Nonenzymatic kinetic resolution of *racemic*

α -hydroxyalkanephosphonates with chiral copper catalyst

Yosuke Demizu, Atsushi Moriyama, Osamu Onomura*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan,

Tel.: (+81)-95-819-2429; fax: (+81)-95-819-2476; E-mail: onomura@nagasaki-u.ac.jp

Abstract: Kinetic resolution of α -hydroxyalkanephosphonates was efficiently performed by benzoylation in the presence of copper(II) triflate and (*R*,*R*)-Ph-BOX as a catalyst with excellent *s* value of up to 286.

Keywords: Kinetic resolution; Asymmetric benzoylation; α-Hydroxyalkanephosphonates; Chiral copper complex; Molecular recognition

Optically active α -hydroxyalkanephosphonic acid derivatives are important precursors for biologically active compounds such as HIV-protease inhibitors.¹ Furthermore, they are also important precursors of α -amino phoshonates.² Although a multitude of enzymatic kinetic resolution methods have been developed for preparation of optically pure α -hydroxyalkanephosphonic acid derivatives,³ to the best of our knowledge, nonenzymatic methods have not been reported. We recently reported an efficient method for kinetic resolution of 1,2-diols,⁴ vic-amino alcohols,⁵ and α - or β -hydroxyalkanamides⁶ with copper(II) ion associated with chiral ligand (R,R)-Ph-BOX by acylation to obtain optically active alcohols with excellent enantioselectivity.⁷ In this communication, we apply our methodology to kinetic Α of α -hydroxyalkanephosphonates to afford active resolution optically α -benzoyloxyalkanephosphonates C in high yields and enantioselectivities. This is based on molecular recognition by Cu(II)-(R,R)-Ph-BOX complex to form the activated intermediates **B** or **B'** followed by benzoylation (Scheme 1).

Scheme 1. Kinetic resolution of α-hydroxyalkanephosphonates with chiral copper catalyst.

We began by examining the benzoylation of diethyl 1-hydroxy-2-phenylethylphosphonate (DL-1a) as a model compound to see whether it could be accelerated by chiral copper(II)

complex or not (Scheme 2). The result showed that in the absence of copper(II) triflate and (R,R)-Ph-BOX the reaction of DL-**1a** with BzCl was slow, while in the presence of copper(II) triflate, the yield of benzoylated compound **2a** was somewhat improved. Further improvement was accomplished by using a combination of copper(II) triflate and (R,R)-Ph-BOX to afford **2a** in 39% yield with 83% *ee*.⁸ These results suggest that DL-**1a** is recognized by Cu(II)–(R,R)-Ph-BOX complex in the same way as in kinetic resolution of 1,2-diols.^{4a}

Scheme 2. Benzoylation of DL-1a with or without a catalyst.

Next, we surveyed the effect of ester substituents of α -hydroxyalkanephosphonates **1** to optimize their effect. The results are shown in Table 1. The selectivity *s* values⁹ for substrates **1b**—**d** substituted with methyl, isopropyl and benzyl ester were slightly lower than that of **1a** with ethyl ester (Entries 1—4).¹⁰ We then set to investigate the effect of the base and solvent used.

Table 1.

```
Effect of ester group of DL-1a-d.<sup>a</sup>
```

	OH Ph → OH P∽c	Bz0 R ¹ Cu(BzCl (0.5 equiv) Cu(OTf) ₂ (0.05 equiv) (<i>R,R</i>)-Ph-BOX (0.05 equiv)			1 + Ph	+ Ph Prop1	
	0 O		K ₂ CO ₃ (1.0 equiv)		0 O	U OR		
	DL -1a-d		₂ Cl ₂ C to rt, 12 h		(<i>R</i>) -2a –d	(<i>S</i>)-1a–d		
Entry	Substrate	Pr	Product (R)-2a—d		Re	Recovered (S)-1a—d		
			Yield (%)	<i>ee</i> (%) ^b		Yield (%)	<i>ee</i> (%) ^b	-
1	1a : $R^1 = Et$	(<i>R</i>)-2a	39	83	(S)- 1a	48	52	18
2	1b : \mathbf{R}^1 =Me	(<i>R</i>)-2b	45	65	(S)- 1b	42	65	9
3	1c : $\mathbf{R}^1 = i - \mathbf{Pr}$	(<i>R</i>)-2c	32	68	(S)-1c	66	38	8
4	$1d: R^1 = Bn$	(<i>R</i>)-2d	38	50	(<i>S</i>)-1d	55	35	4

^a DL-**1a**—**d** (0.5 mmol), Cu(OTf)₂ (0.025 mmol), (*R*,*R*)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), K₂CO₃ (0.5 mmol) in CH₂Cl₂ (3.0 mL) at 0 °C to rt for 12 h. ^b Determined by HPLC.

Table 2 summarizes the effect of bases and solvents on the kinetic resolution of DL-**1a**. Use of Li₂CO₃, Na₂CO₃, K₂CO₃, CaCO₃ and ZnCO₃ as base gave benzoylated products (*R*)-**2a**¹² with

moderate *s* values (Entries 1—5). Although diisopropylethylamine (DIPEA) did not work at all (Entry 6), BaCO₃ worked well to give (*R*)-**2a** with high *s* value of 24 (Entry 7). Consequently, using BaCO₃ as a base, solvent effect was investigated. Among the tested solvents (Entries 8—18), aromatic solvents were suitable for the benzoylation (Entries 14—18). Chlorobenzene gave the best result with *s* value of 46 (Entry 16). Use of (*R*,*R*)-Bn-BOX de-accelerated the benzoylation of DL-**1a** compared with use of (*R*,*R*)-Ph-BOX (Entry 17).

Table 2.

Effect of bases and solvents on the kinetic resolution.^a

	OH Ph Ph Ph	BzCl (0.5 equiv) Cu(OTf) ₂ (0.05 equiv) (<i>R</i> , <i>R</i>)-Ph-BOX (0.05 equiv)		OBz PhOEt	+ Ph OEt			
	Ö	Base (1.0 equiv)		Ö		Ö		
	DL- 1a	Solvent 0 °C to rt, 12	h	(<i>R</i>)-2a	(8	S)-1a		
Entry	Solvent	Base Produc		(<i>R</i>)-2a	Recovered (S)-1a		S	
			Yield (%)	<i>ee</i> (%) ^b	Yield (%)	<i>ee</i> (%) ^b	_	
1	CH ₂ Cl ₂	Li ₂ CO ₃	11	89	84	8	19	
2	CH_2Cl_2	Na ₂ CO ₃	47	74	43	70	14	
3	CH_2Cl_2	K_2CO_3	39	83	48	52	18	
4	CH_2Cl_2	CaCO ₃	14	88	79	4	16	
5	CH_2Cl_2	ZnCO ₃	30	74	49	48	11	
6	CH_2Cl_2	DIPEA	0	-	>99	-	-	
7	CH_2Cl_2	BaCO ₃	40	84	51	71	24	
8	CHCl ₃	BaCO ₃	19	92	73	36	34	
9	ClCH ₂ CH ₂ Cl	BaCO ₃	44	76	48	76	17	
10	THF	BaCO ₃	trace	-	97	-	-	
11	<i>i</i> -PrOH	BaCO ₃	trace	-	98	-	-	
12	AcOEt	BaCO ₃	12	87	86	17	17	
13	MeCN	BaCO ₃	11	78	65	25	10	
14	Benzene	BaCO ₃	30	92	65	48	39	
15	Toluene	BaCO ₃	34	88	60	61	29	
16	Chlorobenzene	BaCO ₃	38	90	55	79	46	
17 ^c	Chlorobenzene	BaCO ₃	17	91	72	25	27	
18	Fluorobenzene	BaCO ₃	37	91	54	71	45	

^a DL-**1a** (0.5 mmol), Cu(OTf)₂ (0.025 mmol), (*R*,*R*)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), base (0.5 mmol) in solvent (3.0 mL) at 0 °C to rt for 12 h. ^b Determined by HPLC. ^c (*R*,*R*)-Bn-BOX was used instead of (*R*,*R*)-Ph-BOX.

Kinetic resolution of various α -hydroxyalkanephosphonates DL-**3a**—**o** by benzoylation under the optimized reaction conditions¹⁴ is summarized in Table 3.¹⁵ Straight chained α -hydroxyalkanephosphonates **3a**—**d** were benzoylated to afford the corresponding optically active (*R*)-**4a**—**d** in moderate yields and with good to excellent enantioselectivities (Entries 1—4), while phenylethynylated alcohol **3e** gave benzoylated product **4e** with low *s* value of 4 (Entry 5). Compounds **3f**—**h** with branched chained groups were kinetically resolved with good to high *s* values (Entries 6—9), while benzoylation of phenyl substituted alcohol **3i** did not proceed to afford the corresponding benzoate **4i** (Entry 10). Straight carbon-chained compounds **3j** terminally functionalized with Cl atom, **3k** and **3n** with benzyloxy group gave high *s* values of 42, 57 and 25, respectively (Entries 11, 12 and 15). *N*-Boc-aminoethylated alcohol **3m** was kinetically resolved with high *s* value of 48 (Entry 14), while *N*-Cbz protected one **3l** fell short in terms of yield and enantioselectivity (Entry 13). Compound **3o** substituted with 2-furyl group gave low *s* value of 6 (Entry 16). Using 0.7 equiv of BzCl improved the optical purity of recovered α -hydroxyalkanephosphonate (*S*)-**3f** (Entry 7).

Table 3.

Kinetic resolution of various α -hydroxyalkanephosphonates DL-**3a**—**o**.^a

		$\begin{array}{c} OH \\ R^2 \overbrace{\begin{subarray}{c} 0 \\ \begin{subarray}{c} OH \\ \begin{subarray}{c} OH \\ \begin{subarray}{c} 0 \\ \begin{subarray}{c} 0 \\ \begin{subarray}{c} BZCI (0.5 equiv) \\ Cu(OTf)_2 (0.05 equiv) \\ (R,R)-Ph-BOX (0.05 equiv) \\ \begin{subarray}{c} BBCO_3 (1.0 equiv) \\ \begin{subarray}{c} OH \\ \begin{subarray}{c} 0 \\ \begin{subarray}{c} Chlorobenzene \\ 0 \\ \begin{subarray}{c} 0 \\ \begin{subarray}{c} Chlorobenzene \\ 0 \\ \begin{subarray}{c} Chlorobenzene \\ 0 \\ \begin{subarray}{c} Chlorobenzene \\ \begin{subarray}{c} 0 \\ s$			$\xrightarrow{\text{QE}} R^2 \xrightarrow{(R)-4}$	$\rightarrow \begin{array}{ccc} OBz & OH \\ \overline{z} & OEt \\ H & OEt \end{array} + \begin{array}{c} R^2 & OH \\ R^2 & D & OEt \\ H & OEt \end{array}$ $(R)-4a-o \qquad (S)-3a-o$			
Entry		Substrate Product (R)		(R)- 4a—o	Recovered (S)- 3a —o			S	
		R^2		Yield (%) $ee (\%)^{[b]}$		Yield (%)	$ee~(\%)^{[b]}$	_
1	3a	Me	(R)- 4a	37	80	(S)- 3a	47	65	18
2	3b	Et	(<i>R</i>)- 4b	26	88	(S)- 3b	56	47	25
3	3c	<i>n</i> -Pr	(<i>R</i>)-4c	28	>99	(S)- 3c	68	37	286
4	3d	(E)-MeCH=CH	(<i>R</i>)- 4d	18	>99	(S)- 3d	73	27	259
5	3e	Ph-C≡C	(<i>R</i>)- 4e	45	42	(S)- 3e	47	41	4
6	3f	<i>i</i> -Pr	(<i>R</i>)- 4f	40	84	(S)- 3f	60	50	19
$7^{\rm c}$	3f	<i>i</i> -Pr	(<i>R</i>)- 4f	52	74	(S)- 3f	47	87	32
8	3g	<i>i</i> -Bu	(<i>R</i>)- 4 g	20	94	(S)- 3g	64	32	44
9	3h	Cyclohexyl	(<i>R</i>)- 4h	32	88	(S)- 3h	67	42	24
10	3i	Ph	(R)- 4i	trace	-	(S)- 3i	>99	-	-
11	3j	CICH ₂	(R)- 4j	35	92	(S)- 3j	63	55	42
12	3k	$BnO-(CH_2)_2$	(<i>R</i>)-4k	30	95	(S)- 3k	65	39	57
13	31	Cbz-NH-(CH ₂) ₂	(<i>R</i>)-41	13	81	(S)- 3l	71	7	10
14	3m	Boc-NH-(CH ₂) ₂	(<i>R</i>)-4m	29	94	(S)- 3m	55	40	48
15	3n	$BnO-(CH_2)_3$	(<i>R</i>)- 4n	27	88	(S)- 3n	53	46	25
16	30	2-furyl	(<i>R</i>)- 4 0	38	66	(S)- 30	56	24	6

^a DL-**3a**—**o** (0.5 mmol), Cu(OTf)₂ (0.025 mmol), (*R*,*R*)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), BaCO₃ (0.5 mmol) in chlorobenzene (3.0 mL) at 0 °C to rt for 12 h. ^b Determined by HPLC. ^c BzCl (0.35 mmol) was used.

In conclusion, we have demonstrated a new non-enzymatic method for kinetic resolution of α -hydroxyalkanephosphonates. The mechanistic study of this benzoylation and its further synthetic applications are underway.

Acknowledgements

O.O. and Y.D. are very grateful to The Naito Foundation and a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, respectively.

References and notes

- (a) Stowasser, B.; Budt, K. H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. *Tetrahedron Lett.* 1992, *33*, 6625; (b) Sasai, H.; Bougauchi, M.; Arai, T.; Shibasaki, M. *Tetrahedron Lett.* 1997, *38*, 2717; (c) Zheng, X.; Nair, V. *Tetrahedron* 1999, *55*, 11803; (d) Kim, D. Y.; Wiemer, D. F. *Tetrahedron Lett.* 2003, *44*, 2803; (e) Saito, B.; Egami, H.; Katsuki, T. *J. Am. Chem. Soc.* 2007, *129*, 1978; (f) Qiu, M.; Hu, X.-P.; Huang, J.-D.; Wang, D.-Y.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. *Adv. Synth. Catal.* 2008, *350*, 2683. (g) Abell, J. P.; Yamamoto, H. *J. Am. Chem. Soc.* 2008, *130*, 10521; (h) Uraguchi, D.; Ito, T.; Ooi, T. *J. Am. Chem. Soc.* 2009, *131*, 3836.
- 2. Kaboudin, B. Tetrahedron Lett. 2003, 44, 1051.
- Recent literatures for kinetic resolution of α-hydroxyalkanephosphonates by enzymatic methods: (a) Zhang, Y.; Yuan, C.; Li, Z. *Tetrahedron* 2002, 58, 2973; (b) Pàmies, O.;
 Bäckvall, J. E. J. Org. Chem. 2003, 68, 4815; (c) Wang, K.; Zhang, Y.; Yuan, C. Org. Biomol. Chem. 2003, 1, 3564.
- Mono-benzoylation: (a) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am. Chem. Soc. 2003, 125, 2052; (b) Matsumura, Y.; Maki, T.; Tsurumaki, K.; Onomura, O. Tetrahedron Lett. 2004, 45, 9131; Mono-carbamoylation: (c) Matsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006, 47,

8453; Mono-tosylation: (d) Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y. *Tetrahedron Lett.* **2007**, *48*, 7605.

- Mitsuda, M.; Tanaka, T.; Tanaka, T.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 8073.
- Tosylation of α-hydroxyalkanamides: (a) Onomura, O.; Mitsuda, M.; Nguyen, T. T. M.; Demizu, Y. *Tetrahedron Lett.* 2007, 48, 9080; Benzoylation and tosylation of β-hydroxyalkanamides: (b) Demizu, Y.; Kubo, Y.; Matsumura, Y.; Onomura, O. *Synlett* 2008, 433.
- Asymmetric oxidation of 1,2-diols: (a) Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y.; *Tetrahedron Lett.* 2007, 48, 8668; (b) Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. *Tetrahedron* 2008, 64, 6675; Asymmetric oxidation of aminoaldehydes: (c) Minato, D.; Nagasue, Y.; Demizu, Y.; Onomura, O. *Angew. Chem. Int. Ed.* 2008, 47, 9458; Review: (d) Matsumura, Y.; Onomura, O.; Demizu, Y. Yuki *Gosei Kagaku Kyokaishi* 2007, 65, 216.
- 8. Tosylation of DL-1a with chiral copper(II) catalyst gave the corresponding tosylated product in 26% yield with 0% ee.
- Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry; Eliel, E. L., Ed.; Wiley & Sons: New York 1988, Vol. 18, 249.
- 10. The absolute stereoconfiguration of recovered (S)-1a was determined by comparing with specific rotation of authentic sample. Compound (S)-1a: [α]²⁰_D +11.7 (*c* 1.0, CHCl₃, 79% ee). [lit.¹¹ (S)-1a (91% ee); [α]²⁰_D +21.9 (*c* 0.9, CHCl₃)].
- Yokomatsu, T.; Yoshida, Y.; Suemune, K.; Yamagishi, T.; Shibuya, S. *Tetrahedron:* Asymmetry 1995, 6, 365.

- 12. Absolute stereoconfigurations of (R)-**2b**¹³ was determined by comparing with specific rotation of authentic sample. Absolute stereoconfigurations of (R)-**2c** and **2d** shown in Table 1 were deduced on the basis of those of (R)-**2a** and **2b**.
- 13. Rubio, M.; Suárez, A.; Álvarez, E. Pizzano, A. Chem. Commun. 2005, 628.
- A typical procedure for kinetic resolution of DL-1a: Under an aerobic atmosphere, a solution of 14. Cu(OTf)₂ (9.0 mg, 0.025 mmol) and (*R*,*R*)-Ph-BOX (8.4 mg, 0.025 mmol) in chlorobenzene (3 mL) was stirred for 10 min. Into the solution were added DL-1a (129 mg, 0.5 mmol), BaCO₃ (99 mg, 0.5 mmol) and BzCl (29 µL, 0.25 mmol) at 0 °C. The resulting mixture was allowed to stand until it warmed to room temperature and stirred for 12 h. The solution was poured into water and extracted with CH₂Cl₂ (20 mL x 3). The combined organic layer was dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (*n*-hexane : AcOEt = 1 : 1) to afford (*R*)-2a (38% yield, 90% ee) as colorless oil. $[\alpha]_{D}^{20}$ -95.3 (*c* 1.2, CHCl₃, 90% ee); IR(neat) 2984, 1732, 1273, 1111, 1061, 974, 710 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.28 (t, J = 6.6 Hz, 6H), 3.16—3.40 (m, 2H), 4.05—4.23 (m, 4H), 5.68—5.80 (m, 1H), 7.13—7.34 (m, 5H), 7.43 (t, J = 8.1 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.99 (d, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 16.2 (2C), 35.6, 62.6, 67.8, 69.5,126.6 (2C), 128.2 (3C), 129.0 (3C), 129.5 (2C), 133.1, 136.0, 164.8; MS [HR-EI] calcd for C₁₉H₂₃O₅P 362.1283 found 362.1247. HPLC chiralcel OJ-H column (4.6 mm ϕ , 250 mm), *n*-hexane : 2-propanol = 100 : 1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 24.5 min for (S)-2a, 26.7 min for (R)-2a.
- 15. Absolute stereoconfigurations of recovered (S)-3a,^{3a} (S)-3b,^{3a} (S)-3c,^{3b} (S)-3j^{3c} and (S)-3n¹⁶ were determined by comparing with specific rotation of authentic samples. Absolute stereoconfigurations of (R)-4d—h, 4k—m shown in Table 3 were deduced on the basis of those of (R)-4a—c, 4l, 4n.

Zhou, X.; Liu, X.; Yang, X.; Shang, D.; Xin, J.; Feng, X. Angew. Chem. Int. Ed. 2008, 47, 392.