
Pipeline Scheduling with Input Port Constraints
for an FPGA-based Biochemical Simulator

Tomoya Ishimori1, Hideki Yamada1, Yuichiro Shibata1, Yasunori Osana2,
Masato Yoshimi3, Yuri Nishikawa3, Hideharu Amano3, Akira Funahashi4,

Noriko Hiroi5, and Kiyoshi Oguri1

1 Department of Computer and Information Sciences, Nagasaki University
2 Department of Computer and Information Science, Seikei University
3 Department of Information and Computer Science, Keio University

4 Department of Biosciences and Informatics, Keio University
5 EMBL-EBI

bio@pca.cis.nagasaki-u.ac.jp

Abstract. This paper discusses design methodology of high-throughput
arithmetic pipeline modules for an FPGA-based biochemical simulator.
Since limitation of data-input bandwidth caused by port constraints of-
ten has a negative impact on pipeline scheduling results, we propose a
priority assignment method of input data which enables efficient arith-
metic pipeline scheduling under given input port constraints. Evaluation
results with frequently used rate-law functions in biochemical models re-
vealed that the proposed method achieved shorter latency compared to
ASAP and ALAP scheduling with random input orders, reducing hard-
ware costs by 17.57% and by 27.43 % on average, respectively.

1 Introduction

The importance of biochemical simulation is rising in the context of systems bi-
ology, which aims at understanding biological processes in a system level. While
various biochemical simulators intended for whole-cell simulation have been de-
veloped[2, 3], such large scale software simulators require both a fair amount of
time and large computing resources. To overcome this problem, we have devel-
oped an FPGA-based biochemical simulator called ReCSiP (Reconfigurable Cell
Simulation Platform)[1].

ReCSiP executes high-throughput simulation of biochemical model based on
ordinary differential equations with custom hardware solvers tailored for given
target models. The solvers are essentially deeply pipelined arithmetic function
modules to calculate velocity of chemical reactions according to rate-law func-
tions. While high-throughput design of solvers directly improves the overall per-
formance of simulation, compact design allows higher degree of parallel execu-
tion with multiple solvers. So far, a wide range of research activities on high-level
synthesis techniques that generate high throughput pipeline modules have been
carried out [4–9]. However, the following two issues seem to be rarely addressed
while they need to be taken into account in practical reconfigurable computing
platforms like ReCSiP.



Solver Core

[X] RAM

d[X] RAM

Integrator

Solver

k RAM
v

X

k1

k2

Pipelined
Rate-Law
Function
Module

Fig. 1. Structure of a Solver

1. Due to data input bandwidth limitation for pipeline modules, all of input
data required to calculate the arithmetic function cannot be fed at the same
time.

2. The input data may not necessarily be able to be fed from any input ports.
For example, each solver in ReCSiP has three input ports; one for variables
conveying chemical concentration and two for variables of reaction rate co-
efficients. Any concentration variables can not be fed through ports for co-
efficients. Such architectural constraints effectively reduces switching costs,
enabling high operational frequency.

Therefore, scheduling of the data input sequence also plays an important role in
terms of the trade-off between performance and hardware costs of solvers.

2 ReCSiP simulator and solver cores

An FPGA on ReCSiP contains ordinary differential equation Solvers, switch
modules for inter-solver data communication, and PCI interface. Each Solver
consists of a Solver Core module to calculate the change in concentrations of
substances for each time step and an Integrator module to perform numerical
integration and simulation control. Figure 1 shows the structure of a Solver.

A Solver Core, which is a statically scheduled pipeline module with single
precision floating point arithmetic, calculates and outputs a reaction rate v using
data from three input ports; one for concentrations of substances and two for
reaction coefficients. The structure of Solver Core varies depending on the rate-
law function to be calculated. An Integrator has three sets of memories for
concentrations (corresponding to [X] RAM), for rate coefficients of each function
(k RAM), and for concentration changes occurred by reactions (d[X] RAM). An
Integrator performs numerical integration to calculate concentration changes for
each time step using Solver Cores.

Since data-input bandwidth constraints to Solver Cores often prevent all the
data required by the reaction from being initiated at once, those data should be
ordered so as to mitigate arithmetic units’ stalls by the inputs. Here, we define
pipeline pitch P as the number of clock cycles to complete input. In the case



that the value of P is 2 or more, idle clock cycles on arithmetic units might arise.
That is, each arithmetic unit operates once every P clock cycles. This control is
easily carried out by providing a cyclic state counter with a range of the pipeline
pitch. The same arithmetic operators which are scheduled in different states can
be shared into the same arithmetic module.

3 Port constrained scheduling

3.1 Data-input scheduling

Xa
Xb

1

v

KbKa
Kc

1

2

2

3

Fig. 2. DFG and subtrees for
Function (1)

In our approach, we divide scheduling process
into two tasks; we first assign a priority to each
input data for a Solver Core based on structural
information obtained by the corresponding DFG,
then performs pipeline scheduling of minimize
the conflicts of arithmetic units. We determine
input timing of each data in the descending or-
der of the following three priority metrics. Let us
consider the following rate-law function:

v =
KaXa/(Xa/Kb)

1 + Xa/Kb + Kc/Xb
(1)

where Xa, Xb are input through the X port and Ka, Kb, Kc are fed by two K
ports.

(1) Usage frequency: Assume that m arithmetic units need the same input data
Dm, and n arithmetic units do Dn. When m is larger than n, it might be better
to make the priority of Dm higher than that of Dn. To fill in the details, input
of Dm allows m arithmetic units to be half-ready, in which a node waits for
the other input data to initiate the operation, and the same holds true for Dn.
Here, Dm could have the higher probability for the beginning of operations than
Dn by the assumption, just m ≥ n. Consequently, giving the higher priority to
the input data used on more arithmetic units, might be preferable. Incidentally,
usage frequency of input data corresponds directly to out-degree, or the number
of edges leaving the node. Taking Function (1) for example, priorities come to
be {{Xa}, {Xb,Ka,Kb,Kc}}.

(2) The number of successors: Obviously, making the data on the critical path of
the DFG input first is better to minimize the latency. The precise critical path,
however, can be changed by scheduling of the data input order itself. An easy way
to predict the critical path is to use the sum of latencies of arithmetic units along
the path, but this idea does not consider the stall time. Since each arithmetic
unit may have different stall time, the path whose sum of latencies is small could
be critical. Therefore, we propose to use the number of successors from primary
input to primary output. The number of successors roughly corresponds to the
number of operations performed until the primary output. Taking Function (1)
for example, priorities come to be {{Xa,Kb}, {Xb,Ka, Kc}}.



(3) Divider subtrees: In general, dividers often have the largest latency among
the basic arithmetic units. In fact, the latency of the divider is about 5 times
larger than that of the add-subtractor and multiplier in the current ReCSiP
design. Therefore, we propose to use the idea of subtrees headed by dividers as
shown in Figure 2. To begin with the primary output v, its immediate predeces-
sors are scanned to find dividers. Every time a divider is found, a new subtree is
made toward the primary inputs. Finally, the priority of input data is assigned
based on how many divider subtrees cover the corresponding the input data. Tak-
ing Function (1) for example, priorities come to be {{Xa, Kb}, {Xb,Ka,Kc}}.

3.2 Arithmetic pipeline scheduling

As a method for arithmetic scheduling, a wide varieties of algorithms such as
the ASAP (As Soon As Possible) /ALAP (As Late As Possible) scheduling [4],
heuristic optimal FDS (Force-Directed Scheduling) [5, 6], a globally optimal ILP
(Integer Linear Programming) [7], and List-based scheduling using DFG informa-
tion [8, 9] have been proposed. Our algorithm is based on the List-based schedul-
ing and consists of the following steps:

1. Calculate the mobilities of each operation using the ASAP/ALAP schedule.
The mobility is defined as the difference between the ASAP time and ALAP
time of the operation. Make a ready-list (priority queue), which is always
sorted with respect to a priority function. The operation with a smaller
mobility has a higher priority.

2. Iterate Step 3 and 4 to complete the scheduling of all operations.
3. Determine the operation schedule according to the priority of a list, avoiding

the same initiation states among operations.
4. Update a list and delete scheduled data from it. ASAP time and ALAP

time of operations whose predecessors or successors have been scheduled, are
changed. Then, these changed values are used to re-calculate the mobilities.

The hardware cost reduction is tried by using available information from the
rate-law function of the corresponding DFG, keeping the latency of the Solver
Core. The framework of this algorithm is similar to that of FDS, but complicated
calculation process such as force is not necessary in our method.

4 Evaluation

The algorithm was implemented in C++ (gcc 4.0.0) and the steps from DFG
generation to Verilog-HDL file generation are automated. To evaluate the quality
of our method, it was applied on 18 rate-law functions of the 33 SBML (System
Biology Markup Language) pre-defined functions. The generated Verilog files
were mapped on a XC2VP70-6FF1517 FPGA, using the Xilinx ISE 8.2i tool.
Latencies of adders, multipliers, and dividers used in this implementation are 5,
5, and 27 clock cycles, respectively.



Table 1. Implementation results and comparison to basic scheduling (N : operation
count, L: latency, F : frequency, T : throughput, S: slice count)

Function N
Basic ASAP Basic ALAP Proposed

L F (MHz) T (Mrps) S L F (MHz) T (Mrps) S L F (MHz) T (Mrps) S

UCTR 15 71 123.9 41.3 2859 71 125.1 41.7 3605 71 124.3 41.4 2664
UMAR 15 71 123.9 41.3 2859 71 125.1 41.7 3605 71 124.3 41.4 2647
UMR 15 71 123.9 41.3 2858 71 125.1 41.7 3605 71 124.3 41.4 2647
UNIR 15 71 123.9 41.3 2858 71 125.1 41.7 3605 71 124.3 41.4 2663
UCTI 10 70 141.0 70.5 3356 70 141.0 70.5 2716 69 141.5 70.7 3285
UMAI 10 70 141.0 70.5 3356 70 141.0 70.5 2716 69 141.5 70.7 2570
UMI 10 70 141.0 70.5 3356 70 141.0 70.5 2716 69 141.5 70.7 2569
UNII 10 70 141.0 70.5 3356 70 141.0 70.5 2716 69 141.5 70.7 3285
UUCI 8 70 139.3 69.6 2513 70 139.3 69.6 2044 70 139.3 69.6 2028
UUCR 13 71 124.6 41.5 2842 71 126.0 42.0 3574 71 124.9 41.6 2090
UAII 7 64 138.1 69.0 2380 64 139.0 69.5 1728 64 138.1 69.0 2395
UAR 12 70 127.2 42.4 3309 70 124.9 41.6 2764 69 125.3 41.7 2623
UCII 7 64 138.1 69.0 2380 64 139.0 69.5 1728 64 138.8 69.4 2395
UCIR 12 70 127.2 42.4 3309 70 124.9 41.6 2764 69 125.1 41.7 2623
ORDBBR 34 93 108.1 21.6 9476 93 121.5 24.3 15664 90 119.8 31.9 6519
ORDBUR 18 82 122.0 30.5 3077 82 124.1 31.0 2501 79 122.3 30.5 2349
ORDUBR 18 76 124.5 31.1 2600 76 122.9 30.7 2420 74 123.9 30.9 2890
PPBR 25 83 115.7 23.1 6255 83 121.9 24.3 11085 79 113.1 22.6 3903

Table 2. Results with modified ASAP/ALAP scheduling (L: latency, F : frequency, T :
throughput, S: slice count)

Function
Modified ASAP Modified ALAP

L F (MHz) T (Mrps) S L F (MHz) T (Mrps) S

UCTR 71 123.8 41.2 2780 71 125.1 41.7 3621
UMAR 71 123.8 41.2 2780 71 125.1 41.7 3621
UMR 71 123.8 41.2 2780 71 125.1 41.7 3621
UNIR 71 123.8 41.2 2780 71 125.1 41.7 3621
UCTI 69 141.0 70.5 3372 69 141.0 70.5 2716
UMAI 69 141.0 70.5 2569 69 141.0 70.5 2716
UMI 69 141.0 70.5 2569 69 141.0 70.5 2716
UNII 69 141.0 70.5 3372 69 141.0 70.5 2716
UUCI 70 139.3 69.6 2044 70 139.3 69.6 2060
UUCR 71 126.3 42.1 2175 71 126.0 42.0 3590
UAII 64 138.1 69.0 2380 64 139.0 69.5 1728
UAR 69 126.3 42.1 3409 69 124.9 41.6 2749
UCII 64 138.1 69.0 2380 64 139.0 69.5 1728
UCIR 69 126.6 42.2 2596 69 124.9 41.6 2749
ORDBBR 90 109.6 21.9 6928 90 121.5 24.3 15573
ORDBUR 79 124.5 31.1 5147 79 124.1 31.0 2453
ORDUBR 74 122.8 30.7 2588 74 122.9 30.7 2404
PPBR 79 109.5 21.9 5942 79 121.7 24.3 11041

Table 1 shows the implementation results of basic ASAP/ALAP scheduling
and the proposed scheduling. Here, basic means data-input timing is determined
in a random order. In determining data-input timing for the proposed scheduling,
the highest priority is given to the number of successors, and then the number
of divider subtrees gets preference over the usage frequency. Compared to the
ASAP/ALAP, the proposed algorithm achieved the best latency for every func-
tion, reflecting the effectiveness of our data-input scheduling policy. In terms of
the frequency and throughput (reactions per second), the achieved performance
was almost same, while the required slice count was reduced by 17.57% on av-
erage, showing considerable trade-off. The average hardware reduction rate of
27.43 % was achieved, affecting calculation throughput only by 0.5%.



Furthermore, to evaluate the effect of arithmetic scheduling, we compared
our algorithm to modified ASAP scheduling and modified ALAP scheduling.
The results were summarized in Table 2. Here, modified means that data-input
timing is determined in the same way as the proposed algorithm. Unlike the
basic scheduling algorithms, any differences in latency were not observed for
the modified algorithms and the proposed algorithm. This implies scheduling of
data-input timing is quite important for achieving short latency. In terms of re-
quired slices, the proposed algorithm achieved the reduction rates of 11.37% and
27.3 % on average compared to ASAP and ALAP, respectively. This reduction
comes from arithmetic scheduling algorithm itself. In addition, the differences
in the reduction rates between the basic and modified algorithms suggest that
scheduling of data-input timing is also a significant factor to reduce the hardware
costs.

5 Conclusion

In this paper, a priority assignment method for data-input to enable efficient
arithmetic pipeline scheduling with input bandwidth constraints is proposed.
Evaluation results with the SBML pre-defined functions revealed that the pro-
posed method achieved shorter latency compared to randomly input ASAP and
ALAP scheduling, reducing hardware costs by 17.57% and by 27.43% on aver-
age, respectively. Our future work includes further investigating of the trade-offs
among the priority parameters with large scale graphs.

References

1. Y. Osana et al. “ReCSiP: An FPGA-based general-purpose biochemical simulator”,
Elect. and Communications in Japan,, Part 2, Vol. 90, no. 7, pp. 1–10, Jul. 2007

2. M. Tomita et al. “E-Cell: software environment for whole cell simulation”, Bioin-
formatics, Vol. 15, no. 1, pp. 72–84, Jan. 1999

3. Ion I. Moraru et al. “The virtual cell: an integrated modeling environment for
experimental for and computational cell biology”, Annals of the New York Academy
of Sciences, Vol. 971, pp. 595–596, 2002

4. Robert A. Walker, Samit Chaudhuri, “Introduction to the Scheduling Problem”,
IEEE Design and Test of Computers, pp. 60–69, Summer, 1995

5. P.G. Paulin, J. Knight, “Algorithm for High-Level Synthesis”, IEEE Design &
Test of Computers, Vol. 6, No. 6, pp. 18-31, Dec. 1989

6. P.G. Paulin, J. Knight, “Force-Directed Scheduling for the Behavioral Synthesis
of ASICs”, Trans. CAD, Vol. 8, No. 6, pp. 661-679, Jun. 1989

7. Cheng-Tsung Hwang et al, “A Formal Approach to the Scheduling Problem in
High Level Synthesis”, IEEE Trans. CAD, Vol. 10, No. 4, pp. 464–475, Apr. 1991

8. Sriram Govindarajan and Ranga Vemuri, “Cone-Based Clustering Heuristic for
List-Scheduling Algorithms”, Proc. EDTC, Paris, France, pp. 456–462, 1997

9. Azeddien M. Sllame and Vladimir Drabek, “An Efficient List-Based Scheduling
Algorithm for High-Level Synthesis”, Proc. DSD, pp. 316–323, 2002


