
1 

 

 

 

 

Effect of Gap Junction Blocker β-Glycyrrhetinic Acid on Taste Disk Cells in Frog 

       

Toshihide Sato  ・ Kazuhisa Nishishita ・ Yukio Okada ・ Kazuo Toda 

 

 

 

Abstract A gap junction blocker, 18β-glycyrrhetinic acid (β-GA), increased the membrane resistance 

of Ia, Ib and II/III cells of frog taste disk by 50, 160 and 300 MΩ, respectively, by blocking the gap 

junction channels and hemichannels. The amplitudes of gustatory depolarizing potentials in the disk 

cells for 4 basic taste stimuli were reduced to 40-60% after intravenous injection of β-GA at 1.0 mg/kg. 

β-GA of 1.0 mg/kg did not affect the resting potentials and the reversal potentials for tastant-induced 

depolarizing potentials in any taste disk cells. The percentage of cells responding to each of 4 basic 

taste stimuli and varying numbers of 4 taste qualities did not differ between control and β-GA-treated 

taste disk cells. This implies that gustatory depolarizing response profiles for 4 basic taste stimuli were 

very similar in control and β-GA-treated taste disk cells. It is concluded that β-GA at 1.0 mg/kg  
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reduced the amplitude of gustatory depolarizing potentials in taste disk cells by strongly blocking 

depolarizing currents flowing through the gap junction channels and hemichannels, but probably 

weakly affected the gustatory transduction mechanisms for 4 taste stimuli. 
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Introduction 

Gap junction channels basically exist between homogenous cells such as epithelial cells, smooth 

muscle cells and myocardial cells of the same type (Ganong 2005; Sáez et al. 2003; Evans et al. 2006). 

On the other hand, gap junction hemichannels exist in most of the cells (Sáez et al. 2003; Evans et al. 

2006). A variety of intercellular communications occur through either the gap junction channels or 

hemichannels where signaling molecules or electrical currents are transmitted to neighboring cells 

(Sáez et al. 2003; Evans et al. 2006; Rodoriguez-Sinovas et al. 2007). 

In the frog taste disk located at the top of the fungiform papillae, six types of cell exist 

(Richiter et al. 1988; Witt 1993; Osculati and Sbarbati 1995). These are types Ia (mucus) cells, Ib 

(wing) cells, Ic (glia) cells, II/III (receptor) cells and IV (basal) cells (Osculati and Sbarbati 1995). 

Dye-coupling studies on frog taste disks have revealed that gap junction channels exist only between 

Ia cells but no gap junction channels exist among any pairs of taste disk cells (Takeuchi et al. 2001; 

Suwabe and Kitada 2004). 

There are two types of taste receptor cells designated types II and III cells in frog taste disk. 

Afferent synapses are present in III cells but not in II cells (Witt 1993; Osculati and Sbarbati 1995). 

Also, in mammalian taste buds there are two types of taste receptor cells designated types II and III 

cells and only type III cells possess afferent synapses (Murray 1973; Seta and Toyoshima 1995). 

However, afferent fiber terminals are in close contact with type II cells in amphibian and mammalian 
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taste organs (Murray 1973; Osculati and Sbarbati 1995). Recently it has been thought that gustatory 

information formed in mammalian type II cells designated taste transduction cells is transmitted into 

type III cells, where afferent neural signals are transmitted into the brain (Huang et al. 2007). In frog 

taste disk system it is possible that the similar relationship is present between II and III cells. 

The present studies investigate the effects of a gap junction blocker, 18β-glycyrrhetinic acid 

(β-GA) on the electrical properties and gustatory depolarizing responses of taste disk cells in the frogs. 

 

 

Materials and Methods 

 

Preparation 

 

Adult bullfrogs (Rana catesbeiana) weighing 320-680 g were used. All the experiments were carried 

out under a guidance of Nagasaki University Animal Experimentation Committee. The animals were 

anesthetized by intraperitoneally injecting a urethane solution at a dose of 2-3 g/kg body weight. Care 

was taken to keep the lingual blood circulation normal as long as possible. The tongue was pulled out 

from the mouth and pinned on a cork plate. Both the hypoglossal nerves were cut to remove 

spontaneous twitches of the tongue. Both the glossopharyngeal nerves were severed to avoid the effect 
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of parasympathetic nerve fibers supplying taste cells (Sato et al. 2005). All the experiments were 

carried out at room temperature (22-25°C). 

 

Electrical Recording and Chemical Stimulation 

 

The methods of intracellular recordings from taste disk cells in the fungiform papillae were the same 

as those described previously (Sato et al. 2002, 2004). The fungiform papillae dotted at the apical and 

middle loci of the tongue were used. The cell bodies of taste disk cells in the central area of the disk 

are arranged at three layers: Ia cell bodies at the superficial layer, Ib cell bodies at the upper part of 

intermediate layer and cell bodies of Ic/II/III cells at the lower part of intermediate layer (Richiter et al. 

1988; Witt 1993; Osculati and Sbarbati 1995). The criteria for identification of Ia cell, Ib cell and II/III 

cell in intracellular recordings from taste disks were the same as described previously (Sato et al. 

2007). In brief, the cell types were identified by three significantly different resting membrane 

potentials. Similar identification of taste disk cells in frogs was first attempted by Akaike et al. (1976). 

The input resistance of taste disk cells was measured by injecting constant hyperpolarizing current 

pulses into cells. 

Taste stimuli used were 1 M NaCl, 1 mM acetic acid, 10 mM quinine-HCl (Q-HCl) and 1 M 

sucrose. The first two were dissolved in deionized water and the last two were dissolved in 0.1 M 
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NaCl to remove solvent water-induced hyperpolarization of taste disk cells (Okada et al. 1992; Sato et 

al. 2005). After taste stimulation the tongue surface was usually rinsed with a frog Ringer solution. 

The composition of frog Ringer was 115 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl2 and 5 mM HEPES 

[4-(2-hydroxymethyl)-piperazine-1-ethanesulpfonic acid]. The pH was adjusted to 7.2 by a Tris 

[tris(hydroxylmethyl)aminomethane] solution. Depolarizing responses of taste cells for acetic acid are 

composed of ion channel and pump components (Okada et al. 1993. Sato et al. 1995). When the 

reversal potential of 1 mM acetic acid-induced responses was measured, the tongue was adapted for 3 

min to a frog Ringer containing 0.1 mM N,N′-dicyclohexylcarbodiimide to block the pump component 

and rinsed with the same Ringer after the acid stimulation. The flow rate of stimulating and rinsing 

solutions was 0.05 ml/s. 

 

Chemical 

 

A popular gap junction blocker 18β-glycyrrhetinic acid (β-GA) (Sigma-Aldrich) was used (Böhmer et 

al. 2001; Takeda et al. 2005). β-GA shows a low toxicity (Davidson and Baumgarten 1988). The stock 

solution was prepared with dimethyl sulfoxide (DMSO). Aliquots of the stock solution were added 

into the frog Ringer solution to obtain desired concentrations. β-GA solutions were injected 

intravenously (i. v.). The veins used were the precaval vein and postcaval vein. 
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There are numerous gap junction channels between the myocardial fibers (Ganong 2005). 

The heart rate of frogs was 58 ± 2/min (N = 12) in control, but decreased to 50 ± 2/min (N = 12) 3 h 

after intravenous injection of β-GA at 1.0 mg/kg which was used in most of the experiments. All the 

experiments were conducted for 3 h after injection of β-GA. 

 

Statistics 

 

All data were expressed as means ± standard errors of means (SEMs). The level of significance was 

set at P < 0.05 at a Student’s t-test. In some experiments Fisher’s exact-test was used at the 

significance level of P < 0.05.  

 

Results 

 

Relationship between β-GA Concentration and Membrane Resistance 

 

As revealed in the previous investigation (Sato et al. 2007), the vertical penetration of a 

microelectrode across the taste disk induced three step-potential changes (arrows in Fig. 1). The first 

step-potential shows the penetration of the electrode into a Ia cell. The second and third step-potentials 
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exhibit the penetration into a Ib cell and a II/III cell, respectively (Fig. 1). The vertical hyperpolarizing 

pulses induced by constant current pulses indicate the amplitudes of membrane resistances in each cell. 

Fig. 2 illustrates the relationships between the concentration of β-GA injected i. v. and the amplitude 

of input resistances in Ia, Ib and II/III cells. The input resistance increased with increasing doses of 

β-GA and reached mostly the maximum at 1.0 mg/kg body weight. No significant increase was seen in 

the membrane resistance following a further increase in the dose of β-GA (P > 0.05, N = 14-25). The 

amplitudes of increase in membrane resistances at 1.0 mg/kg of β-GA were 50 MΩ in Ia cells, 160 

MΩ in Ib cells and 300 MΩ in II/III cells. 

Almost all the experiments described below were carried out after intravenous injection of 

β-GA at 1.0 mg/kg. 

      

Time Course of Membrane Resistance Change in Single Taste Disk Cells 

 

While a microelectrode penetrated a single taste disk cell, the time course of change in the input 

resistance was measured following intravenous injection of β-GA at 1.0 mg/kg. As shown in an 

example recorded from a Ib cell (Fig. 3a), the membrane resistance gradually increased during 5-6 min 

following application of β-GA. This process was due to a gradual diffusion of β-GA released from the 

capillary vessels underneath the taste disk of a fungiform papilla (Jaeger and Hillman 1976). Fig. 3b, c 
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and d show step-like changes in the input resistance of Ia, Ib and II/III cells after injection of β-GA at 

1.0 mg/kg. Only three step-changes of input resistance occurred in a Ia cell but 5 and 7 step-changes 

appeared in a Ib and a II/III cell. 

Gap junction channels and hemichannels exist in cluster in a small area of the cell membrane 

(Loewenstein 1981; Bennett et al. 2003; Evans et al. 2006). A cluster of the channels and 

hemichannels might be closed together by diffusing β-GA molecules. The amplitudes of membrane 

resistances increased by closing each cluster were 14 ± 2 MΩ (N = 4) in Ia cells, 33 ± 2 MΩ (N = 4) in 

Ib cells and 41 ± 3 MΩ (N = 4) in II/III cells. The number of clusters of gap junctions, which was 

counted from the number of steps in step-like changes in the membrane resistance, was 2.4 ± 0.3 (N = 

4) in Ia cells, 4.3 ± 0.3 (N = 4) in Ib cells and 6.3 ± 0.5 (4) in II/III cells. The conduction time at which 

β-GA molecules moved between gap junction clusters was measured from the depth of steps in 

step-like changes in the membrane resistance. These times were 121 ± 4 s (N = 4) in Ia cells, 69 ± 6 s 

(N = 4) in Ib cells and 41 ± 5 s (N = 4) in II/III cells. 

 

Resting Potential 

 

Fig. 4 illustrates the resting potentials of Ia, Ib and II/III cells before and after injection of various 

doses of β-GA. No significant changes in resting potentials occurred in any taste disk cells in the 
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absence and presence of β-GA (P > 0.05, N = 31-83, in any doses of β-GA). 

 

Reversal Potential 

 

After β-GA was injected i. v. at 1.0 mg/kg, the reversal potentials for 1 M NaCl, 1 mM acetic acid, 10 

mM Q-HCl and 1 M sucrose were measured in Ia, Ib and II/III cells. Depolarizing potentials of any 

cells for tastants reached slowly to the peak, maintained the plateau level and fell down slowly to the 

base line after wash-out (Figs 5a and 7a). Fig. 5b-e exemplify the relationships between the membrane 

potential levels and the amplitudes of depolarizing and hyperpolarizing potentials for 4 basic stimuli in 

4 Ib cells. In Fig. 5a are shown a gradual decrease in depolarizing potentials and the reversal into a 

hyperpolarizing potential when the membrane potential of a Ib cell was shifted towards the positive 

direction and stimulated by 1 M NaCl. These data are plotted in Fig. 5b. The reversal potentials in 

control and β-GA-treated disk cells for the 4 basic stimuli are listed in Table 1. The data in parentheses 

are control values without β-GA of reversal potentials in Ia, Ib and II/III cells. No differences were 

found among reversal potentials in all cells for each taste stimulus before and after β-GA was injected 

i. v. at 1.0 mg/kg (P > 0.05, N = 3-7). 

 

Decrease of Depolarizing Response 
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Fig. 6 shows the amplitudes of depolarizing responses of Ia (a), Ib (b) and II/III cells (c) before and 

after intravenous injection of β-GA at 1.0 mg/kg. The large response amplitudes for 1 M NaCl and 1 

mM acetic acid were reduced to 50-60% following application of β-GA. The small amplitudes for 10 

mM Q-HCl and 1 M sucrose were also reduced to 40% and 50% respectively after β-GA. 

 

Membrane Resistance Change 

 

With control and β-GA-injected tongues, changes in the membrane resistance of taste disk cells 

elicited by 4 basic tastants were compared. Fig. 7a illustrates recordings of changes in the membrane 

resistance of a II/III cell during taste stimulation after an intravenous injection of β-GA at 1.0 mg/kg. 

The membrane resistances which were measured from vertically deflected hyperpolarizing pulses 

greatly decreased during 1 M NaCl stimulation, but slightly decreased during stimulation with 1 mM 

acetic acid and 1 M sucrose. The resistance was slightly increased during stimulation with 10 mM 

Q-HCl. Fig. 7b, c and d show membrane resistance changes of Ia (b), Ib (c) and II/III cells (d) for 4 

tastants before (control) and after an injection of β-GA at 1.0 mg/kg. In the control and test values the 

membrane resistance changes are expressed as (membrane resistance during gustatory 

stimulation)/(membrane resistance at rest) x 100. In any cell types the membrane resistances were 
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decreased during stimulation with 1 M NaCl, 1 mM acetic acid and 1 M sucrose, but increased during 

stimulation with 10 mM Q-HCl. The degrees of membrane resistance changes in any types of taste 

disk cell were not different between control and β-GA-treated cells (P > 0.05 in any types of stimuli 

and cells). 

 

Gustatory Response Profile 

 

Fig. 8 illustrates the percentage of taste disk cells responding to each of 4 basic stimuli in control and 

β-GA (1.0 mg/kg)-injected tongue. The response percentage for 1 M NaCl and 1 mM acetic acid was 

90-100% in any types of cell in the control and β-GA-treated tongue. The response percentage for 10 

mM Q-HCl in all cell types was 40-50% in control and β-GA-injected tongue. However, the 

percentage for 1 M sucrose was 40-50% in Ia and Ib cells, but 70% in II/III cells in either tongue. In 

each cell type, the response percentage pattern for 4 basic stimuli was similar in control and β-GA- 

injected tongues (Fisher’s exact-test, P > 0.05 in each cell type). Fig. 9 shows the percentage of cells 

responding to varying numbers of 4 taste qualities in Ia (a), Ib (b) and II/III cells (c) in control and 

β-GA treated tongue. In any cells the response percentage was largest for 3 taste qualities and smallest 

for one quality. The response percentage pattern for the number of taste qualities was similar in any 

cells of the control and β-GA- injected tongue (Fisher’s exact-test, P > 0.05). Fig. 10 shows the 
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depolarizing response profile of 18 II/III cells for 4 basic taste stimuli in β-GA- injected tongue. This 

response profile pattern was very similar to that of the control cells excepting the reduced response 

amplitudes (Sato et al. 2008). The gustatory response profiles of 14 Ia and 22 Ib cells in β-GA injected 

tongue for 4 basic taste stimuli were also very similar to those of control Ia and Ib cells (Sato et al. 

2008) (data not shown). 

 

Discussion 

 

The membrane resistance of a cell is composed of fixed resistance and variable resistance. One of the 

deficiencies in the microelectrode method is to make a leakage resistance when the electrode is 

inserted into a cell. The part of fixed resistance is connected in parallel to the leakage resistance, so the 

input resistance of taste disk cells is smaller than that measured with the patch clamp method 

(Miyamoto et al. 1991; Okada et al. 1994). However, changes in membrane resistance are exactly 

recorded by the microelectrode method as shown in Figs 1, 2 and 7. A cluster of gap junction channels 

and hemichannels exist in a small area of the cell membrane (Loewenstein 1981; Evans et al. 2006). 

When gap junction blocker molecules are released from blood capillaries under the taste disk of the 

fungiform papillae, the dotted clusters of gap junction channels and hemichannels in taste disk cells 

are gradually blocked by a movement of the blocker molecules. The increase in the resistances was 3 
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times in Ia cells, 6 times in Ib cells and 7 times in II/III cells of each control. The dye-coupling studies 

show that a few neighboring Ia cells are connected to a Ia cell through the gap junction channels 

(Takeuchi et al. 2001; Suwabe and Kitada 2004), but no cell types are connected to Ib and II/III cells 

(Takeuchi 2001; Suwabe and Kitada 2004). Investigation of an increase in membrane resistances with 

single disk cells provides that the mean number of clusters of gap junction channels is 2 in Ia cells and 

that of clusters of the hemichannels is 4 in Ib cells and 6 in II/III cells. The time course of membrane 

resistance changes in single cells (Fig. 3) indicates that the mean conduction time at which the gap 

junction blocker molecules pass between two gap junction hemichannel (channels in Ia cells) clusters 

is 121 s in Ia cells, 69 s in Ib cells and 41 s in II/III cells. If the conduction distance between the gap 

junction clusters is estimated to be 5-15 μm, the conduction velocity of β-GA molecules moving 

through the complex, barrer-rich extracellular space of in situ taste disk is as slow as 0.2 μm/s. The 

mean increase in membrane resistance by closing the hemichannel or channel cluster is 14 MΩ in Ia, 

33 MΩ in Ib and 41 MΩ in II/III cells. The ratio of the resistance of the gap junction hemichannels (or 

channels) in a cluster is Ia : Ib : II/III = 1.0 : 2.4 : 2.9. 

The resting potentials in taste disk cells after intravenous injection of various concentrations 

of β-GA were the same as the controls. The apical receptive and basolateral membranes of taste 

receptor cells at rest in the frog show a high permeability to Na+ and K+ (Okada et al. 1986). Therefore, 

the same resting potentials in control and β-GA-treated taste disk cells suggest that the permeability of 
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the apical and basolateral membranes to Na+ and K+ is stationary before and after β-GA-induced 

blockage of ion movement through the gap junction pathways. Stationary situation of the resting 

potential following treatment with β-GA has been found in hepatocytes (Böhmer et al. 2001) and 

myocytes (Takeda et al. 2005). 

  Most of the present experiments were carried out with taste disk cells after intravenous injection of 

β-GA at 1.0 mg/kg. This value corresponds to 50 μM in blood which was calculated from the injected 

amount of β-GA (1.0 mg/kg) and 4% plasma volume in frogs (Thorson 1964). We can calculate 

tastant-induced depolarizing currents passing through the taste disk cells with Figs 2, 6 and 7. In 

control II/III cells the depolarizing currents are 470 pA for 1 M NaCl, 230 pA for 1 mM acetic acid, 70 

pA for 10 mM Q-HCl and 70 pA for 1 M sucrose. The depolarizing currents in control Ib cells and 

control Ia cells for each of 4 basic taste stimuli were approximately 2 and 3.5 times larger than in the 

control II/III cells, respectively. The depolarizing currents of 50 μM β-GA-treated cells induced by 

each of 4 basic taste stimuli were decreased to 7-10% of control in II/III cells, 8-11% in Ib cells and 

13-17% in Ia cells. In any types of 50 μM β-GA-treated taste disk cells, the amplitude of decrement in 

depolarizing currents was larger than the amplitude of increment in input resistances. This indicates 

that most of the outward components of tastant-induced depolarizing currents in control disk cells flow 

through the gap junction channels and hemichannels. 

Gustatory response profiles of Ia, Ib and II/III cells for 4 basic stimuli of 1 M NaCl, 1 mM 
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acetic acid, 10 mM Q-HCl and 1 M sucrose are very similar in the control and 50 mM β-GA-treated 

cells in that the response percentage pattern for each of 4 basic stimuli as well as the number of taste 

qualities is similar in the control and blocker-treated cells. Although β-GA is an excellent gap junction 

blocker (Davidson and Baumgarten 1988), the side effects on various cells appear dose-dependently. 

β-GA at 30-40 μM weakly depresses L-type Ca2+ current, Cl- current, Ca2+-activated K+ current and 

delayed rectifier K+ current in various cells (Böhmer 2001; Takeda et al. 2005; Guan et al. 2007). In 

the present studies, it was estimated that 85-90% of tastant-induced depolarizing currents in control 

taste disk cells were suppressed in 50 μM β-GA-treated disk cells. If 50 μM β-GA remarkably 

depresses specific ion channels for gustatory transduction of a certain stimulus, gustatory response 

percentage of disk cells responding to 4 basic taste stimuli and various numbers of taste qualities (Figs 

8 and 9) may differ between control and β-GA-treated disk cells. This was not the case. Therefore, 50 

μM β-GA effects on ion channels of taste disk cells are supposed to be weak. Approximately 90% of 

II/III cells at the lower part of intermediate layer of taste disk in frogs are composed of type III cells in 

the apical and middle loci of tongue (Osculati and Sbarbati 1995; Li and Lindemann 2003), so it is 

suggested that 16 cells of 18 II/III cells examined (Fig. 10) are III cells and the other two are II cells. 

The role of gap junction channels and hemichannels is to transmit signaling molecules and 

electrical currents in a cell into the neighboring cells. These molecules and currents control the 

functions in the adjacent cells such as membrane permeability, excitability, metabolism and cell 
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division (Loewenstein 1981; Sáez et al. 2003; Evans et al, 2006). In this study we estimated the 

transmission and its blockage of tastant-induced depolarizing responses in a taste disk cell into 

adjacent disk cells. 

The tastant-induced depolarizing response in a Ia cell is transmitted into neighboring Ia cells 

via gap junction channels. The amplitude of transmitted depolarizing response will be reduced. 

Application of various concentrations of β-GA will further decrease dose-dependently the amplitude of 

transmitted depolarizing response. The tastant-induced depolarizing responses in a Ib and a III cell will 

be directly transmitted into an adjacent cell of the same type only when the gap junction hemichannels 

of two Ib and two III cells are very closely contacted. However, this possibility is low. The gustatory 

depolarizing responses induced in a II cell may not be transmitted to another II cell because of its 

dotted distribution. However, depolarizing response in a II cell is possibly transmitted into adjacent III 

cells via a signaling substance such as ATP, as suggested in mammalian taste bud (Huang et al. 2007). 

In mammalian taste bud, type II cells are directly stimulated by some taste quality (bitter, 

sweet and umami) stimuli. On the other hand, type III cells are directly stimulated by the other taste 

quality (salty and sour) stimuli and also indirectly excited via ATP released from the gap junction 

hemichannels of type II cells. This implies that type III cell depolarizing responses are composed of 

directly induced responses of type III cells themselves and indirectly induced responses from type II 

cells. Therefore, the depolarizing response profiles elicited by basic taste stimuli are quite different 
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between types II and III cells. 

In frog taste disk, depolarizing response profile of II/III cells (mostly regarded as III cell 

group in this study) was the same between control and β-GA-treated cells. This is explained by two 

possibilities. One is that no indirect responses via ATP from II cells are induced in III cells of the frogs. 

The other possibility is that depolarizing responses in II cells induced by 4 basic taste stimuli are 

carried to III cells via ATP from II cells, but the own response profiles of II cells induced by 4 taste 

stimuli may be the same as those of III cells. This results in the same depolarizing response profile in 

III cells of the control and β-GA injected tongue. Taste response profile of II cells themselves in frogs 

must be clarified. 

The present study suggests that the conduction velocity of signaling molecules such as ATP 

through barrier-rich extracellular space of in situ taste disk in the frog is 0.2 μm/s. Conduction time at 

which ATP molecules pass a minimal distance of ~1 μm between II and III cell is estimated to be 5 s. 

Usually the latency of gustatory neural impulses induced by strong taste stimuli in frogs is 200-500 ms 

(Sato et al. 1987). The latency of 5 s in III cell responses is extraordinarily longer, so the generation of 

depolarizing responses in III cells via signaling molecules is questionable. 
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Figure Legends 

 

Fig. 1 Three step-potential changes of resting membrane potentials in taste disk cells by a 

microelectrode after intravenous injection of β-GA. Left arrow shows penetration of microelectrode 

into a Ia cell, and middle and right arrows show that into a Ib and a II/III cell. Vertically deflected 

potential pulses denote amplitudes of input resistances of cells. β-GA was injected at 1.0 mg/kg. 

Fig. 2 Relationships between doses of β-GA and amplitudes of input resistances in taste disk cells. 

β-GA was injected i. v. at doses of 0.2-2.0 mg/kg body weight. Vertical bars in this and other figures 

denote SEM and numerals number of cells tested. Control input resistance was 24 ± 2 MΩ (N = 65) in 
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Ia cells, 34 ± 3 MΩ (N = 65) in Ib cells and 50 ± MΩ (N = 65) in II/III cells. 

Fig. 3 Time course of input resistance changes in taste disk cells following injection of β-GA. a 

Continuous recording of input resistance changes in a Ib cell following intravenous injection of β-GA 

at 1.0 mg/kg. b-d Time courses of input resistances in Ia (b), Ib (c) and II/III cell (d) following β-GA 

injection. At time 0 β-GA was injected at 1.0 mg/kg. 

Fig. 4 Relationship between doses of β-GA and resting potentials in taste disk cells. Numerals above 

squares are number of taste disks tested. 

Fig. 5 Relationships between membrane potentials and gustatory responses induced by taste stimuli in 

taste disk cells following β-GA injection. a Change in 1 M NaCl-induced depolarizing potential in a Ib 

cell by altering membrane potential. b-e Relationships between amplitude of membrane potentials and 

amplitude of taste stimulus-induced responses in 4 Ib cells. (b) 1 M NaCl. (c) 1 mM acetic acid. (d) 10 

mM Q-HCl. (e) 1 M sucrose. Data in a are plotted in b. β-GA was injected at 1.0 mg/kg. 

Fig. 6 Amplitudes of gustatory depolarizing responses of taste disk cells before (control) and after 

injection of β-GA. a Ia cells. b Ib crls. c I/III cells. Taste stimuli were 1 M NaCl (N), 1 mM acetic acid 

(A), 10 mM Q-HCl (Q) and 1 M sucrose (S). β-GA was injected at 1.0 mg/kg. 

Fig. 7 Changes in membrane resistances of taste disk cells in control and β-GA -injected tongue 

induced by gustatory stimulation. a Recording of membrane resistance changes of a II/III cell by 4 

basic taste stimuli. b Ia cell. c Ib cell. d II/III cell. Taste stimuli: 1 M NaCl (N), 1 mM acetic acid (A), 
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10 mM Q-HCl (Q), 1 M sucrose (S). β-GA was injected at 1.0 mg/kg. 

Fig. 8 Percentage of taste disk cells responding to each of four basic stimuli before (control) and after 

β-GA injection. a Ia cells. b Ib cells. c II/III cells. Taste stimuli: 1 M NaCl (N). 1 mM acetic acid (A), 

10 mM Q-HCl (Q), 1 M sucrose (S). β-GA was injected at 1.0 mg/kg. Control data in Ia and Ib cells 

were from Sato et al. (2008). Number of cells tested was 11 Ia, 11 Ib and 31 II/III cells in control 

tongues, and 14 Ia, 22 Ib and 18 II/III cells in β-GA-injected tongues. 

Fig. 9 Percentage of taste disk cells responding to various numbers of 4 basic taste qualities before 

(control) and after β-GA injection. a Ia cells. b Ib cells. c II/III cells. Taste stimuli: 1 M NaCl (N), 1 

mM acetic acid (A), 10 mM Q-HCl (Q), 1 M sucrose (S). β-GA was injected at 1.0 mg/kg. All 

percentage patterns in Ia, Ib and II/III cells were obtained using same data described in Fig. 8. 

Fig. 10 Gustatory response profile of β-GA-treated II/III cells for 4 basic taste qualities. Taste stimuli: 

1 M NaCl, 1 mM acetic acid, 10 mM Q-HCl and 1 M sucrose. β-GA was injected at 1.0 mg/kg. 



 

Table 1 Reversal potential of taste disk cells for 4 basic taste stimuli 

Cell 1 M NaCl 1 mM acetic acid 10 mM Q-HCl 1 M sucrose  

 mV (N) mV (N) mV (N) mV (N) 

Ia 21 ± 4 (3) 81 ± 7 (3) ∞ (3) 20 ± 4 (5) 

 (21 ± 3) (3) (82 ± 4) (4) (∞) (3)* (11 ± 8) (5)* 

Ib 24 ± 4 (4) 83 ± 7 (3) ∞ (3) 18 ± 5 (3) 

 (23 ± 2) (3) (86 ± 3) (5) (∞) (3)* (13 ± 6) (3)* 

II/III 29 ± 3 (3) 89 ± 6 (3) ∞ (5) 15 ± 2 (4) 

 (23 ± 4) (3) (88 ± 5) (7) (∞) (2)* (12 ± 5) (3)* 

Data (means ± SEMs) in parentheses are obtained from taste disk cells in control preparations. Data 

above controls were obtained from β-GA-injected preparations (1.0 mg/kg). Values marked by * were 

from control data in previous study (Sato et al. 2008). ∞ denotes that reversal potential was not 

measurable. 
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