plane of the aperture (a0, φ, 0) are expressed
by the following equations,

GXX
F =

ε1
4π

∫ ∞

0

{gLfX(kR)

−gLfY (kR) cos(2Φ)}dkR (29)

GYX
F = − ε1

4π

∫ ∞

0

gLfY (kR) sin(2Φ)dkR (30)

∂GV

∂φ
=

−a02 sin(φ− φ′)
2πµ0R

∫ ∞

0

gLV (kR)dkR (31)

gLfX(kR) =
{
P3(0)
∆H

+
P4(0)
∆E

}
kR
U1

J0(kRR) (32)
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gLfY (kR) =
{
P3(0)
∆H

− P4(0)
∆E

}
kR
U1

J2(kRR) (33)

gLV (kR) =
P3(0)
∆H

kR
2

U1
J1(kRR) (34)

P3(0) = U1 sinh{U1(h− Z ′)}
+ U0 cosh{U1(h− Z ′)} (35)

P4(0) = ε1U0 sinh{U1(h− Z ′)}
+ ε0U1 cosh{U1(h− Z ′)} (36)

R = a0
√
2− 2 cos(φ− φ′) (37)

Φ =
{

π − 12 (φ′ − φ) : φ′ ≥ φ
1
2 (φ− φ′) : φ > φ′,

(38)

where ∆E and ∆H are expressed by Eqs. (A· 11) and
(A· 12) in Appendix A, respectively. Substituting
Eqs. (29)–(31) into Eq. (20), the magnetic field He

φ is
obtained.

By subtracting the quasi-static terms from the in-
tegrands (32) and (34), the remaining integrands decay
faster for larger kR [9], [10]. The poles associated with
the surface waves exist for ∆E=0. The contributions
from the poles are evaluated analytically by means of
the residue calculus technique, and the wall conduc-
tance due to these poles is obtained by Eq. (A· 36) (see
Appendix B).

4. Input Impedance

By applying Poynting’s theorem to the volume V en-
closed by the surface S consisting of the patch, the
ground plane and the aperture, the input impedance of
MSA is defined as [4]

Zin =
1
2V0V0

∗

P ∗ + Pd + Pc − 2jω(Wm −We)
(39)

where

P =
1
2

∫
aperture

(Ee ×He∗) · ndS (40)

We =
1
4

∫
V

ε′|Ed|2dV (41)

Wm =
1
4

∫
V

µ0|Hd|2dV (42)

Pd =
1
2

∫
V

ωε′′|Ed|2dV (43)

Pc =
1
2

∫
conductor

σ|Ed|2dS. (44)

n is the unit normal vector on the surface S. σ is the
conductivity of the patch and the ground plane and
ε1 = εrε0 = ε′ − jε′′. The real part of P represents the

radiated power leaving the aperture. The imaginary
part of P represents the stored energy of the fringe
field around the aperture. Pd and Pc are the power dis-
sipated in V due to the dielectric and conductor losses,
respectively. We and Wm are the electric and magnetic
energies stored in V , respectively. V0 is the voltage
across the patch and the ground plane at the feed point
r = d0, φ = 0.

By substituting Eqs. (2)–(9) into Eqs. (40)–(44),
the following expressions are obtained.

P =
πa0h

2

N∑
n=0

(1 + δn)ysn∗

×|BnJn(k1a0) + CnNn(k1a0)|2 (45)

We =
ε′πh

4

N∑
n=0

(1 + δn)[|An|2
∫ d0

0

rJn
2(k1r)dr

+
∫ a0

d0

r{|Bn|2Jn2(k1r) + |Cn|2Nn
2(k1r)

+ (BnCn
∗ +Bn

∗Cn)Jn(k1r)Nn(k1r)}dr]
(46)

Wm =
πh

4ω2µ0

N∑
n=1

n2[|An|2
∫ d0

0

Jn
2(k1r)
r

dr

+
∫ a0

d0

1
r
{|Bn|2Jn2(k1r) + |Cn|2Nn

2(k1r)

+ (BnCn
∗ +Bn

∗Cn)Jn(k1r)Nn(k1r)}dr]

+
πhk1

2

4ω2µ0

N∑
n=0

(1 + δn)[|An|2
∫ d0

0

rJ ′
n
2(k1r)dr

+
∫ a0

d0

r{|Bn|2J ′
n
2(k1r) + |Cn|2N ′

n
2(k1r)

+ (BnCn
∗ +Bn

∗Cn)J ′
n(k1r)N

′
n(k1r)}dr]

(47)

Pd = 2ω tan δWe (48)

Pc =
2ωδs
h

Wm (49)

In the above expressions δn is zero for n > 0 and is
equal to 1 for n = 0, tan δ = ε′′/ε′ is the loss tan-
gent of the dielectric substrate and δs = (πµ0σf)−

1
2 is

the skin depth of the conducting plate at the operating
frequency f .

5. Results and Discussion

Figure 3 shows the wall conductances of the first mode
gs1 calculated by the spectral domain method and gr1
by Shen’s method [4]. The wall conductance due to
the surface wave gsws1 included in gs1 is also shown in
Fig. 3. In Shen’s method, the wall conductance is de-
termined from the radiated power at the edge of the
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Fig. 3 Wall conductances of first mode (a0 = 9.0mm,
h = 0.764mm, εr = 2.15).

Fig. 4 Ratio of surface wave conductance to wall conductance
(a0=9.0mm, first mode).

antenna. Around the resonant frequency of the first
mode (6.4GHz) and at higher frequencies, a difference
between gs1 and gr1 is observed. This difference is due
to the effect of the surface wave. gsws1 expressed by
Eq. (A· 36) in Appendix B vanishes at around 9.5GHz
[8]. Since the wave number of the TM110 mode is not
used in Eqs. (4)–(9), gsws1 includes the surface wave con-
ductances of TM1m0 modes (m=2, 3, ...). Figure 4
shows the ratio of gsws1 to gs1 for different values of di-
electric constant εr and thickness h. The rate of gsws1
increases as the dielectric constant and thickness in-
crease. Therefore, the effect of the surface wave should
be considered in the calculation of wall conductance for
the thicker dielectric substrate.

Figure 5 shows the wall susceptances of the first
mode bs1 calculated by the spectral domain method
and br1 by Shen’s method. In Shen’s method, the wall
susceptance is determined from the fringe field at the
edge of the antenna. Although br1 is only valid at the

Fig. 5 Wall susceptances of first mode (a0=9.0mm).

resonant frequency [11], bs1 can be calculated at all
frequencies.

Figures 6(a) and (b) show the calculated and mea-
sured input impedances of the circular MSA. In the
numerical calculation, the number of modes N is deter-
mined to be 5 to obtain the convergent solution. Thick-
nesses of the dielectric substrate in Figs. 6(a) and (b)
are 0.024λg and 0.048λg, respectively. λg is the wave-
length within the dielectric at the resonant frequency
of the MSA. The antennas are made of copper-clad
Glass-fiber-PTFE. Fairly good agreements between the
calculated and the experimental results are observed.
The relative errors of the measured resonant frequency
to the calculated one are 1.1% at 0.024λg and 1.6%
at 0.048λg, respectively. The relative errors increase
fractionally as the thickness of dielectric substrate in-
creases. This error is due to the assumption that the
equivalent magnetic current is uniform in the z direc-
tion.

6. Conclusion

The wall admittance of the circular MSA has been for-
mulated by the spectral domain method. In this paper,
the wall admittance is defined by the magnetic field due
to the equivalent magnetic current at the aperture. In
the spectral domain analysis, MSA is modeled as a lay-
ered medium consisting of free space, a dielectric with
a magnetic dipole and a ground plane. The wall admit-
tance calculated by the spectral domain method is com-
pared with the one given by Shen, commonly used in
the analysis of the circular MSA. The wall admittance
formulated here includes the wall conductance due to
the surface waves. The contribution of surface wave
conductance to wall conductance is significant around
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(a)

(b)

Fig. 6 Input impedances of circular microstrip antenna.
(a) a0=9.05mm, d0=6.0mm, h=0.764mm, εr=2.15, tan δ=0.001
(b) a0=9.06mm, d0=6.0mm, h=1.564mm, εr=2.60, tan δ=0.022.

the resonant frequency of first mode and at the higher
frequencies. Although the wall susceptance by Shen’s
method is only valid at the resonant frequency, that
by the spectral domain method can be obtained at all
frequencies.

In order to ascertain the validity of the wall ad-
mittance calculated here, the input impedances of the
probe-fed MSA have been calculated by the cavity
model and compared with the experimental results. It
is assumed in the cavity model that the thickness of
the substrate is much smaller than the wavelength and
the patch, ground plane and dielectric are lossless. The
probe feed is replaced by the delta-function generator.
Although the input impedance is expressed as the ratio
of the voltage across the patch and the ground plane to
the feed point current, the input impedance is formu-
lated here by Poynting’s theorem in order to consider
the conductor loss and the dielectric loss. The calcu-

lated input impedances agree fairly well with the mea-
sured data for the substrate thickness from 0.024λg to
0.048λg.

The wall admittance of arbitrarily shaped patch
MSA is easily obtained by using the method presented
here. MSA with thicker dielectric substrate could be
calculated accurately by considering the variation of
electromagnetic fields in the z direction.
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Appendix A: Spatial Domain Green’s Func-
tions for the Vector and Scalar
Potential

Green’s functions in the spectral domain G
XX

F , G
Y X

F

and GV are obtained by substituting G
ZX

E and G
ZX

H

into Eqs. (21)–(23)[10].

Z ′ ≤ Z ≤ h

G
XX

F =
ε1

2πU1
{P1(Z)
∆H

cos2Θ+
P(Z)
∆E

sinΘ}(A· 1)

G
Y X

F =
ε1

2πU1
{P1(Z)
∆H

− P2(Z)
∆E

} cosΘ sinΘ (A· 2)

GV =
P1(Z)

2πµ0U1∆H
(A· 3)

0 ≤ Z ≤ Z ′

G
XX

F =
ε1

2πU1
{P3(Z)
∆H

cos2Θ+
P(Z)
∆E

sinΘ}(A· 4)

G
Y X

F =
ε1

2πU1
{P3(Z)
∆H

− P4(Z)
∆E

} cosΘ sinΘ (A· 5)

GV =
P3(Z)

2πµ0U1∆H
(A· 6)

In the above equations

P1(Z) = [U1 sinh{U1(h− Z)}
+ U0 cosh{U1(h− Z)}] cosh(U1Z ′)(A· 7)

P2(Z) = [ε1U0 sinh{U1(h− Z)}
+ ε0U1 cosh{U1(h− Z)}]
× cosh(U1Z ′) (A· 8)

P3(Z) = [U1 sinh{U1(h− Z ′)}
+ U0 cosh{U1(h− Z ′)}] cosh(U1Z)(A· 9)

P4(Z) = [ε1U0 sinh{U1(h− Z ′)}
+ ε0U1 cosh{U1(h− Z ′)}]
× cosh(U1Z) (A· 10)

∆E = εU sinh(Uh) + εU cosh(Uh) (A· 11)

∆H = U cosh(Uh) + U sinh(Uh). (A· 12)

Green’s functions in the spatial domain are obtained by
applying the inverse Fourier transform to Eqs. (A· 1)–
(A· 6). The inverse Fourier transform is defined as

g(X, Y, Z) =
1
2π

∫ ∞

0

kR

∫ 2π
0

g(kR, Θ)

× exp{jkRR cos(Θ − Φ)}dΘdkR.
(A· 13)

Consequently, Green’s functions in the spatial domain
at any point (X , Y , Z) are expressed by the following
equations,

Z ′ ≤ Z ≤ h

GXX
F =

ε1
4π

∫ ∞

0

{gUfX(kR)

− gUfY (kR) cos(2Φ)}dkR (A· 14)

GYX
F = − ε1

4π

∫ ∞

0

gUfY (kR) sin(2Φ)dkR (A· 15)

∂GV

∂φ
=

−a02 sin(φ− φ′)
2πµ0R

∫ ∞

0

gUV (kR)dkR (A· 16)

0 ≤ Z ≤ Z ′

GXX
F =

ε1
4π

∫ ∞

0

{gLfX(kR)

− gLfY (kR) cos(2Φ)}dkR (A· 17)

GYX
F = − ε1

4π

∫ ∞

0

gLfY (kR) sin(2Φ)dkR (A· 18)

∂GV

∂φ
=

−a02 sin(φ− φ′)
2πµ0R

∫ ∞

0

gLV (kR)dkR (A· 19)

where

gUfX(kR) = {P1(Z)
∆H

+
P2(Z)
∆E

}kR
U1

J0(kRR) (A· 20)

gUfY (kR) = {P1(Z)
∆H

− P2(Z)
∆E

}kR
U1

J2(kRR) (A· 21)

gUV (kR) =
P1(Z)
∆H

kR
2

U1
J1(kRR) (A· 22)

gLfX(kR) = {P3(Z)
∆H

+
P4(Z)
∆E

}kR
U1

J0(kRR) (A· 23)

gLfY (kR) = {P3(Z)
∆H

− P4(Z)
∆E

}kR
U1

J2(kRR) (A· 24)

gLV (kR) =
P3(Z)
∆H

kR
2

U1
J1(kRR). (A· 25)

Appendix B: Derivation of the Wall Conduc-
tance due to the Surface Wave
[9],[10]

Figure A·1 shows the integration path of Eqs. (29) and
(30). The integration interval is decomposed into three
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Fig.A· 1 Integration path of inverse Fourier transform
(29) and (30).

subintervals, [0, k0], [k0, k1] and [k1,∞]. In the interval
[k0, k1], the pole associated with the surface wave exists
for ∆E=0. Therefore, the integrals of gLfX and gLfY
along the interval [k0, k1] are recast into the following
expression.∫ k1

k0

gLfX(kR)dkR =
∫ k1

k0

{gLfX(kR)− FX(kR)}dkR

+
∫ k1

k0

FX(kR)dkR (A· 26)

∫ k1

k0

gLfY (kR)dkR =
∫ k1

k0

{gLfY (kR)− FY (kR)}dkR

+
∫ k1

k0

FY (kR)dkR (A· 27)

where

FX(kR) =
ResX
kR − kp

(A· 28)

ResX = lim
kR→kp

P4(0)kRJ0(kRR)(kR − kp)
U1∆E

= lim
kR→kp

P4(0)kRJ0(kRR)
d

dkR
U1∆E

(A· 29)

FY (kR) =
ResY
kR − kp

(A· 30)

ResY = lim
kR→kp

−P4(0)kRJ2(kRR)(kR − kp)
U1∆E

= lim
kR→kp

−P4(0)kRJ2(kRR)
d

dkR
U1∆E

, (A· 31)

and kp is the surface wave pole located on the real axis
of the complex kR. The integrals of ResX and ResY
are the residues of FX(kR) and FY (kR) at the pole kp,
respectively. The integrals of FX(kR) and FY (kR) are
analytically calculated as follows.

∫ k1

k0

FX(kR)dkR = ResX(ln
k1 − kp
kp − k0

− jπ) (A· 32)
∫ k1

k0

FY (kR)dkR = ResY (ln
k1 − kp
kp − k0

− jπ) (A· 33)

Substituting the second terms on the right-hand sides of
Eqs. (A· 32) and (A· 33) into Eqs. (29) and (30), Green’s
functions due to the surface wave become

GXX
F = − jπ

ε1
4π

{ResX −ResY cos(2Φ)} (A· 34)

GYX
F = − jπ

ε1
4π

{−ResY sin(2Φ)}. (A· 35)

Therefore, the wall conductance due to the surface wave
gswsn is summarized as

gswsn =
ωa0ε1
4Mn

∫ 2π
0

∫ h

0

[cos(φ− φ′)ResX

− {cos(2Φ) cos(φ− φ′)
+ sin(2Φ) sin(φ− φ′)}ResY ]MndZ

′dφ′.

(A· 36)

Takafumi Fujimoto received his B.E
and M.E. degrees from Nagasaki Univer-
sity in 1992 and 1994, respectively. He is
currently a Research Associate at Naga-
saki University. His main interests have
been the analytical method of microstrip
antenna and the active antenna.

Kazumasa Tanaka received his
B.S., M.S. and Dr.E. degrees in Elec-
tronic Communication Engineering, in
1965, 1967, and 1975, respectively, all
from Kyushu University, Japan. Since
1981, he has been a professor at Naga-
saki University. His main areas of interest
include, diffraction of optical beam, de-
tection of optical signal, and optical en-
gineering. Prof. Tanaka is a member of
the Japan Society of Applied Physics and

Optical Society of America.

Mitsuo Taguchi received his B.E.
and M.E. degrees from Saga University
in 1975 and 1977, respectively, and a
Dr.Eng. degree from Kyushu University
in 1986. From 1977 to 1987, he was a Re-
search Associate at Saga University. Since
1987 he has been an Associate Professor
at Nagasaki University. In 1996 he was
a Visiting Scholar at the Department of
Electrical Engineering at the University
of California, Los Angeles. His research

interests include active antennas, microstrip antennas, and lin-
ear antennas. Prof. Taguchi is a member of the IEEE and the
Institute of Image Information and Television Engineers.


